• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Solitary Potential in a Space Plasma Containing Dynamical Heavy Ions and Bi-Kappa Distributed Electrons of Two Distinct Temperatures

    2018-05-05 09:13:49SarkerHosenHossenandMamun
    Communications in Theoretical Physics 2018年1期

    M.Sarker,B.Hosen,M.R.Hossen,and A.A.Mamun

    1Department of Physics,Jahangirnagar University,Savar,Dhaka-1342,Bangladesh

    2Department of General Educational Development,Daffodil International University,Dhanmondi,Dhaka-1207,Bangladesh

    1 Introduction

    The propagation of ion-acoustic waves[1?4]in electronion(EI)plasmas has received a great deal of renewed interest because of their vital role in understanding different kinds of nonlinear electrostatic structures(viz.solitary waves,shock structures,double layers,etc.[5?18])observed in space[19?21]and laboratory devices.[22?24]The existence of heavy ions in astrophysical plasmas has been con firmed experimentally by detecting a noble gas molecular heavy ion in the crab nebula,[25]our(Milky Way)Galaxy,[26]polar region of neutron stars,[27]active galactic nuclei,[28]pulsar magnetosphere,[29]and the early universe,[30]etc.

    The particle distribution near equilibrium is often considered to be Maxwellian for the modeling of different plasma systems.However,for many space plasma environments,it has been proven that the presence of the heavy ion and electron populations are far o fffrom their thermal equilibrium state.The effects of external forces or wave particle interaction in numerous space[31?32]and laboratory[33?34]plasma situations indicate the existence of highly energetic(super-thermal)particles.The existence of accelerated,energetic(super-thermal)particles in the measurement of electron distribution in near-Earth space environments[32,35?36]suggests a signi ficant deviation from Maxwellian equilibrium.So for a proper treatment of a plasma system with super-thermal electrons,one should not consider Maxwellian distribution function(DF),but other kind of non-Maxwellian DF like super thermal(κ)DF.[37?39]The latter is given by

    where Γ is the usual gamma function;is the most probable speed of the high energetic electron species withbeing the Boltzman constant,Tebeing the characteristic kinetic temperature of electron species,andmebeing the mass of an electron;κis the spectral index,[40?41]which measures the deviation from the Maxwellian electron distribution.We note thatκ=∞corresponds to the Maxwellian electron distribution,and that asκdecreases within a rangethe deviation from the Maxwellian electron distribution increases.

    Recently, a numerousinvestigationshave been made by many authors on ion-acoustic solitary waves(IASWs)with single-temperature super-thermal(kappa distributed)electrons.[44?46]Schipperset al.[47]have combined a hot and a cold electron component,while both electrons are kappa distributed and a best fit for the electron velocity distribution is found.Balukuet al.[48]used this model for the study of ion-acoustic solitons in a plasma with two-temperature kappa distributed electrons.Pakzad[49]studied a dissipative plasma system with superthermal electrons and positrons,and found that the effects of ion kinematic viscosity and the super-thermal parameter on the ion-acoustic shock waves.Tasnimet al.[50?51]also considered two-temperature non-thermal ions,and discussed the properties of dust-acoustic solitary waves and double layers. Masudet al.[52]have studied the characteristics of DIA shock waves in an unmagnetized dusty plasma consisting of negatively charged static dust,inertial ions,Maxwellian distributed positively charged positrons,and super-thermal electrons with two distinct temperatures.Luet al.[53]have examined the electronacoustic waves in an electron-beam plasma system containing cold and hot electrons.El-Taibanyet al.[54]have made stability analysis of dust-ion acoustic solitary waves in a magnetized multicomponent dusty plasma containing negative heavy ions and stationary variable-charge dust particles.Shahmansouri[55]investigated the basic properties of ion-acoustic waves in an unmagnetized plasma containing cold and hot ions with kappa distributed electrons.Emaet al.[56?57]studied the effects of adiabacity on the heavy ion acoustic(HIA)solitary and shock waves in a strongly coupled nonextensive plasma.They observed that the roles of the adiabatic positively charged heavy ions,and nonextensivity of electrons have significantly modi fied the basic features(viz.polarity,amplitude,width,etc.) of the HIA solitary/shock waves.Hossenet al.[58?60]considered positively charged static heavy ions in a relativistic degenerate plasma and rigorously investigated the basic features of solitary and shock structures.Shahet al.[61?62]investigated the basic features of HIA solitary and shock waves by considering both planar and nonplanar geometry.

    We expect that dynamical heavy particles and higher order nonlinearity play an important role in modifying the basic non-linear features of ion-acoustic waves propagating in space and laboratory plasmas.Therefore,our main objective in this work is to investigate the effects of dynamics of heavy ions and higher non-linearity on(HIAWs)by deriving Korteweg-de Vries(K-dV),modi fied K-dV(MK-dV)equation,and higher order MK-dV(HMK-dV)and also is to consider the dynamics of heavy particles to describe heavy ion acoustic solitary waves(HIASWs)in such plasma system under consideration.

    The manuscript is organized as follows.The basic equations are provided in Sec.2.Three different types of nonlinear equations,namely K-dV,MK-dV,and HMK-dV are derived and analyzed analytically and numerically in Sec.3.A brief discussion is finally presented in Sec.4.

    2 Basic Equations

    We consider a three component magnetized plasma system containing positively charged heavy ions and kappa distributed electrons with two distinct temperaturesT1andT2(T1

    wherenhis the heavy ion number density normalized bynh0;uhis the heavy ion fluid speed normalized by(withkBbeing the Boltzmann constant,andmhbeing the heavy ion mass);?is the electrostatic wave potential normalized bykBT1/e(withebeing the magnitude of the charge of an electron);α=(withωch=ZheB0/mhcbeing the heavy ioncyclotron frequency,B0being the magnitude of the external static magnetic field,andbeing the heavy ion plasma frequency);1=1/(1+μ),andis the number density of low(high)temperature electron species;time variable is normalized byand the space variable is normalized by.We note that the external magnetic fieldB0is acting along thez-direction(i.e.,wherez? is the unit vector along thezdirection).

