• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Solitary Potential in a Space Plasma Containing Dynamical Heavy Ions and Bi-Kappa Distributed Electrons of Two Distinct Temperatures

    2018-05-05 09:13:49SarkerHosenHossenandMamun
    Communications in Theoretical Physics 2018年1期

    M.Sarker,B.Hosen,M.R.Hossen,and A.A.Mamun

    1Department of Physics,Jahangirnagar University,Savar,Dhaka-1342,Bangladesh

    2Department of General Educational Development,Daffodil International University,Dhanmondi,Dhaka-1207,Bangladesh

    1 Introduction

    The propagation of ion-acoustic waves[1?4]in electronion(EI)plasmas has received a great deal of renewed interest because of their vital role in understanding different kinds of nonlinear electrostatic structures(viz.solitary waves,shock structures,double layers,etc.[5?18])observed in space[19?21]and laboratory devices.[22?24]The existence of heavy ions in astrophysical plasmas has been con firmed experimentally by detecting a noble gas molecular heavy ion in the crab nebula,[25]our(Milky Way)Galaxy,[26]polar region of neutron stars,[27]active galactic nuclei,[28]pulsar magnetosphere,[29]and the early universe,[30]etc.

    The particle distribution near equilibrium is often considered to be Maxwellian for the modeling of different plasma systems.However,for many space plasma environments,it has been proven that the presence of the heavy ion and electron populations are far o fffrom their thermal equilibrium state.The effects of external forces or wave particle interaction in numerous space[31?32]and laboratory[33?34]plasma situations indicate the existence of highly energetic(super-thermal)particles.The existence of accelerated,energetic(super-thermal)particles in the measurement of electron distribution in near-Earth space environments[32,35?36]suggests a signi ficant deviation from Maxwellian equilibrium.So for a proper treatment of a plasma system with super-thermal electrons,one should not consider Maxwellian distribution function(DF),but other kind of non-Maxwellian DF like super thermal(κ)DF.[37?39]The latter is given by

    where Γ is the usual gamma function;is the most probable speed of the high energetic electron species withbeing the Boltzman constant,Tebeing the characteristic kinetic temperature of electron species,andmebeing the mass of an electron;κis the spectral index,[40?41]which measures the deviation from the Maxwellian electron distribution.We note thatκ=∞corresponds to the Maxwellian electron distribution,and that asκdecreases within a rangethe deviation from the Maxwellian electron distribution increases.

    Recently, a numerousinvestigationshave been made by many authors on ion-acoustic solitary waves(IASWs)with single-temperature super-thermal(kappa distributed)electrons.[44?46]Schipperset al.[47]have combined a hot and a cold electron component,while both electrons are kappa distributed and a best fit for the electron velocity distribution is found.Balukuet al.[48]used this model for the study of ion-acoustic solitons in a plasma with two-temperature kappa distributed electrons.Pakzad[49]studied a dissipative plasma system with superthermal electrons and positrons,and found that the effects of ion kinematic viscosity and the super-thermal parameter on the ion-acoustic shock waves.Tasnimet al.[50?51]also considered two-temperature non-thermal ions,and discussed the properties of dust-acoustic solitary waves and double layers. Masudet al.[52]have studied the characteristics of DIA shock waves in an unmagnetized dusty plasma consisting of negatively charged static dust,inertial ions,Maxwellian distributed positively charged positrons,and super-thermal electrons with two distinct temperatures.Luet al.[53]have examined the electronacoustic waves in an electron-beam plasma system containing cold and hot electrons.El-Taibanyet al.[54]have made stability analysis of dust-ion acoustic solitary waves in a magnetized multicomponent dusty plasma containing negative heavy ions and stationary variable-charge dust particles.Shahmansouri[55]investigated the basic properties of ion-acoustic waves in an unmagnetized plasma containing cold and hot ions with kappa distributed electrons.Emaet al.[56?57]studied the effects of adiabacity on the heavy ion acoustic(HIA)solitary and shock waves in a strongly coupled nonextensive plasma.They observed that the roles of the adiabatic positively charged heavy ions,and nonextensivity of electrons have significantly modi fied the basic features(viz.polarity,amplitude,width,etc.) of the HIA solitary/shock waves.Hossenet al.[58?60]considered positively charged static heavy ions in a relativistic degenerate plasma and rigorously investigated the basic features of solitary and shock structures.Shahet al.[61?62]investigated the basic features of HIA solitary and shock waves by considering both planar and nonplanar geometry.

    We expect that dynamical heavy particles and higher order nonlinearity play an important role in modifying the basic non-linear features of ion-acoustic waves propagating in space and laboratory plasmas.Therefore,our main objective in this work is to investigate the effects of dynamics of heavy ions and higher non-linearity on(HIAWs)by deriving Korteweg-de Vries(K-dV),modi fied K-dV(MK-dV)equation,and higher order MK-dV(HMK-dV)and also is to consider the dynamics of heavy particles to describe heavy ion acoustic solitary waves(HIASWs)in such plasma system under consideration.

    The manuscript is organized as follows.The basic equations are provided in Sec.2.Three different types of nonlinear equations,namely K-dV,MK-dV,and HMK-dV are derived and analyzed analytically and numerically in Sec.3.A brief discussion is finally presented in Sec.4.

    2 Basic Equations

    We consider a three component magnetized plasma system containing positively charged heavy ions and kappa distributed electrons with two distinct temperaturesT1andT2(T1

    wherenhis the heavy ion number density normalized bynh0;uhis the heavy ion fluid speed normalized by(withkBbeing the Boltzmann constant,andmhbeing the heavy ion mass);?is the electrostatic wave potential normalized bykBT1/e(withebeing the magnitude of the charge of an electron);α=(withωch=ZheB0/mhcbeing the heavy ioncyclotron frequency,B0being the magnitude of the external static magnetic field,andbeing the heavy ion plasma frequency);1=1/(1+μ),andis the number density of low(high)temperature electron species;time variable is normalized byand the space variable is normalized by.We note that the external magnetic fieldB0is acting along thez-direction(i.e.,wherez? is the unit vector along thezdirection).

