• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Electron Acceleration by Beating of Two Intense Cross-Focused Hollow Gaussian Laser Beams in Plasma?

    2018-05-05 09:13:44SalehMahmoudRakhiGauniyalNafisAhmadPriyankaRawatandGunjanPurohit
    Communications in Theoretical Physics 2018年1期

    Saleh T.Mahmoud,Rakhi Gauniyal,Na fis Ahmad,Priyanka Rawat,and Gunjan Purohit

    1Department of Physics,College of Science,UAE University,P.O.Box 15551 Al-Ain,United Arab Emirates

    2Laser Plasma Computational Laboratory,Department of Physics,DAV(PG)College,Dehradun,Uttarakhand-248001,India

    1 Introduction

    Laser driven plasma-based accelerators are of great interest because of their ability to sustain extremely large acceleration gradients.[1?4]They have widespread applications in various fields such as particle physics,materials science,medicine(ranging from x-ray diagnostics to particle beam therapies),manufacturing industry and to produce extremely short electron bunches.In laser plasma interaction,various schemes are operative for particle acceleration such as laser wake field accelerator(LWFA),[5?7]plasma beat wave accelerator(PBWA),[5,8]multiple laser pulses,[9?10]self-modulated LWFA[11?12]etc.in which very high intense laser beams are used.The key requirement for achieving higher acceleration is the large amplitude of the electron plasma wave.A large amplitude plasma wave(with phase velocity near the speed of light)is driven by intense laser pulse in which plasma electrons can be trapped and accelerated to relativistic energies.Therefore,the excitation of electron plasma wave by intense laser beams in plasmas has been an active field of research for charged particle acceleration.

    There has been signi ficant interest in the beat wave excitation of electron plasma wave and its application in plasma based particle accelerators.The plasma beat-wave accelerator scheme is one of the most mature methods for plasma acceleration in laser plasma interaction.[5]In this scheme,two intense laser beams of slightly different frequenciesω1&ω2and corresponding wave numbersk1&k2are used to resonantly excite an electron plasma wave.The resonance conditions for beat wave excitation of electron plasma wave are:and.If the beat frequency?ωis close to the plasma frequencyωp0,a very large amplitude relativistic electron plasma wave can be generated,which can be used to accelerate electrons efficiently to high energies in short distances.In this process,self-focusing of an intense laser beam in plasmas plays an important role and arises due to increase of the on-axis index of refraction relative to the edge of the laser beam.When two intense laser beams with slightly different frequencies simultaneously propagates in plasma,self-focusing of one laser beam is affected by the self-focusing of another laser beam.Due to mutual interaction of two laser beams,cross-focusing takes place in plasma.This method is used to generate large amplitude electron plasma wave for ultrahigh gradient electron acceleration in PBWA scheme.A lot of theoretical and experimental work has been reported on the excitation of electron plasma wave and electron acceleration by beating of two laser beams in plasma.[5,13?37]

    It has been observed that the focusing of laser beams in plasma and the yield of electron acceleration depends on the spatial pro file of laser beams and the nonlinearities associated with plasma.Most of the earlier investigations on excitation of electron plasma wave and electron acceleration have been carried out by taking Gaussian intensity distribution of laser beams with ponderomo-tive/relativistic nonlinearity.In contrast with Gaussian pro file of laser beams,currently,the hollow Gaussian intensity pro file of laser beams with minimum field intensity at the center has attracted much more attentions because of their unique physical properties and applications.[38?40]The main feature of considered hollow Gaussian laser beams is having the same power at different beam orders with null intensity at the centre.The propagation dynamics of hollow Gaussian beams(HGBs)have been widely studied both experimentally and theoretically.[41?46]Various techniques[47?50]have been used to generate HGBs.These beams can be expressed as a superposition of a series of Lagurerre-Gaussian modes.[41]Moreover,when an ultra-intense laser beams propagates in plasma,both relativistic and ponderomotive nonlinearities arise simultaneously due to electron mass variation and electron density perturbations respectively,which depend on the time scale of the laser pulse.[51?52]Therefore,in comparison with only relativistic/ponderomotive nonlinearity,the dynamics of the propagation of laser beams in plasma is expected to be drastically affected by cumulative effects of relativistic-ponderomotive nonlinearity.It is also important to mention that the relativistic effect and ponderomotive nonlinearity contribute to focusing on a femtosecond time scale at very high intensity.Cross-focusing of HGBs with relativistic/ponderomotive or relativisticponderomotive nonlinearities in plasma have been investigated in detail[53?55]but no one has studied the excitation of EPW and electron acceleration. Moreover,donut wake fields generation for particle acceleration by Laguerre-Gaussian laser pulses(carrying a finite amount of orbital angular momentum)using particle-incell simulations have also been reported in under-dense plasma.[56?57]

    In the present study,we have considered the propagation of two intense hollow Gaussian beams in collisionless plasma.The intensity distribution of the beams along the axis is zero and the maximum is away from the axis.We have studied the cross-focusing of two intense hollow Gaussian laser beams in collisionless plasma with relativistic and ponderomotive nonlinearities and further its effect on the excitation of EPW and electron acceleration.The paraxial-ray approximation[58?59]is used to describe the focal region of the laser beam where all the relevant parameters correspond to a narrow range around the maximum irradiance of the HGBs.Section 2 presents the relativistic-ponderomotive focusing of two HGBs in plasma under paraxial-ray approximation.The effect of the cross-focusing of the HGBs on the excitation of the electron plasma wave and electron acceleration is studied in Sec.3.Section 4 deals with the results and discussion.The conclusions drawn from the results of present investigation have been summarized in Sec.5.