    The normalized cold and hot electron number densitiesn1andn2are,respectively given by

    3 Nonlinear Equations

    To study nonlinear propagation,we now consider different orders of nonlinearity by deriving and analyzing K-dV,MK-dV,and HMK-dV equations to identify the basic features of HIASWs formed a magnetized space plasma system containing dynamical heavy ions and kappa distributed electrons of two distinct temperatures.

    3.1 K-dV Equation

    To derive the K-dV equation,we use the reductive perturbation method,which lead to the stretched coordinates:[63?64]

    whereVpis the phase speed of the HIAWs,?is a smallness parameter measuring the weakness of the dispersion(0

    Now,substituting Eqs.(7)–(12)into Eqs.(2)–(4),and then taking the terms containing?3/2from Eqs.(2)and(3),and?from Eq.(4),we obtain

    We note that Eq.(17)describes the linear dispersion relation for the propagation of the HIAWs in the magnetized plasma under consideration and thatlz=cosδ(whereδis the angle between the directions of external magnetic field and wave propagation).To the next higher order of?,we again substitute Eqs.(7)–(12)into Eqs.(2),z-component of Eq.(3),and Eq.(4)and take the terms containing?5/2from Eq.(2)andz-component of Eq.(3),and?2from Eq.(4).We then use Eqs.(15)–(17)to obtain a set of equations in the form

    Equation(25)is the K-dV equation describing the nonlinear dynamics of the HIASWs.Now,using the appropriate boundary conditions,viz.?=0,d?/dξ=0,and d2?/dξ2=0 at,the stationary solitary wave solution of Eq.(25)is given by

    where?m= 3u0/A1is the amplitude,and ? =(4B1/u0)1/2is the width of the HIASWs. To obtain the basic features(viz.polarity,amplitude,and width)of the ESPPs,we have numerically analyzed the solution,Eq.(28)for different plasma situations.The results are displayed in Figs.1–10,which clearly indicate that

    (i)The ESPPs with?(1)>0(?(1)<0)exist forμ>μc(μ<μc)as shown in Figs.1–4,8,and 9.

    Fig.1 (Color online)The electrostatic solitary potential pro files(ESPPs)with ?(1)>0 forμ > μc,u0=0.01,σ =0.25,μ =0.7,κ2=3,δ=15,α =0.5,κ1=24(dashed curve),κ1=26(solid curve),and κ1=28(dotted curve).

    Fig.2 (Color online)The ESPPs with ?(1)<0 forμ < μc,u0=0.01,σ =0.25,μ =0.7,κ2=3,δ=15,α =0.5,κ1=24(dashed curve),κ1=26(solid curve),and κ1=28(dotted curve).

    (ii)The amplitude and width of the ESPPs(with both?(1)>0 and?(1)<0)increase with the increase inκ1,κ2,andδas shown in Figs.1–5.

    Fig.3 (Color online)The ESPPs with ?(1)>0 forμ> μc,u0=0.01,σ =0.25,μ=0.7,κ1=24,δ=15,α =0.5,κ2=2.98(dashed curve),κ2=3.00(solid curve),and κ2=3.05(dotted curve).

    Fig.4 (Color online)The ESPPs with ?(1)<0 forμ< μc,u0=0.01,σ =0.25,μ=0.7,κ1=24,δ=15,α =0.5,κ2=2.98(dashed curve),κ2=3.00(solid curve),and κ2=3.05(dotted curve).

    Fig.5 (Color online)The ESPPs with ?(1)>0 forμ > μc,u0=0.01,σ =0.25,μ =0.7,κ1=20,κ2=3,α =0.5,δ=15(dashed curve),δ=30(solid curve),and δ=45(dotted curve).

    (iii)The width of the ESPPs(with?(1)>0)increases(decreases)with the increase inδfor its lower(upper)range,but it decreases with the increase inαas shown in Fig.6;(iv)The amplitude and width of the ESPPs[with?(1)>0]increase with the decrease inσas shown in Fig.7;(v)The amplitude and width of the ESPPs(with both?(1)>0 and?(1)<0)decrease with the increase inμas shown in Figs.8 and 9.

    (vi)the width of the ESPPs(with?(1)>0)decreases with the increase inμas shown in Fig.10.

    Fig.6 (Color online)The width of the ESPPs forμ > μc,u0=0.01,σ =0.25,μ =0.7,κ1=20,κ2=3,α =0.5(dashed curve),α =0.6(solid curve),and α=0.7(dotted curve).

    Fig.7 (Color online)The ESPPs with ?(1)>0 forμ > μc,u0=0.01,δ=15,μ =0.7,κ1=20,κ2=3,α=0.5,σ=0.5(dashed curve),σ=0.7(solid curve),and σ=0.9(dotted curve).

    Fig.8 (Color online)The ESPPs with ?(1)>0 forμ > μc,u0=0.01,δ=15,σ =0.25,κ1=20,κ2=3,α=0.5,μ=0.66(dashed curve),μ=0.67(solid curve),andμ=0.70(dotted curve).

    Fig.9 (Color online)The ESPPs with ?(1)<0 forμ < μc,u0=0.01,δ=15,σ =0.25,κ1=20,κ2=3,α=0.5,μ=0.60(dashed curve),μ=0.61(solid curve),andμ=0.62(dotted curve).

    Fig.10 (Color online)The width of the ESPPs with ?(1)>0 for u0=0.01,δ =15,σ =0.25,κ1=20,κ2=3,α=0.5,μ=0.65(dashed curve),μ=0.75(solid curve),andμ=0.90(dotted curve).