    The normalized cold and hot electron number densitiesn1andn2are,respectively given by

    3 Nonlinear Equations

    To study nonlinear propagation,we now consider different orders of nonlinearity by deriving and analyzing K-dV,MK-dV,and HMK-dV equations to identify the basic features of HIASWs formed a magnetized space plasma system containing dynamical heavy ions and kappa distributed electrons of two distinct temperatures.

    3.1 K-dV Equation

    To derive the K-dV equation,we use the reductive perturbation method,which lead to the stretched coordinates:[63?64]

    whereVpis the phase speed of the HIAWs,?is a smallness parameter measuring the weakness of the dispersion(0

    Now,substituting Eqs.(7)–(12)into Eqs.(2)–(4),and then taking the terms containing?3/2from Eqs.(2)and(3),and?from Eq.(4),we obtain

    We note that Eq.(17)describes the linear dispersion relation for the propagation of the HIAWs in the magnetized plasma under consideration and thatlz=cosδ(whereδis the angle between the directions of external magnetic field and wave propagation).To the next higher order of?,we again substitute Eqs.(7)–(12)into Eqs.(2),z-component of Eq.(3),and Eq.(4)and take the terms containing?5/2from Eq.(2)andz-component of Eq.(3),and?2from Eq.(4).We then use Eqs.(15)–(17)to obtain a set of equations in the form

    Equation(25)is the K-dV equation describing the nonlinear dynamics of the HIASWs.Now,using the appropriate boundary conditions,viz.?=0,d?/dξ=0,and d2?/dξ2=0 at,the stationary solitary wave solution of Eq.(25)is given by

    where?m= 3u0/A1is the amplitude,and ? =(4B1/u0)1/2is the width of the HIASWs. To obtain the basic features(viz.polarity,amplitude,and width)of the ESPPs,we have numerically analyzed the solution,Eq.(28)for different plasma situations.The results are displayed in Figs.1–10,which clearly indicate that

    (i)The ESPPs with?(1)>0(?(1)<0)exist forμ>μc(μ<μc)as shown in Figs.1–4,8,and 9.

    Fig.1 (Color online)The electrostatic solitary potential pro files(ESPPs)with ?(1)>0 forμ > μc,u0=0.01,σ =0.25,μ =0.7,κ2=3,δ=15,α =0.5,κ1=24(dashed curve),κ1=26(solid curve),and κ1=28(dotted curve).

    Fig.2 (Color online)The ESPPs with ?(1)<0 forμ < μc,u0=0.01,σ =0.25,μ =0.7,κ2=3,δ=15,α =0.5,κ1=24(dashed curve),κ1=26(solid curve),and κ1=28(dotted curve).

    (ii)The amplitude and width of the ESPPs(with both?(1)>0 and?(1)<0)increase with the increase inκ1,κ2,andδas shown in Figs.1–5.

    Fig.3 (Color online)The ESPPs with ?(1)>0 forμ> μc,u0=0.01,σ =0.25,μ=0.7,κ1=24,δ=15,α =0.5,κ2=2.98(dashed curve),κ2=3.00(solid curve),and κ2=3.05(dotted curve).

    Fig.4 (Color online)The ESPPs with ?(1)<0 forμ< μc,u0=0.01,σ =0.25,μ=0.7,κ1=24,δ=15,α =0.5,κ2=2.98(dashed curve),κ2=3.00(solid curve),and κ2=3.05(dotted curve).

    Fig.5 (Color online)The ESPPs with ?(1)>0 forμ > μc,u0=0.01,σ =0.25,μ =0.7,κ1=20,κ2=3,α =0.5,δ=15(dashed curve),δ=30(solid curve),and δ=45(dotted curve).

    (iii)The width of the ESPPs(with?(1)>0)increases(decreases)with the increase inδfor its lower(upper)range,but it decreases with the increase inαas shown in Fig.6;(iv)The amplitude and width of the ESPPs[with?(1)>0]increase with the decrease inσas shown in Fig.7;(v)The amplitude and width of the ESPPs(with both?(1)>0 and?(1)<0)decrease with the increase inμas shown in Figs.8 and 9.

    (vi)the width of the ESPPs(with?(1)>0)decreases with the increase inμas shown in Fig.10.

    Fig.6 (Color online)The width of the ESPPs forμ > μc,u0=0.01,σ =0.25,μ =0.7,κ1=20,κ2=3,α =0.5(dashed curve),α =0.6(solid curve),and α=0.7(dotted curve).

    Fig.7 (Color online)The ESPPs with ?(1)>0 forμ > μc,u0=0.01,δ=15,μ =0.7,κ1=20,κ2=3,α=0.5,σ=0.5(dashed curve),σ=0.7(solid curve),and σ=0.9(dotted curve).

    Fig.8 (Color online)The ESPPs with ?(1)>0 forμ > μc,u0=0.01,δ=15,σ =0.25,κ1=20,κ2=3,α=0.5,μ=0.66(dashed curve),μ=0.67(solid curve),andμ=0.70(dotted curve).

    Fig.9 (Color online)The ESPPs with ?(1)<0 forμ < μc,u0=0.01,δ=15,σ =0.25,κ1=20,κ2=3,α=0.5,μ=0.60(dashed curve),μ=0.61(solid curve),andμ=0.62(dotted curve).

    Fig.10 (Color online)The width of the ESPPs with ?(1)>0 for u0=0.01,δ =15,σ =0.25,κ1=20,κ2=3,α=0.5,μ=0.65(dashed curve),μ=0.75(solid curve),andμ=0.90(dotted curve).