    2 Propagation of Hollow Gaussian Laser Beams in Collisional Plasma

    We consider two intense linearly polarized co-axial hollow Gaussian laser beams of frequenciesω1andω2propagating along thez-direction in the collisional plasma.The initial electric field distribution of the beams are given by

    whereris the radial coordinate of the cylindrical coordinate system,r10andr20are the initial spot size of the laser beams,E10andE20are the amplitude of HGBs maximumnis the order of the HGBs(n=0 corresponds to the fundamental Gaussian laser beam)and a positive integer,characterizing the shape of the HGBs an position of its irradiance maximum.

    For hollow Gaussian laser beams,transforming the(r,z)coordinate in to(η,z)coordinate by the relation[44]

    whereηis a reduced radial coordinate,f1,2is the beam width of HGBs,r=r10,20f1,2(2n)1/2is the position of the maximum irradiance for the propagating beams.Most of the power of HGBs are concentrated in the region aroundη=0.

    The ponderomotive force acting on the electrons in the presence of relativistic nonlinearity is given by[52?53]

    This force modi fies the background electron density because electrons are expelled away from the region of higher electric field.The modi fied electron density(nd)due to relativistic-ponderomotive force is given as[52]

    Using Eq.(3)into Eq.(7),the total electron density can be written as

    Hereare the intensities of first and second laser beams.

    The dielectric constant of the plasma is given by

    whereis the plasma frequency witheis the charge of an electron,m0is its rest mass,andn0is the density of plasma electrons in the absence of laser beam.The effective dielectric constant(?1,2)of the plasma(in the presence of relativistic-ponderomotive nonlinearity)at frequenciesω1andω2respectively is given by

    where?10,20is the linear part of dielectric constant of the plasma.The dielectric constant may be expended around the maximum of HGBs i.e.atη=0.For HGBs,one can express the dielectric constant?1,2(η,z),in terms of?1,2(r,z).Expanding dielectric constant aroundη=0 by Taylor expansion,one can write

    3 Beat Wave Excitation of Plasma Wave and Electron Acceleration

    Due to beating of two hollow Gaussian laser beams in plasma and modi fication in plasma density via relativisticponderomotive force,electron plasma wave(EPW)is generated.In this process,the contribution of ions is negligible because they only provide a positive background,i.e.,only plasma electrons are responsible for excitation of EPW.The amplitude of electron plasma wave(which depends on the background electron density)gets strongly coupled to the laser beams.To study the effect of relativistic and ponderomotive nonlinearities on the generation of the plasma wave by the beat wave process in paraxial region,we start with the following fluid equations:

    (i)The continuity equation:

    Equation(26)contains two plasma waves(both have different frequencies).The first one is supported by hot plasma and the second by the source term at the different frequency.Ifωp0/?ω≤1,the phase velocity is almost equal to the thermal velocity of the electron and Landau damping occur.But asωp0/?ω≈1,the phase velocity is very large as compared to the electron thermal velocity and Landau damping is negligible.The solution of Eq.(9)with in the WKB approximation can be expressed as

    The power associated with electron wave is given by[29]

    whereis the group velocity.Equation(38)has been solved numerically with the help of Eqs.(21),(36),and(37).

    The excited electron plasma wave transfers its energy to accelerate the electrons at the difference frequency of laser beams.The equation governing electron momentum

    whereE(?ω)is given by Eqs.(37)and(39)gives the electron energy.Equation(39)has been solved numerically,where we have usedf1andf2by Eq.(21).

    4 Numerical Results and Discussion

    In order to study the cross-focusing of two intense hollow Gaussian laser beams in collisonal plasma with dominant relativistic-ponderomotive nonlinearity and its effect on the generation of electron plasma wave and electron acceleration in paraxial-ray approximation,numerical computation of Eqs.(19),(21),(38),and(39)has been performed for the typical laser plasma parameters.The following set of the parameters has been used in the numerical calculation:ω1=1.776×1015rad/s,ω2=1.716×1015rad/s,r1=15μm,r2=20μm,ωp0=0.3ω2,a1=3,a2=2,2.4,2.8,andn=1,2,3.For initial plane wave fronts of the beams,the initial conditions forf1,2aref1,2=1 and df1,2/dz=0 atz=0.