    3.2 MK-dV Equation

    To derive the MK-dV equation we use the same stretched co-ordinates de fined by Eqs.(7)and(8),but the different types of expansion of the dependent variables:

    To further higher order of?,substituting Eqs.(7),(8),and(29)–(32)into Eqs.(2)–(4),and then taking the terms containing?2from Eq.(2)and thez-component of Eq.(3),and?3/2from Eq.(4),we obtain another set of equations:

    To solve this MK-dV,We consider a frameξ=η ?u0T(moving with speedu0).The stationary solitary wave solution of the MK-dV equation(Eq.(41))is given by

    (i)The MK-dV equation admits solitary wave solution with?(1)>0 only;(ii)The amplitude and width of the ESPPs increase with the increase in(κ2)as shown in Fig.11.

    Fig.11 (Color online)The ESPPs with ?(1)>0 for u0=0.01,σ =0.25,μ =0.7,κ1=20,δ=15,α =0.5,κ2=3.0(dashed curve),κ2=2.5(solid curve),and κ2=2.0(dotted curve).

    Fig.12 (Color online)The ESPPs with ?(1)>0 for u0=0.01,δ=15,μ =0.70,κ1=20,κ2=3,α =0.5,σ=0.50(dashed curve),σ=0.70(solid curve),and σ=0.90(dotted curve).

    Fig.13 (Color online)The ESPPs with ?(1)>0 for u0=0.01,δ=15,σ =0.25,κ1=20,κ2=3,α =0.5,μ=0.65(dashed curve),μ=0.75(solid curve),andμ=0.85(dotted curve).

    (iii)The amplitude and width of the ESPPs increase with the increase inσas shown in Fig.12.

    (iv)The amplitude and width of the ESPPs decrease with the increase inμas shown in Fig.13.

    3.3 HMK-dV Equation

    To examine the effects of further higher order nonlinearity on the K-dV or MK-dV equations describing HIAWs in a magnetized plasma(containing containing dynamical heavy ions and bi-kappa distributed electrons of two distinct temperatures),one can derive a further higher order nonlinear equation.The latter(after performing few steps of mathematical calculations)can be directly given by[65?66]

    Fig.14 (Color online)The ESPPs(with ?(1)>0)for u0=0.01,σ =0.25,μ =0.7,κ2=3,δ=15,α =0.5,κ1=10(dashed curve),κ1=15(solid curve),and κ1=30(dotted curve).

    4 Discussion

    We have considered a magnetized plasma system consisting of inertial heavy ions and kappa distributed electrons of two distinct temperatures.We have derived the K-dV,MK-dV,and HMK-dV equations by using the reductive perturbation method to identify the basic features(polarity,amplitude,and width)of the ESPPs formed in such a magnetized plasma system.The results,which have been obtained from this theoretical investigation,can be pin-pointed as follows:

    (i)The K-dV and HMK-dV equations admit HIASW solutions with either?(1)>0(compressive)or?(1)<0(rarefactive).The polarity of the HIASWs depends on the critical valueμc(whereμc=0.64 forκ1=20,κ2=3,δ=15,σ=0.25,andα=0.5).On the other-hand,the MK-dV equation admits only HIASW solution with?(1)>0(compressive).

    (ii)The amplitude of the K-dV solitons become inif nitely large forA1?0,and thus the K-dV equation is no longer valid atA1?0,which has been avoided by deriving MK-dV and HMK-dV equations to study more highly nonlinear HIASWs.

    (iii)The amplitude and width of both positive and negative HIASWs(obtained from the numerical analysis of the solution of the K-dV equation)increase with the increase inκ1andκ2.However the amplitude of the positive HIASWs increases with the increase inδ.On the other-hand,the width decreases with the increase inα,and increases(decreases)with the increase inδfor its lower(upper)range.

    (iv)The amplitude of the K-dV HIASWs increases with the increase inT2andn01,but decreases with the rise ofT1andn02.

    (v)The width of K-dV HIASWs rises with the increase(decrease)inn01(n02).

    (vi)The amplitude and the width of the MK-dV HIASWs increase with the increase inκ2,T2andn01,but decrease with the increase inT1andn02.

    (vii)The amplitude and the width of the HMK-dV HIASWs slightly increase with the increase inκ1.This means that the effect of higher nonlinearity on K-dV and MK-dV HIASWs is insigni ficant.

    To conclude,the results of our present investigation are relevant to space(viz.Saturns magnetosphere,[43]pulsar magnetosphere,[67]upper part of the ionosphere,[68?70]lower part of the magnetosphere,[68?70]etc.).The dip shape solitary structures(known as cavitons[68?70])observed by Freja satellite[68,70]and Viking spacecraft[69?70]are similar to those predicted by our present theoretical investigation.We finally hope that our results should be useful in understanding the nonlinear eloctrostatic disturbances in the space plasma systems containing heavy ions and super-thermal electrons of two distinct temperatures.

    M.Sarker,B.Hosen,and M.R.Hossen are grateful to the Ministry of Science and Technology(Bangladesh)for awarding the National Science and Technology(NST)fellowship.

    [1]X.Gao,Q.Lu,X.Li,et al.,Phys.Plasmas 20(2013)072902.

    [2]X.Gao,Q.Lu,X.Tao,et al.,Phys.Plasmas 20(2013)092106.

    [3]X.Gao,Q.Lu,X.Li,et al.,Astrophys.J.780(2014)56.

    [4]Y.Ke,X.Gao,Q.Lu,and S.Wang,Phys.Plasmas 24(2017)012108.

    [5]F.F.Chen,Introduction to Plasma Physics and Controlled Fusion,2nd ed.,Plenum Press,New York(1984)p.297.