    3.2 MK-dV Equation

    To derive the MK-dV equation we use the same stretched co-ordinates de fined by Eqs.(7)and(8),but the different types of expansion of the dependent variables:

    To further higher order of?,substituting Eqs.(7),(8),and(29)–(32)into Eqs.(2)–(4),and then taking the terms containing?2from Eq.(2)and thez-component of Eq.(3),and?3/2from Eq.(4),we obtain another set of equations:

    To solve this MK-dV,We consider a frameξ=η ?u0T(moving with speedu0).The stationary solitary wave solution of the MK-dV equation(Eq.(41))is given by

    (i)The MK-dV equation admits solitary wave solution with?(1)>0 only;(ii)The amplitude and width of the ESPPs increase with the increase in(κ2)as shown in Fig.11.

    Fig.11 (Color online)The ESPPs with ?(1)>0 for u0=0.01,σ =0.25,μ =0.7,κ1=20,δ=15,α =0.5,κ2=3.0(dashed curve),κ2=2.5(solid curve),and κ2=2.0(dotted curve).

    Fig.12 (Color online)The ESPPs with ?(1)>0 for u0=0.01,δ=15,μ =0.70,κ1=20,κ2=3,α =0.5,σ=0.50(dashed curve),σ=0.70(solid curve),and σ=0.90(dotted curve).

    Fig.13 (Color online)The ESPPs with ?(1)>0 for u0=0.01,δ=15,σ =0.25,κ1=20,κ2=3,α =0.5,μ=0.65(dashed curve),μ=0.75(solid curve),andμ=0.85(dotted curve).

    (iii)The amplitude and width of the ESPPs increase with the increase inσas shown in Fig.12.

    (iv)The amplitude and width of the ESPPs decrease with the increase inμas shown in Fig.13.

    3.3 HMK-dV Equation

    To examine the effects of further higher order nonlinearity on the K-dV or MK-dV equations describing HIAWs in a magnetized plasma(containing containing dynamical heavy ions and bi-kappa distributed electrons of two distinct temperatures),one can derive a further higher order nonlinear equation.The latter(after performing few steps of mathematical calculations)can be directly given by[65?66]

    Fig.14 (Color online)The ESPPs(with ?(1)>0)for u0=0.01,σ =0.25,μ =0.7,κ2=3,δ=15,α =0.5,κ1=10(dashed curve),κ1=15(solid curve),and κ1=30(dotted curve).

    4 Discussion

    We have considered a magnetized plasma system consisting of inertial heavy ions and kappa distributed electrons of two distinct temperatures.We have derived the K-dV,MK-dV,and HMK-dV equations by using the reductive perturbation method to identify the basic features(polarity,amplitude,and width)of the ESPPs formed in such a magnetized plasma system.The results,which have been obtained from this theoretical investigation,can be pin-pointed as follows:

    (i)The K-dV and HMK-dV equations admit HIASW solutions with either?(1)>0(compressive)or?(1)<0(rarefactive).The polarity of the HIASWs depends on the critical valueμc(whereμc=0.64 forκ1=20,κ2=3,δ=15,σ=0.25,andα=0.5).On the other-hand,the MK-dV equation admits only HIASW solution with?(1)>0(compressive).

    (ii)The amplitude of the K-dV solitons become inif nitely large forA1?0,and thus the K-dV equation is no longer valid atA1?0,which has been avoided by deriving MK-dV and HMK-dV equations to study more highly nonlinear HIASWs.

    (iii)The amplitude and width of both positive and negative HIASWs(obtained from the numerical analysis of the solution of the K-dV equation)increase with the increase inκ1andκ2.However the amplitude of the positive HIASWs increases with the increase inδ.On the other-hand,the width decreases with the increase inα,and increases(decreases)with the increase inδfor its lower(upper)range.

    (iv)The amplitude of the K-dV HIASWs increases with the increase inT2andn01,but decreases with the rise ofT1andn02.

    (v)The width of K-dV HIASWs rises with the increase(decrease)inn01(n02).

    (vi)The amplitude and the width of the MK-dV HIASWs increase with the increase inκ2,T2andn01,but decrease with the increase inT1andn02.

    (vii)The amplitude and the width of the HMK-dV HIASWs slightly increase with the increase inκ1.This means that the effect of higher nonlinearity on K-dV and MK-dV HIASWs is insigni ficant.

    To conclude,the results of our present investigation are relevant to space(viz.Saturns magnetosphere,[43]pulsar magnetosphere,[67]upper part of the ionosphere,[68?70]lower part of the magnetosphere,[68?70]etc.).The dip shape solitary structures(known as cavitons[68?70])observed by Freja satellite[68,70]and Viking spacecraft[69?70]are similar to those predicted by our present theoretical investigation.We finally hope that our results should be useful in understanding the nonlinear eloctrostatic disturbances in the space plasma systems containing heavy ions and super-thermal electrons of two distinct temperatures.

    M.Sarker,B.Hosen,and M.R.Hossen are grateful to the Ministry of Science and Technology(Bangladesh)for awarding the National Science and Technology(NST)fellowship.

    [1]X.Gao,Q.Lu,X.Li,et al.,Phys.Plasmas 20(2013)072902.

    [2]X.Gao,Q.Lu,X.Tao,et al.,Phys.Plasmas 20(2013)092106.

    [3]X.Gao,Q.Lu,X.Li,et al.,Astrophys.J.780(2014)56.

    [4]Y.Ke,X.Gao,Q.Lu,and S.Wang,Phys.Plasmas 24(2017)012108.

    [5]F.F.Chen,Introduction to Plasma Physics and Controlled Fusion,2nd ed.,Plenum Press,New York(1984)p.297.