    [6]I.R.Durrani,G.Murtaza,and H.U.Rahman,Can.J.Phys.57(1979)642.

    [7]R.C.Davidson,Methods in Nonlinear Plasma Theory,Academic Press,New York(1972)p.15.

    [8]J.K.Chawla,M.K.Mishra,and R.S.Tiwary,Astrophys.Space Sci.347(2013)283.

    [9]A.A.Mamun,Phys.Rev.E 55(1997)1852.

    [10]M.R.Hossen,L.Nahar,S.Sultana,and A.A.Mamun,Astrophys.Space Sci.353(2014)123.

    [11]M.R.Hossen and A.A.Mamun,Braz.J.Phys.44(2014)673.

    [12]M.R.Hossen,L.Nahar,and A.A.Mamun,J.Korean Phys.Soc.65(2014)1863.

    [13]M.R.Hossen,L.Nahar,and A.A.Mamun,J.Astrophys.2014(2014)653065.

    [14]B.Hosen,M.G.Shah,M.R.Hossen,and A.A.Mamun,Euro.Phys.J.Plus 131(2016)81.

    [15]Q.M.Lu,B.Lembege,J.B.Tao,and S.Wang,J.Geophys.Res.113(2008)A11219.

    [16]M.Wu,Q.Lu,C.Huang,and S.Wang,J.Geophys.Res.115(2010)A10245.

    [17]R.Wang,Q.Lu,Y.V.Khotyaintsev,et al.,Geophys.Res.Lett.41(2014)4851.

    [18]C.Huang,Q.Lu,P.Wang,et al.,J.Geophys.Res.119(2014)6445.

    [19]E.Witt and W.Lotko,Phys.Fluids 26(1983)2176.

    [20]S.Qian,W.Lotko,and M.K.Hudson,Phys.Fluids 31(1988)2190.

    [21]V.A.Marchenko and M.K.Hudson,J.Geophys.Res.100(1995)19791.

    [22]K.E.Lonngren,Plasma Phys.25(1983)943.

    [23]Y.Nakamura,J.L.Ferreira,and G.O.Ludwig,J.Plasma Phys.33(1985)237.

    [24]Y.Nakamura,T.Ito,and K.Koga,J.Plasma Phys.49(1993)331.

    [25]M.J.Barlow,B.M.Swinyard,P.J.Owen,et al.,Science 342(2013)1343.

    [26]M.L.Burns,A.K.Harding,and R.Ramaty,Positronelectron Pairs in Astrophysics,American Institute of Physics,New York(1983).

    [27]F.C.Michel,Theory of Neutron Star Magnetosphere,Chicago University Press,Chicago(1991).

    [28]H.R.Miller and P.J.Witta,Active Galactic Nuclei,Springer,Berlin(1987).

    [29]P.Goldreich and W.H.Julian,Astrophys.J.157(1969)869.

    [30]M.J.Rees,inThe Very Early Universe,eds.by G.W.Gibbons,S.W.Hawking,and S.Siklas,Cambridge University Press,Cambridge(1983).

    [31]C.Vocks and G.Mann,Astrophys.J.593(2003)1134.

    [32]G.Gloeckler and L.A.Fisk,Astrophys.J.648(2006)L63.

    [33]Y.Yagi,V.Antoni,M.Bagatin,et al.,Plasma Phys.Cont.Fusion 39(1997)1915.

    [34]S.Preische,P.C.Efthimion,and S.M.Kaye,Phys.Plasmas 3(1996)4065.

    [35]C.C.Chaston,Y.D.Hu,and B.J.Fraser,Geophys.Res.Lett.24(1997)2913.

    [36]M.Maksimovic,V.Pierrard,and J.F.Lemaire,Astron.Astrophys.324(1997)725.

    [37]V.M.Vasyliunas,J.Geophys.Res.73(1968)2839.

    [38]D.Summers and R.M.Thorne,Phys.Fluids B 3(1991)1835.

    [39]M.A.Hellberg,R.L.Mace,T.K.Baluku,et al.,Plasmas 16(2009)094701.

    [40]T.Cattaert,M.A.Helberg,and R.L.Mace,Phys.Plasmas 14(2007)082111.

    [41]M.S.Alam,M.M.Masud,and A.A.Mamun,Plasma Phys.Rep.39(2013)1011.

    [42]B.Basu,Phys.Plasmas 15(2008)042108.

    [43]T.K.Baluku and M.A.Hellberg,Phys.Plasmas 19(2012)012106.

    [44]S.Hussain,Chin.Phys.Lett.29(2012)065202.

    [45]M.Shahmansouri,B.Shahmansouri,and D.Darabi,Indian J.Phys.87(2013)711.

    [46]S.Sultana and I.Kourakis,Plasma Phys.Control.Fusion 53(2011)045003.

    [47]P.Schippers,M.Blanc,N.Andre,et al.,J.Geophys.Res.113(2008)07208.

    [48]T.K.Baluku,M.A.Hellberg,and R.L.Mace,J.Geophys.Res.116(2011)04227.

    [49]H.R.Pakzad,Astrophys.Space Sci.331(2011)169.

    [50]I.Tasnim,M.M.Masud,M.Asaduzzaman,and A.A.Mamun,Chaos 23(2013)013147.

    [51]I.Tasnim,M.M.Masud,and A.A.Mamun,Astrophys.Space Sci.343(2013)647.

    [52]M.M.Masud,S.Sultana,and A.A.Mamun,Astrophys.Space.Sci.348(2013)99.

    [53]Q.Lu,S.Wang,and X.Dou,Phys.Plasmas 12(2005)072903.

    [54]W.F.El-Taibany,N.A.El-Bedwehy,and E.F.El-Shamy,Phys.Plasmas 18(2011)033703.