    [6]I.R.Durrani,G.Murtaza,and H.U.Rahman,Can.J.Phys.57(1979)642.

    [7]R.C.Davidson,Methods in Nonlinear Plasma Theory,Academic Press,New York(1972)p.15.

    [8]J.K.Chawla,M.K.Mishra,and R.S.Tiwary,Astrophys.Space Sci.347(2013)283.

    [9]A.A.Mamun,Phys.Rev.E 55(1997)1852.

    [10]M.R.Hossen,L.Nahar,S.Sultana,and A.A.Mamun,Astrophys.Space Sci.353(2014)123.

    [11]M.R.Hossen and A.A.Mamun,Braz.J.Phys.44(2014)673.

    [12]M.R.Hossen,L.Nahar,and A.A.Mamun,J.Korean Phys.Soc.65(2014)1863.

    [13]M.R.Hossen,L.Nahar,and A.A.Mamun,J.Astrophys.2014(2014)653065.

    [14]B.Hosen,M.G.Shah,M.R.Hossen,and A.A.Mamun,Euro.Phys.J.Plus 131(2016)81.

    [15]Q.M.Lu,B.Lembege,J.B.Tao,and S.Wang,J.Geophys.Res.113(2008)A11219.

    [16]M.Wu,Q.Lu,C.Huang,and S.Wang,J.Geophys.Res.115(2010)A10245.

    [17]R.Wang,Q.Lu,Y.V.Khotyaintsev,et al.,Geophys.Res.Lett.41(2014)4851.

    [18]C.Huang,Q.Lu,P.Wang,et al.,J.Geophys.Res.119(2014)6445.

    [19]E.Witt and W.Lotko,Phys.Fluids 26(1983)2176.

    [20]S.Qian,W.Lotko,and M.K.Hudson,Phys.Fluids 31(1988)2190.

    [21]V.A.Marchenko and M.K.Hudson,J.Geophys.Res.100(1995)19791.

    [22]K.E.Lonngren,Plasma Phys.25(1983)943.

    [23]Y.Nakamura,J.L.Ferreira,and G.O.Ludwig,J.Plasma Phys.33(1985)237.

    [24]Y.Nakamura,T.Ito,and K.Koga,J.Plasma Phys.49(1993)331.

    [25]M.J.Barlow,B.M.Swinyard,P.J.Owen,et al.,Science 342(2013)1343.

    [26]M.L.Burns,A.K.Harding,and R.Ramaty,Positronelectron Pairs in Astrophysics,American Institute of Physics,New York(1983).

    [27]F.C.Michel,Theory of Neutron Star Magnetosphere,Chicago University Press,Chicago(1991).

    [28]H.R.Miller and P.J.Witta,Active Galactic Nuclei,Springer,Berlin(1987).

    [29]P.Goldreich and W.H.Julian,Astrophys.J.157(1969)869.

    [30]M.J.Rees,inThe Very Early Universe,eds.by G.W.Gibbons,S.W.Hawking,and S.Siklas,Cambridge University Press,Cambridge(1983).

    [31]C.Vocks and G.Mann,Astrophys.J.593(2003)1134.

    [32]G.Gloeckler and L.A.Fisk,Astrophys.J.648(2006)L63.

    [33]Y.Yagi,V.Antoni,M.Bagatin,et al.,Plasma Phys.Cont.Fusion 39(1997)1915.

    [34]S.Preische,P.C.Efthimion,and S.M.Kaye,Phys.Plasmas 3(1996)4065.

    [35]C.C.Chaston,Y.D.Hu,and B.J.Fraser,Geophys.Res.Lett.24(1997)2913.

    [36]M.Maksimovic,V.Pierrard,and J.F.Lemaire,Astron.Astrophys.324(1997)725.

    [37]V.M.Vasyliunas,J.Geophys.Res.73(1968)2839.

    [38]D.Summers and R.M.Thorne,Phys.Fluids B 3(1991)1835.

    [39]M.A.Hellberg,R.L.Mace,T.K.Baluku,et al.,Plasmas 16(2009)094701.

    [40]T.Cattaert,M.A.Helberg,and R.L.Mace,Phys.Plasmas 14(2007)082111.

    [41]M.S.Alam,M.M.Masud,and A.A.Mamun,Plasma Phys.Rep.39(2013)1011.

    [42]B.Basu,Phys.Plasmas 15(2008)042108.

    [43]T.K.Baluku and M.A.Hellberg,Phys.Plasmas 19(2012)012106.

    [44]S.Hussain,Chin.Phys.Lett.29(2012)065202.

    [45]M.Shahmansouri,B.Shahmansouri,and D.Darabi,Indian J.Phys.87(2013)711.

    [46]S.Sultana and I.Kourakis,Plasma Phys.Control.Fusion 53(2011)045003.

    [47]P.Schippers,M.Blanc,N.Andre,et al.,J.Geophys.Res.113(2008)07208.

    [48]T.K.Baluku,M.A.Hellberg,and R.L.Mace,J.Geophys.Res.116(2011)04227.

    [49]H.R.Pakzad,Astrophys.Space Sci.331(2011)169.

    [50]I.Tasnim,M.M.Masud,M.Asaduzzaman,and A.A.Mamun,Chaos 23(2013)013147.

    [51]I.Tasnim,M.M.Masud,and A.A.Mamun,Astrophys.Space Sci.343(2013)647.

    [52]M.M.Masud,S.Sultana,and A.A.Mamun,Astrophys.Space.Sci.348(2013)99.

    [53]Q.Lu,S.Wang,and X.Dou,Phys.Plasmas 12(2005)072903.

    [54]W.F.El-Taibany,N.A.El-Bedwehy,and E.F.El-Shamy,Phys.Plasmas 18(2011)033703.

    [55]M.Shahmansouri,Astrophys.Space Sci.29(2012)105201.