    [55]M.Shahmansouri,Astrophys.Space Sci.29(2012)105201.

    [56]S.A.Ema,M.R.Hossen,and A.A.Mamun,Phys.Plasmas 22(2015)092108.

    [57]S.A.Ema,M.R.Hossen,and A.A.Mamun,Contrib.Plasma Phys.55(2015)596.

    [58]M.R.Hossen,L.Nahar,S.Sultana,and A.A.Mamun,High Energy Density Phys.13(2014)13.

    [59]M.R.Hossen,L.Nahar,and A.A.Mamun,Phys.Scr.89(2014)105603.

    [60]M.R.Hossen and A.A.Mamun,Plasma Sci.Technol.17(2015)177.

    [61]M.G.Shah,M.M.Rahman,M.R.Hossen,and A.A.Mamun,Commun.Theor.Phys.64(2015)208.

    [62]M.G.Shah,M.M.Rahman,M.R.Hossen,and A.A.Mamun,Plasma Phys.Rep.42(2016)168.

    [63]P.K.Shukla and M.Y.Yu,J.Math.Phys.19(1978)2506.

    [64]A.A.Mamun,Astrophys.Space Sci.260(1998)507.

    [65]S.A.Elwakil,E.M.Abulwafa,E.K.El-Shewy,and H.M.Abd-El-Hamid,Adv.Space Res.48(2011)1578.

    [66]M.G.Shah,M.R.Hossen,and A.A.Mamun,J.Plasma Phys.81(2015)905810517.

    [67]S.K.Kundu,D.K.Ghosh,P.Chatterjee,and B.Das,Bulg.J.Phys.38(2011)409.

    [68]P.O.Dovner,A.I.Eriksson,R.Bostr¨om,and B.Holback,Geophys.Res.Lett.21(1994)1827.

    [69]R.Bostr¨om,G.Gustafsson,B.Holback,et al.,Phys.Rev.Lett.61(1988)82.

    [70]R.A.Cairns,A.A.Mamun,R.Bingham,et al.,Geophys.Res.Lett.22(1995)2709.

    国产精品熟女久久久久浪| 中文字幕人妻熟人妻熟丝袜美| 中文字幕亚洲精品专区| 精品少妇黑人巨大在线播放| 久久热精品热| 日韩三级伦理在线观看| 国产成人a∨麻豆精品| 香蕉精品网在线| 欧美老熟妇乱子伦牲交| 日韩一本色道免费dvd| 黑人高潮一二区| 99久久综合免费| 蜜桃亚洲精品一区二区三区| 色5月婷婷丁香| 亚洲av欧美aⅴ国产| 亚洲精品乱久久久久久| 国产在视频线精品| 乱码一卡2卡4卡精品| 少妇高潮的动态图| 视频区图区小说| 天美传媒精品一区二区| 亚洲精品中文字幕在线视频 | 国产精品久久久久久久久免| 高清视频免费观看一区二区| 亚洲欧美精品专区久久| 人人妻人人添人人爽欧美一区卜 | 男女免费视频国产| 亚州av有码| 99久久综合免费| 中文字幕免费在线视频6| 久久精品国产亚洲av涩爱| 只有这里有精品99| 偷拍熟女少妇极品色| 久久人人爽人人片av| h视频一区二区三区| 欧美xxⅹ黑人| 亚洲怡红院男人天堂| 免费大片18禁| 99久久综合免费| av女优亚洲男人天堂| 麻豆精品久久久久久蜜桃| 亚洲人成网站在线播| 91精品一卡2卡3卡4卡| 亚洲精品乱码久久久久久按摩| xxx大片免费视频| 高清欧美精品videossex| 高清在线视频一区二区三区| 精品国产一区二区三区久久久樱花 | 菩萨蛮人人尽说江南好唐韦庄| 91精品国产国语对白视频| 久久久久久久大尺度免费视频| 国产探花极品一区二区| 亚洲天堂av无毛| 人人妻人人添人人爽欧美一区卜 | 男女啪啪激烈高潮av片| 亚洲国产欧美人成| 人妻少妇偷人精品九色| 少妇的逼水好多| 日韩av在线免费看完整版不卡| 黑人猛操日本美女一级片| 国产 精品1| 一级毛片aaaaaa免费看小| 国产免费福利视频在线观看| 免费久久久久久久精品成人欧美视频 | 在线观看一区二区三区激情| 免费观看在线日韩| 亚州av有码| 国语对白做爰xxxⅹ性视频网站| 国产淫片久久久久久久久| 精品国产露脸久久av麻豆| 精品国产露脸久久av麻豆| 我的老师免费观看完整版| 男女边摸边吃奶| 亚洲怡红院男人天堂| 伦理电影免费视频| 久久午夜福利片| 午夜激情福利司机影院| 高清在线视频一区二区三区| 日韩成人伦理影院| 国产精品一区二区在线观看99| 中文字幕av成人在线电影| 久久久成人免费电影| 成人18禁高潮啪啪吃奶动态图 | 2022亚洲国产成人精品| 欧美一区二区亚洲| 欧美 日韩 精品 国产| 久久鲁丝午夜福利片| 99热国产这里只有精品6| 高清不卡的av网站| 97在线人人人人妻| 国产成人精品久久久久久| 在线观看三级黄色| 午夜激情福利司机影院| 国产欧美亚洲国产| 丰满人妻一区二区三区视频av| 国产精品久久久久成人av| 男女无遮挡免费网站观看| 欧美精品人与动牲交sv欧美| 成人漫画全彩无遮挡| 色视频www国产| 日韩,欧美,国产一区二区三区| 最新中文字幕久久久久| 婷婷色综合www| 成人美女网站在线观看视频| 2022亚洲国产成人精品| 91久久精品国产一区二区成人| 国产久久久一区二区三区| 大陆偷拍与自拍| 在线观看三级黄色| 51国产日韩欧美| 97超碰精品成人国产| 亚洲美女黄色视频免费看| 国产高清有码在线观看视频| 国产日韩欧美亚洲二区| av网站免费在线观看视频| 久久久精品94久久精品| 亚洲精品456在线播放app| 国产精品一区二区三区四区免费观看| 一本色道久久久久久精品综合| 大香蕉97超碰在线| 久久亚洲国产成人精品v| av免费观看日本| 久久午夜福利片| 亚洲人成网站在线播| 国产大屁股一区二区在线视频| 日本av手机在线免费观看| 卡戴珊不雅视频在线播放| 晚上一个人看的免费电影| 丝瓜视频免费看黄片| 久久av网站| 中文欧美无线码| 一区二区三区四区激情视频| 成人二区视频| 日本黄色日本黄色录像| 精品国产乱码久久久久久小说| av免费在线看不卡| 久久人人爽av亚洲精品天堂 | 国产有黄有色有爽视频| 天天躁夜夜躁狠狠久久av| av天堂中文字幕网| 视频区图区小说| 各种免费的搞黄视频| 超碰av人人做人人爽久久| 一二三四中文在线观看免费高清| 亚洲va在线va天堂va国产| 啦啦啦啦在线视频资源| h视频一区二区三区| 在线天堂最新版资源| 精品国产乱码久久久久久小说| 我要看日韩黄色一级片| 精品人妻熟女av久视频| 老女人水多毛片| 欧美最新免费一区二区三区| 日本av免费视频播放| 97在线视频观看| 国产在视频线精品| h视频一区二区三区| 国产一区二区三区av在线| videossex国产| 青春草视频在线免费观看| 国产极品天堂在线| 国产免费一区二区三区四区乱码| 成人午夜精彩视频在线观看| 亚洲国产av新网站| 精品亚洲乱码少妇综合久久| 天天躁夜夜躁狠狠久久av| 午夜激情久久久久久久| 一区二区三区乱码不卡18| 在线观看一区二区三区激情| 夜夜看夜夜爽夜夜摸| 一本色道久久久久久精品综合| 在线免费观看不下载黄p国产| 国产精品99久久久久久久久| 亚洲伊人久久精品综合| 久久人人爽人人片av| 亚洲色图av天堂| 自拍欧美九色日韩亚洲蝌蚪91 | 日日摸夜夜添夜夜添av毛片| 美女国产视频在线观看| 三级国产精品片| 黑丝袜美女国产一区| 欧美国产精品一级二级三级 | 看十八女毛片水多多多| 国产亚洲午夜精品一区二区久久| 狠狠精品人妻久久久久久综合| 寂寞人妻少妇视频99o| 国产精品女同一区二区软件| 国产大屁股一区二区在线视频| 亚洲精品视频女| 少妇猛男粗大的猛烈进出视频| 免费少妇av软件| 日本与韩国留学比较| 18禁在线无遮挡免费观看视频| 国产淫语在线视频| 最新中文字幕久久久久| 一级黄片播放器| 色综合色国产| 丰满乱子伦码专区| 欧美高清性xxxxhd video| 国产女主播在线喷水免费视频网站| 超碰av人人做人人爽久久| 最近最新中文字幕大全电影3| 