    [56]S.A.Ema,M.R.Hossen,and A.A.Mamun,Phys.Plasmas 22(2015)092108.

    [57]S.A.Ema,M.R.Hossen,and A.A.Mamun,Contrib.Plasma Phys.55(2015)596.

    [58]M.R.Hossen,L.Nahar,S.Sultana,and A.A.Mamun,High Energy Density Phys.13(2014)13.

    [59]M.R.Hossen,L.Nahar,and A.A.Mamun,Phys.Scr.89(2014)105603.

    [60]M.R.Hossen and A.A.Mamun,Plasma Sci.Technol.17(2015)177.

    [61]M.G.Shah,M.M.Rahman,M.R.Hossen,and A.A.Mamun,Commun.Theor.Phys.64(2015)208.

    [62]M.G.Shah,M.M.Rahman,M.R.Hossen,and A.A.Mamun,Plasma Phys.Rep.42(2016)168.

    [63]P.K.Shukla and M.Y.Yu,J.Math.Phys.19(1978)2506.

    [64]A.A.Mamun,Astrophys.Space Sci.260(1998)507.

    [65]S.A.Elwakil,E.M.Abulwafa,E.K.El-Shewy,and H.M.Abd-El-Hamid,Adv.Space Res.48(2011)1578.

    [66]M.G.Shah,M.R.Hossen,and A.A.Mamun,J.Plasma Phys.81(2015)905810517.

    [67]S.K.Kundu,D.K.Ghosh,P.Chatterjee,and B.Das,Bulg.J.Phys.38(2011)409.

    [68]P.O.Dovner,A.I.Eriksson,R.Bostr¨om,and B.Holback,Geophys.Res.Lett.21(1994)1827.

    [69]R.Bostr¨om,G.Gustafsson,B.Holback,et al.,Phys.Rev.Lett.61(1988)82.

    [70]R.A.Cairns,A.A.Mamun,R.Bingham,et al.,Geophys.Res.Lett.22(1995)2709.

    熟女电影av网| 桃色一区二区三区在线观看| 亚洲 欧美一区二区三区| 国产精品乱码一区二三区的特点| 亚洲自拍偷在线| 波多野结衣高清作品| 变态另类丝袜制服| 日韩大码丰满熟妇| 午夜福利成人在线免费观看| 在线十欧美十亚洲十日本专区| 国产三级中文精品| www.999成人在线观看| 51午夜福利影视在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 99精品在免费线老司机午夜| 亚洲专区中文字幕在线| 亚洲熟妇中文字幕五十中出| 十八禁人妻一区二区| 香蕉国产在线看| 老司机福利观看| 一级毛片高清免费大全| ponron亚洲| 他把我摸到了高潮在线观看| 高清毛片免费观看视频网站| 久久午夜综合久久蜜桃| 国语自产精品视频在线第100页| 男女午夜视频在线观看| 久久久精品欧美日韩精品| 国产精华一区二区三区| 91大片在线观看| www日本在线高清视频| 好男人电影高清在线观看| 美女黄网站色视频| 日韩大码丰满熟妇| 观看免费一级毛片| 久久精品91蜜桃| avwww免费| 欧美日韩亚洲综合一区二区三区_| bbb黄色大片| 黄色丝袜av网址大全| 亚洲最大成人中文| 一级a爱片免费观看的视频| 90打野战视频偷拍视频| 久久久精品国产亚洲av高清涩受| 看黄色毛片网站| 三级国产精品欧美在线观看 | 麻豆国产97在线/欧美 | 在线a可以看的网站| 日韩欧美精品v在线| 19禁男女啪啪无遮挡网站| 最近最新免费中文字幕在线| 成人18禁高潮啪啪吃奶动态图| av福利片在线观看| 草草在线视频免费看| 日本免费a在线| 三级毛片av免费| 国产成人av激情在线播放| 黄色成人免费大全| 黄色女人牲交| 日韩大码丰满熟妇| 久久久精品大字幕| 成人av一区二区三区在线看| 国产精品爽爽va在线观看网站| 国产麻豆成人av免费视频| 一级毛片女人18水好多| 国产爱豆传媒在线观看 | netflix在线观看网站| 成人av一区二区三区在线看| av在线天堂中文字幕| 亚洲人与动物交配视频| 窝窝影院91人妻| 欧美三级亚洲精品| 岛国视频午夜一区免费看| 麻豆av在线久日| 欧美极品一区二区三区四区| 久久香蕉精品热| 日本 av在线| 国产成人精品久久二区二区91| 老司机福利观看| 亚洲va日本ⅴa欧美va伊人久久| 亚洲国产精品999在线| 久久人妻福利社区极品人妻图片| 精品久久久久久成人av| 两性午夜刺激爽爽歪歪视频在线观看 | 日韩av在线大香蕉| 久久久久精品国产欧美久久久| 变态另类成人亚洲欧美熟女| 麻豆国产97在线/欧美 | 每晚都被弄得嗷嗷叫到高潮| 亚洲国产欧洲综合997久久,| 午夜精品久久久久久毛片777| 午夜久久久久精精品| 亚洲av五月六月丁香网| 他把我摸到了高潮在线观看| 久99久视频精品免费| 午夜精品一区二区三区免费看| 精品国产亚洲在线| 亚洲精品美女久久av网站| 俄罗斯特黄特色一大片| 亚洲欧美日韩高清专用| 最近最新中文字幕大全电影3| 丁香六月欧美| 日韩免费av在线播放| 国产av不卡久久| 最近在线观看免费完整版| 人妻丰满熟妇av一区二区三区| ponron亚洲| 国产一区二区在线av高清观看| 亚洲人与动物交配视频| 麻豆一二三区av精品| 18禁观看日本| 欧美日韩亚洲综合一区二区三区_| 91麻豆av在线| 黄色成人免费大全| 亚洲熟妇熟女久久| 免费在线观看亚洲国产| 少妇熟女aⅴ在线视频| 美女午夜性视频免费| 成人午夜高清在线视频| 中文字幕最新亚洲高清| 老司机靠b影院| 日本精品一区二区三区蜜桃| av片东京热男人的天堂| 国产精品一区二区三区四区免费观看 | 日韩国内少妇激情av| 精品久久久久久,| 欧美日韩乱码在线| 亚洲国产精品久久男人天堂| 亚洲国产高清在线一区二区三| 99在线人妻在线中文字幕| 欧美日韩一级在线毛片| 人人妻人人看人人澡| 久久欧美精品欧美久久欧美| 黄频高清免费视频| 法律面前人人平等表现在哪些方面| 精品少妇一区二区三区视频日本电影| 视频区欧美日本亚洲| 热99re8久久精品国产| 精品高清国产在线一区| 美女免费视频网站| 俺也久久电影网| 欧美久久黑人一区二区| 色哟哟哟哟哟哟| 久久久水蜜桃国产精品网| 一级作爱视频免费观看| 国产精品亚洲美女久久久| 丁香欧美五月| www.www免费av| 成人18禁高潮啪啪吃奶动态图| ponron亚洲| 亚洲av电影在线进入| 97超级碰碰碰精品色视频在线观看| 欧美 亚洲 国产 日韩一| 一级a爱片免费观看的视频| 亚洲国产精品成人综合色| 国产久久久一区二区三区| 久热爱精品视频在线9| 一进一出好大好爽视频| 可以在线观看的亚洲视频| 亚洲国产日韩欧美精品在线观看 | 亚洲av成人不卡在线观看播放网| 一级片免费观看大全| 国产片内射在线| 亚洲人成网站在线播放欧美日韩| 天堂√8在线中文| 一进一出抽搐动态| 99国产精品一区二区三区| 日韩精品免费视频一区二区三区| 18禁黄网站禁片午夜丰满| 亚洲午夜理论影院| 久久这里只有精品中国| 在线观看日韩欧美| 国内精品一区二区在线观看| 99在线人妻在线中文字幕| 国内精品久久久久久久电影| 中文亚洲av片在线观看爽| 亚洲18禁久久av| 1024手机看黄色片| 久久精品亚洲精品国产色婷小说| 精品国产美女av久久久久小说| 久久久国产成人免费| 亚洲av片天天在线观看| avwww免费| 日本一二三区视频观看| 一区二区三区国产精品乱码| 国产91精品成人一区二区三区| 午夜老司机福利片| 亚洲av五月六月丁香网| 黄色视频不卡| 人妻久久中文字幕网| 女同久久另类99精品国产91| 欧美性猛交黑人性爽| 国产97色在线日韩免费| 国产亚洲av高清不卡| 免费高清视频大片| 亚洲人与动物交配视频| av福利片在线观看| 久久久水蜜桃国产精品网| e午夜精品久久久久久久| 国产精品国产高清国产av| 国产私拍福利视频在线观看| 