亚洲av国产av综合av卡| 夜夜骑夜夜射夜夜干| 色5月婷婷丁香| 色吧在线观看| 嘟嘟电影网在线观看| 肉色欧美久久久久久久蜜桃| 啦啦啦中文免费视频观看日本| 免费黄频网站在线观看国产| 国产精品偷伦视频观看了| 97热精品久久久久久| kizo精华| 大码成人一级视频| 超碰97精品在线观看| 99视频精品全部免费 在线| 免费av中文字幕在线| 熟妇人妻不卡中文字幕| 亚洲av欧美aⅴ国产| 久久国产亚洲av麻豆专区| 久久精品熟女亚洲av麻豆精品| 午夜日本视频在线| 99九九线精品视频在线观看视频| 国产亚洲一区二区精品| 国产色婷婷99| 99re6热这里在线精品视频| 婷婷色麻豆天堂久久| 精品久久久久久久久av| 久久国内精品自在自线图片| 亚洲国产毛片av蜜桃av| 肉色欧美久久久久久久蜜桃| 各种免费的搞黄视频| 色婷婷久久久亚洲欧美| 欧美一级a爱片免费观看看| 高清黄色对白视频在线免费看 | 九色成人免费人妻av| 欧美精品亚洲一区二区| 免费人成在线观看视频色| 国产免费一级a男人的天堂| 欧美精品国产亚洲| 久久精品国产亚洲av天美| 91午夜精品亚洲一区二区三区| 六月丁香七月| 一个人看视频在线观看www免费| 高清av免费在线| 熟妇人妻不卡中文字幕| 精品人妻视频免费看| 色婷婷久久久亚洲欧美| 亚洲成色77777| 亚洲国产精品一区三区| 久久这里有精品视频免费| 精品国产三级普通话版| 久久久久性生活片| 欧美xxⅹ黑人| 精品久久久精品久久久| 岛国毛片在线播放| av一本久久久久| 又爽又黄a免费视频| 欧美亚洲 丝袜 人妻 在线| 18禁裸乳无遮挡免费网站照片| 日韩成人伦理影院| 成人特级av手机在线观看| 又爽又黄a免费视频| 深夜a级毛片| 下体分泌物呈黄色| 免费观看在线日韩| 在线观看免费高清a一片| 另类亚洲欧美激情| 一级片'在线观看视频| 亚洲美女搞黄在线观看| 亚洲精品日韩av片在线观看| 99热全是精品| 大话2 男鬼变身卡| 日本一二三区视频观看| 精品国产一区二区三区久久久樱花 | 99热6这里只有精品| 肉色欧美久久久久久久蜜桃| 午夜老司机福利剧场| 亚洲国产日韩一区二区| 激情 狠狠 欧美| av在线老鸭窝| 99久久中文字幕三级久久日本| 久热久热在线精品观看| 欧美日韩在线观看h| 麻豆成人午夜福利视频| 男女免费视频国产| 毛片女人毛片| 免费观看av网站的网址| 午夜福利影视在线免费观看| 女人久久www免费人成看片| 中国国产av一级| 成年女人在线观看亚洲视频| 亚洲精品乱久久久久久| 在线观看人妻少妇| 久久久久久久久大av| 国产精品久久久久久久久免| 亚洲精品日韩av片在线观看| 超碰97精品在线观看| 男女边摸边吃奶| 色婷婷久久久亚洲欧美| 高清午夜精品一区二区三区| 一区二区三区乱码不卡18| 伦理电影大哥的女人| 18禁在线播放成人免费| 亚洲无线观看免费| 有码 亚洲区| 丝袜喷水一区| 七月丁香在线播放| av黄色大香蕉| 亚洲伊人久久精品综合| 伊人久久国产一区二区| 精品一区二区免费观看| 久久精品国产亚洲av天美| 五月伊人婷婷丁香| 亚洲国产成人一精品久久久| 黄片wwwwww| 超碰97精品在线观看| 久久久午夜欧美精品| 五月天丁香电影| 九九在线视频观看精品| 精品久久久精品久久久| 免费av不卡在线播放| 久久99热这里只频精品6学生| 午夜免费男女啪啪视频观看| 亚洲av二区三区四区| 久久ye,这里只有精品| 亚洲丝袜综合中文字幕| 久久久国产一区二区| 观看免费一级毛片| 亚洲欧洲国产日韩| 直男gayav资源| 黄片wwwwww| 亚洲av综合色区一区| 亚洲精品视频女| a 毛片基地| 在线看a的网站| 亚洲婷婷狠狠爱综合网| 欧美最新免费一区二区三区| 亚洲国产最新在线播放| 老司机影院毛片| 亚洲精品久久午夜乱码| 国产欧美亚洲国产| 久久久久人妻精品一区果冻| 国产久久久一区二区三区| 国产白丝娇喘喷水9色精品| h视频一区二区三区| 欧美亚洲 丝袜 人妻 在线| 最近中文字幕高清免费大全6| 国产一区有黄有色的免费视频| 一区在线观看完整版| 日韩 亚洲 欧美在线| 天堂中文最新版在线下载| 久久韩国三级中文字幕| 欧美日本视频| 久久国产乱子免费精品| 国精品久久久久久国模美| 久久国产精品男人的天堂亚洲 | 各种免费的搞黄视频| 性色av一级| 大话2 男鬼变身卡| 超碰av人人做人人爽久久| 国产高清三级在线| 久久国产乱子免费精品| 五月天丁香电影| 女人久久www免费人成看片| 男女边吃奶边做爰视频| 中文字幕免费在线视频6| 人妻夜夜爽99麻豆av| 91精品伊人久久大香线蕉| 高清视频免费观看一区二区| 十分钟在线观看高清视频www | 亚洲aⅴ乱码一区二区在线播放| 国产色婷婷99| 观看av在线不卡| 狂野欧美激情性bbbbbb| 九草在线视频观看| 国产欧美另类精品又又久久亚洲欧美| 国产精品国产三级国产专区5o| 一级毛片黄色毛片免费观看视频| 18禁在线播放成人免费| 女的被弄到高潮叫床怎么办| 国产免费一级a男人的天堂| 舔av片在线| 国产一区有黄有色的免费视频| 欧美精品一区二区免费开放| 日本欧美国产在线视频| 久久毛片免费看一区二区三区| 99久久精品热视频| 少妇熟女欧美另类| 黄色日韩在线| 97在线视频观看| 亚洲美女搞黄在线观看| 久久热精品热| 久久国产亚洲av麻豆专区| av视频免费观看在线观看| 少妇人妻久久综合中文| 99热6这里只有精品| 国产有黄有色有爽视频| 国产综合精华液| 在线观看一区二区三区激情| 七月丁香在线播放| 欧美97在线视频| 国产男女内射视频| 国产精品人妻久久久久久| 在线观看国产h片| 欧美人与善性xxx| 久久青草综合色| 五月开心婷婷网| 天天躁日日操中文字幕| 成年美女黄网站色视频大全免费 | 91久久精品国产一区二区成人| 