精品午夜福利视频在线观看一区| 久久欧美精品欧美久久欧美| 两性夫妻黄色片| 亚洲国产欧美网| 巨乳人妻的诱惑在线观看| 男女之事视频高清在线观看| 真人做人爱边吃奶动态| 少妇被粗大的猛进出69影院| 欧美丝袜亚洲另类 | 欧美黑人精品巨大| 日韩有码中文字幕| 白带黄色成豆腐渣| 国产黄a三级三级三级人| 国产视频内射| 亚洲成人免费电影在线观看| 久久精品国产亚洲av高清一级| 久久久久久久久免费视频了| 婷婷六月久久综合丁香| 久久久精品国产亚洲av高清涩受| 亚洲中文字幕一区二区三区有码在线看 | 国内毛片毛片毛片毛片毛片| 成人欧美大片| 草草在线视频免费看| 午夜精品久久久久久毛片777| 日韩精品中文字幕看吧| 欧美日韩中文字幕国产精品一区二区三区| 亚洲天堂国产精品一区在线| 精华霜和精华液先用哪个| 一本久久中文字幕| 又黄又粗又硬又大视频| 美女高潮喷水抽搐中文字幕| 日本三级黄在线观看| 久久婷婷成人综合色麻豆| 最近视频中文字幕2019在线8| 国产aⅴ精品一区二区三区波| 国产精品久久久久久亚洲av鲁大| 制服诱惑二区| 婷婷亚洲欧美| 哪里可以看免费的av片| 午夜福利成人在线免费观看| 久久人人精品亚洲av| 国产精品久久视频播放| 91九色精品人成在线观看| 久久精品国产亚洲av香蕉五月| 精品一区二区三区四区五区乱码| 亚洲中文字幕日韩| 一夜夜www| 九色国产91popny在线| 男人舔奶头视频| 老鸭窝网址在线观看| 成人一区二区视频在线观看| 美女黄网站色视频| 91麻豆av在线| 午夜福利高清视频| a级毛片在线看网站| 看片在线看免费视频| 美女免费视频网站| 狂野欧美白嫩少妇大欣赏| 又黄又爽又免费观看的视频| 91av网站免费观看| 中文字幕久久专区| 久久婷婷人人爽人人干人人爱| 99久久精品国产亚洲精品| 国产视频一区二区在线看| 天天添夜夜摸| 国产成人av激情在线播放| 久久国产乱子伦精品免费另类| 99精品久久久久人妻精品| 国内精品一区二区在线观看| 精品国产乱码久久久久久男人| 91老司机精品| 午夜a级毛片| 黄色片一级片一级黄色片| 欧美日韩精品网址| 99国产综合亚洲精品| 制服人妻中文乱码| 欧美av亚洲av综合av国产av| 国产97色在线日韩免费| 日本免费一区二区三区高清不卡| 日本一二三区视频观看| 欧美日韩精品网址| 午夜亚洲福利在线播放| 国产成人精品久久二区二区免费| 国产av不卡久久| 国产精品久久电影中文字幕| 搡老岳熟女国产| 99精品久久久久人妻精品| 欧美日韩精品网址| 性色av乱码一区二区三区2| 精品一区二区三区av网在线观看| 亚洲,欧美精品.| 国产区一区二久久| 成人av一区二区三区在线看| 精品欧美国产一区二区三| 日本熟妇午夜| 99在线人妻在线中文字幕| 法律面前人人平等表现在哪些方面| 2021天堂中文幕一二区在线观| 成人av在线播放网站| 亚洲欧美精品综合一区二区三区| 久久久久久久精品吃奶| 国产精品,欧美在线| 亚洲成a人片在线一区二区| 动漫黄色视频在线观看| 老鸭窝网址在线观看| 国产亚洲精品av在线| 黄片小视频在线播放| 国产单亲对白刺激| 亚洲av成人不卡在线观看播放网| 亚洲人与动物交配视频| 麻豆久久精品国产亚洲av| 国产成人精品无人区| 欧美大码av| 巨乳人妻的诱惑在线观看| 99久久国产精品久久久| 麻豆久久精品国产亚洲av| 日本 欧美在线| 一本综合久久免费| 一个人免费在线观看的高清视频| 麻豆一二三区av精品| 丰满人妻一区二区三区视频av | 一级片免费观看大全| 一级毛片精品| www.999成人在线观看| 国产精品 欧美亚洲| 久久久国产欧美日韩av| 亚洲欧美激情综合另类| 亚洲专区中文字幕在线| 毛片女人毛片| 欧美成人午夜精品| 中亚洲国语对白在线视频| 又黄又粗又硬又大视频| 国产精品精品国产色婷婷| 黄色a级毛片大全视频| 亚洲片人在线观看| 老司机福利观看| 国产精品影院久久| 别揉我奶头~嗯~啊~动态视频| 亚洲熟女毛片儿| 日韩av在线大香蕉| 亚洲专区字幕在线| 叶爱在线成人免费视频播放| 国产免费男女视频| 听说在线观看完整版免费高清| 99国产精品99久久久久| 亚洲熟妇熟女久久| 怎么达到女性高潮| 国产精品,欧美在线| 精品久久久久久成人av| 国产一区二区在线观看日韩 | 岛国在线免费视频观看| 9191精品国产免费久久| 久久久国产精品麻豆| 黑人欧美特级aaaaaa片| 亚洲,欧美精品.| 日本在线视频免费播放| 草草在线视频免费看| 精品久久蜜臀av无| 亚洲美女黄片视频| 国产区一区二久久| 亚洲精品在线观看二区| 国产成人aa在线观看| 精品国产亚洲在线| 日本一二三区视频观看| 亚洲熟女毛片儿| 欧美黑人巨大hd| 熟妇人妻久久中文字幕3abv| 搡老妇女老女人老熟妇| 熟妇人妻久久中文字幕3abv| 国产成人精品无人区| 又黄又粗又硬又大视频| 日韩欧美免费精品| 国产亚洲精品av在线| 久久久久久国产a免费观看| 欧美一级a爱片免费观看看 | 亚洲国产精品合色在线| 国产高清有码在线观看视频 | 国产一区二区三区在线臀色熟女| 黑人操中国人逼视频| 亚洲熟妇熟女久久| 99精品在免费线老司机午夜| a级毛片a级免费在线| 久久久久久久久免费视频了| 床上黄色一级片| 亚洲欧美日韩高清在线视频| 长腿黑丝高跟| 看免费av毛片| 变态另类丝袜制服| 一级毛片精品| 亚洲中文av在线| 99精品在免费线老司机午夜| 淫秽高清视频在线观看| 亚洲av片天天在线观看| 嫩草影院精品99| 亚洲精品av麻豆狂野| 天堂√8在线中文| 精品一区二区三区av网在线观看| 亚洲国产欧美人成| 日日夜夜操网爽| 天堂动漫精品| 黄色a级毛片大全视频| 国产精品免费一区二区三区在线| 脱女人内裤的视频| 老汉色av国产亚洲站长工具| 日韩欧美在线乱码| 国产精品精品国产色婷婷| 中文字幕av在线有码专区| 变态另类丝袜制服| 国产激情偷乱视频一区二区| 国产精品自产拍在线观看55亚洲| 特级一级黄色大片| 国产伦人伦偷精品视频| www日本在线高清视频| 18禁美女被吸乳视频| 亚洲自偷自拍图片 自拍| 日本免费a在线| 国产成+人综合+亚洲专区| 天天添夜夜摸| 欧美乱色亚洲激情| 国产伦人伦偷精品视频| 欧美激情久久久久久爽电影| 一边摸一边抽搐一进一小说| 精品国产亚洲在线| 国产熟女午夜一区二区三区| 久久久久亚洲av毛片大全| 国产成人av教育| 18禁观看日本| aaaaa片日本免费| 久久欧美精品欧美久久欧美| 精品欧美一区二区三区在线| 一进一出好大好爽视频| 欧美大码av| 99热只有精品国产| 亚洲在线自拍视频| 国产午夜精品久久久久久| 国产精品野战在线观看| 亚洲无线在线观看| netflix在线观看网站| 淫秽高清视频在线观看| 国产成+人综合+亚洲专区| 日本免费a在线| 日本熟妇午夜| 国产精品 国内视频| 三级男女做爰猛烈吃奶摸视频| 午夜福利视频1000在线观看| 国内少妇人妻偷人精品xxx网站 | 亚洲va日本ⅴa欧美va伊人久久| 老鸭窝网址在线观看| 又紧又爽又黄一区二区| 欧美成狂野欧美在线观看| 我的老师免费观看完整版| 亚洲人成电影免费在线| 日本五十路高清| 成人国语在线视频| 午夜a级毛片| www.熟女人妻精品国产| 国产精品一及| 怎么达到女性高潮| 91成年电影在线观看| 9191精品国产免费久久| 18禁美女被吸乳视频| 白带黄色成豆腐渣| 日韩大码丰满熟妇| 999精品在线视频| 99精品久久久久人妻精品| 伊人久久大香线蕉亚洲五| 一区二区三区国产精品乱码| 俄罗斯特黄特色一大片| 又黄又爽又免费观看的视频| 给我免费播放毛片高清在线观看| 久久久久久人人人人人| 国产成人一区二区三区免费视频网站| 天天躁狠狠躁夜夜躁狠狠躁| 国产高清videossex| 宅男免费午夜| 高潮久久久久久久久久久不卡| 麻豆国产97在线/欧美 | 亚洲熟妇熟女久久| netflix在线观看网站| 国产伦人伦偷精品视频| 国产精品1区2区在线观看.| 亚洲精华国产精华精| 女同久久另类99精品国产91| 无人区码免费观看不卡| 97人妻精品一区二区三区麻豆| 一级a爱片免费观看的视频| 国产日本99.免费观看| 97人妻精品一区二区三区麻豆| 午夜久久久久精精品| 亚洲精品美女久久久久99蜜臀| 亚洲av片天天在线观看| 最近最新中文字幕大全免费视频| 国产一级毛片七仙女欲春2| 国产真实乱freesex| 97碰自拍视频| 特大巨黑吊av在线直播| 少妇被粗大的猛进出69影院| 麻豆一二三区av精品| 91av网站免费观看| av免费在线观看网站| 两性夫妻黄色片| 嫩草影视91久久| 国产单亲对白刺激| 色综合亚洲欧美另类图片| 午夜精品一区二区三区免费看| 亚洲九九香蕉| 老司机在亚洲福利影院| 一本一本综合久久| 成人国产一区最新在线观看| 亚洲avbb在线观看| 五月玫瑰六月丁香| netflix在线观看网站| 成人午夜高清在线视频| 国产精品亚洲一级av第二区| bbb黄色大片| 亚洲欧美日韩无卡精品| 一卡2卡三卡四卡精品乱码亚洲| 亚洲国产欧洲综合997久久,| 两性午夜刺激爽爽歪歪视频在线观看 | 成人永久免费在线观看视频| 免费看十八禁软件| 999久久久国产精品视频| xxxwww97欧美| 草草在线视频免费看| 精品国产乱子伦一区二区三区| 免费观看人在逋| 麻豆成人av在线观看| 真人一进一出gif抽搐免费| 此物有八面人人有两片| 人妻久久中文字幕网| 亚洲,欧美精品.| 亚洲中文日韩欧美视频| 亚洲aⅴ乱码一区二区在线播放 | 免费看日本二区| 亚洲激情在线av| 一级毛片精品| 日日干狠狠操夜夜爽| 精品少妇一区二区三区视频日本电影| 亚洲欧美激情综合另类| 男女做爰动态图高潮gif福利片| 成人欧美大片| а√天堂www在线а√下载| 麻豆成人av在线观看| 免费在线观看黄色视频的| 亚洲美女黄片视频| 国产人伦9x9x在线观看| 九九热线精品视视频播放| 成人国产综合亚洲| 欧美成狂野欧美在线观看| 亚洲真实伦在线观看| 亚洲avbb在线观看| 一二三四社区在线视频社区8| 香蕉久久夜色| 久久天躁狠狠躁夜夜2o2o| 少妇粗大呻吟视频| 国产v大片淫在线免费观看| 一进一出好大好爽视频| 中文字幕高清在线视频| 国产成人精品无人区| 欧美日韩黄片免| 桃色一区二区三区在线观看| 免费电影在线观看免费观看| 好看av亚洲va欧美ⅴa在| 在线观看午夜福利视频| www.自偷自拍.com| 欧美极品一区二区三区四区| 久久久久久久午夜电影| 日韩国内少妇激情av| 久久性视频一级片| 午夜福利18| 伦理电影免费视频| 午夜福利免费观看在线| 精品福利观看| 麻豆成人午夜福利视频| 国产在线观看jvid| 黑人欧美特级aaaaaa片| 久久人妻福利社区极品人妻图片| 国产一级毛片七仙女欲春2| 欧美黄色淫秽网站| 亚洲av美国av| 亚洲一区二区三区不卡视频| 国产欧美日韩一区二区精品| 亚洲片人在线观看| 精品久久久久久久人妻蜜臀av| 在线观看午夜福利视频| 人人妻,人人澡人人爽秒播| 国产成人啪精品午夜网站| 国产精品九九99| 激情在线观看视频在线高清| 亚洲一卡2卡3卡4卡5卡精品中文| 草草在线视频免费看| 真人做人爱边吃奶动态| 国产精品 国内视频| 97碰自拍视频| 国内久久婷婷六月综合欲色啪| 久久中文字幕一级| 精品福利观看| 午夜老司机福利片| 丰满的人妻完整版| 黑人操中国人逼视频| 日韩大码丰满熟妇| 国产野战对白在线观看| 男女那种视频在线观看| 免费观看人在逋| 国产一级毛片七仙女欲春2| 欧美丝袜亚洲另类 | 91国产中文字幕| 天天躁狠狠躁夜夜躁狠狠躁| 国产激情欧美一区二区| 大型av网站在线播放| 日韩免费av在线播放| 日本三级黄在线观看| 国产精品爽爽va在线观看网站| 999久久久精品免费观看国产|