黄色配什么色好看| 一级毛片久久久久久久久女| 午夜视频国产福利| 国产一区二区在线观看日韩| 中文欧美无线码| 亚洲人与动物交配视频| 国产精品一区二区性色av| 噜噜噜噜噜久久久久久91| 国产av一区二区精品久久 | 人体艺术视频欧美日本| av国产精品久久久久影院| 亚洲性久久影院| 日本wwww免费看| 国产亚洲一区二区精品| 日产精品乱码卡一卡2卡三| 能在线免费看毛片的网站| 女性生殖器流出的白浆| 91在线精品国自产拍蜜月| 国产精品不卡视频一区二区| 激情五月婷婷亚洲| 直男gayav资源| av播播在线观看一区| 日韩一区二区三区影片| 日韩伦理黄色片| 久久精品国产a三级三级三级| 亚洲一级一片aⅴ在线观看| 久久婷婷青草| 一级二级三级毛片免费看| 久久久久国产网址| 亚洲欧美清纯卡通| 亚洲精品乱码久久久久久按摩| 国产69精品久久久久777片| 日韩伦理黄色片| 在线观看人妻少妇| 激情五月婷婷亚洲| 国产在线免费精品| 国产亚洲精品久久久com| 日韩一本色道免费dvd| 超碰97精品在线观看| 一区二区av电影网| 精品视频人人做人人爽| 观看美女的网站| 亚洲经典国产精华液单| 久久国内精品自在自线图片| 2022亚洲国产成人精品| 九九爱精品视频在线观看| 久久精品国产自在天天线| 晚上一个人看的免费电影| 国产伦精品一区二区三区视频9| 国产一区有黄有色的免费视频| 多毛熟女@视频| 99re6热这里在线精品视频| 大片免费播放器 马上看| 亚洲av日韩在线播放| 久久久久国产精品人妻一区二区| 少妇被粗大猛烈的视频| 国产免费又黄又爽又色| 一级毛片久久久久久久久女| 欧美日韩综合久久久久久| 下体分泌物呈黄色| 日本午夜av视频| 精品人妻一区二区三区麻豆| 国产精品免费大片| 免费看光身美女| 欧美xxxx黑人xx丫x性爽| 亚洲精品aⅴ在线观看| 三级国产精品片| 又大又黄又爽视频免费| 联通29元200g的流量卡| 久久人人爽av亚洲精品天堂 | 乱系列少妇在线播放| 国产真实伦视频高清在线观看| av线在线观看网站| 国产精品欧美亚洲77777| 伊人久久精品亚洲午夜| 日本一二三区视频观看| 免费人妻精品一区二区三区视频| 精品亚洲乱码少妇综合久久| 一级毛片电影观看| 国产白丝娇喘喷水9色精品| 老司机影院成人| 国产精品偷伦视频观看了| 亚洲av在线观看美女高潮| 最近中文字幕高清免费大全6| 免费av不卡在线播放| a 毛片基地| 五月伊人婷婷丁香| 国产色婷婷99| 久久青草综合色| 久久人妻熟女aⅴ| 国产精品久久久久久精品电影小说 | 午夜老司机福利剧场| 久久精品人妻少妇| 熟妇人妻不卡中文字幕| 亚洲欧洲日产国产| 国产成人精品福利久久| 亚洲精品日本国产第一区| 国产一区二区三区av在线| 最近最新中文字幕大全电影3| 搡老乐熟女国产| 国产精品一区二区在线观看99| 黄色视频在线播放观看不卡| 美女主播在线视频| 精品一区二区三卡| 啦啦啦中文免费视频观看日本| 午夜福利在线观看免费完整高清在| 久久99热6这里只有精品| 亚洲伊人久久精品综合| 18+在线观看网站| 王馨瑶露胸无遮挡在线观看| 亚洲av中文av极速乱| 亚洲图色成人| 欧美国产精品一级二级三级 | 久久久久久伊人网av| 欧美变态另类bdsm刘玥| 欧美xxxx黑人xx丫x性爽| 日韩av在线免费看完整版不卡| 亚洲美女搞黄在线观看| 黑人猛操日本美女一级片| 三级经典国产精品| 97精品久久久久久久久久精品| 久久精品久久久久久噜噜老黄| 在线观看免费视频网站a站| 亚洲aⅴ乱码一区二区在线播放| 国产高潮美女av| 国产欧美日韩一区二区三区在线 | 爱豆传媒免费全集在线观看| 欧美+日韩+精品| 一本久久精品| 久久99精品国语久久久| videos熟女内射| 国产精品一区二区在线不卡| 高清午夜精品一区二区三区| 美女高潮的动态| 国产一区亚洲一区在线观看| 欧美+日韩+精品| 国产精品熟女久久久久浪| 免费观看a级毛片全部| 日韩视频在线欧美| 91久久精品国产一区二区成人| 精品人妻偷拍中文字幕| 高清毛片免费看| 狂野欧美激情性xxxx在线观看| 欧美区成人在线视频| 久久精品久久久久久久性| 亚洲自偷自拍三级| 黄色配什么色好看| 最近2019中文字幕mv第一页| 99热网站在线观看| 91狼人影院| 亚洲av免费高清在线观看| 美女主播在线视频| 80岁老熟妇乱子伦牲交| 一级毛片我不卡| 只有这里有精品99| 日本欧美视频一区| 国产免费视频播放在线视频| 日韩av在线免费看完整版不卡| av黄色大香蕉| 日韩成人av中文字幕在线观看| 国产女主播在线喷水免费视频网站| 亚洲人成网站在线播| av一本久久久久| 高清午夜精品一区二区三区| 国产v大片淫在线免费观看| 国产亚洲91精品色在线| 伦理电影大哥的女人| 韩国av在线不卡| 97超视频在线观看视频| 欧美激情极品国产一区二区三区 | 日本wwww免费看| 欧美日本视频| 老司机影院成人| 国产精品秋霞免费鲁丝片| 亚洲精品一二三| 亚洲av免费高清在线观看| 日韩精品有码人妻一区| 亚洲人成网站在线观看播放| 亚洲综合精品二区| 国产真实伦视频高清在线观看| 在线观看免费视频网站a站| 成人无遮挡网站| 成人黄色视频免费在线看| 日韩欧美一区视频在线观看 | 国产成人精品一,二区| 天美传媒精品一区二区| 天天躁夜夜躁狠狠久久av| 国产亚洲av片在线观看秒播厂| 91在线精品国自产拍蜜月| 亚洲精品乱码久久久久久按摩| tube8黄色片| 精品少妇久久久久久888优播| 日韩一本色道免费dvd| 国产色爽女视频免费观看| 亚洲aⅴ乱码一区二区在线播放| 国产极品天堂在线| 日韩视频在线欧美| 一区二区三区免费毛片| 深夜a级毛片| 赤兔流量卡办理| 大香蕉97超碰在线| 亚洲av成人精品一二三区| 麻豆成人av视频| 亚洲欧美一区二区三区国产|