    When two intense hollow Gaussian laser beams of slightly different frequencies simultaneously propagate through the plasma,the background electron density of plasma is modi fied due to ponderomotive force.Equation(19)describes the intensity pro file of HGBs in plasma along the radial direction in presence of relativistic and ponderomotive nonlinearities,while Eq.(21)determines the focusing/defocusing of the hollow Gaussian beams along the distance of propagation in the plasma,where the first term on the right hand side shows the diffraction behaviour of laser beams and remaining terms on the right hand side show the converging behaviour that arises due to the relativistic and ponderomotive nonlinearity.The focusing/defocusing behaviour of laser beams depends on the magnitudes of the nonlinear coupling terms.It is clear from Eq.(19),the intensity pro file of both laser beams depends on the focusing/defocusing of the laser beams i.e.beam width parametersf1,2.

    Fig.1 (Color online)Variation of the beam width parameters(f1and f2)with the normalized distance of propagation(ξ)of first and second HGBs:(a)For different orders of n(red,black and blue colors are for n=1,2 and 3)with a1=3,a2=2.4 and ωp0=0.3ω2.(b)For different values of a2(red,black,and blue colors are for a2=2,2.4,2.8)with a1=3,n=2 and ωp0=0.3ω2.(c)For different values of ωp0(red,black,and blue colors are for ωp0=0.2ω2,0.3ω2,and 0.4ω2)with a1=3,a2=2.4.and n=2,respectively,when relativistic and ponderomotive nonlinearities are operative.The solid line represents f1and the dotted line represents f2.

    Fig.2 (Color online)Variation of the normalized intensity of HGBs with the normalized distance of propagation(ξ)for different orders of n(red,black and blue colors are for n=1,2 and 3)keeping a1=3,a2=2.4,ωp0=0.3ω2,when relativistic and ponderomotive nonlinearities are operative.(a)and(b)are for first and second laser beam.

    The results of Eqs.(19)and(21)are presented in Figs.1 and 2 respectively.Figures 1(a)–1(c)illustrate the focusing behavior of two hollow Gaussian laser beams in plasma with normalized distance of propagation.It is clear that both of the beams show oscillatory self focusing.One can see from Fig.1(a)as the order of the hollow Gaussian beam(n)increases focusing of both beams also increases,which implies that with the increase innthe hollow space across the beam also increases.It is observed from Figs.1(b)and 1(c)that with an increase in the intensity of incident laser beam and plasma density there is an increase in the extent of self-focusing of both the laser beams.This is due to the fact that with an increase in plasma density the number of electrons contributing to the pondermotive-relativistic nonlinearity also increases.These results indicate that focusing of one beam is signi ficantly affected by the presence of another beam.Figures 2(a)and 2(b)represent the normalized intensity of first and second laser beam in plasma respectively along with the normalized distance of propagation for different n.It is observed from the figures that with an increase inn,normalized intensity of both laser beams also increases.It has also been observed that the intensity of laser beams is higher at higher plasma density and incident laser beam intensity(results not shown here).This is due to the strong focusing of both HGBs at higher values ofnand plasma density respectively.Such kind of highly self-focused intense laser beams interact with each other and generate large amplitude electron plasma wave.

    Fig.3(Color online)Variation of the normalized power(P)of electron plasma wave with normalized distance(ξ):(a)For different orders of n(red,black and blue colors are for n=1,2 and 3)with a1=3,a2=2.4,and ωp0=0.3ω2.(b)For different values of a2(red,black,and blue colors are for a2=2,2.4,2.8)with a1=3,n=2,and ωp0=0.3ω2,respectively,when relativistic and ponderomotive nonlinearities are operative.

    To see the effect of cross-focusing of two intense hollow Gaussian laser beams on the generation of electron plasma wave,we have studied the excitation of the electron plasma wave by the beat wave process in the presence of relativistic and ponderomotive nonlinearities.It is important to mention here that beating between two copropagating intense laser beams in plasma can generate a longitudinal electron plasma wave with a high electric field and a relativistic phase velocity.The beat plasma wave is very efficient for electron acceleration up to ultrarelativistic energies.Equation(38)describes the normalized power of electron plasma wave generated as a result of beating of the two laser beams.It is evident from Eq.(38),the power of electron plasma wave depends upon the focusing of laser beams in plasma(f1,2),focusing of electron plasma wave(fp)and the electric field associated with electron plasma waveE(?ω).The same set of parameters has been used for numerical calculations as in Figs.1–2.Figures 3(a)and 3(b)show the effect of changing the order of HGBs and the initial intensity of second laser beam(a2)on the power of generated electron plasma wave,at the position of optimum irradiance of the beams(η=0).By increasing laser beam orders and the intensity of second laser beam,the power of generated electron plasma wave increases.This is because the power of generated electron plasma wave depends on the focusing behaviour of laser beams(f1,2),fpand intensity of laser beams.

    Fig.4(Color online)Variation of the(γ)of the electron with normalized distance(ξ):(a)For different orders of n(red,black and blue colors are for n=1,2 and 3)with a1=3,a2=2.4,and ωp0=0.3ω2.(b)For different values of a2(red,black,and blue colors are for a2=2,2.4,2.8)with a1=3,n=2,and ωp0=0.3ω2,respectively,when relativistic and ponderomotive nonlinearities are operative.

    The large amplitude electron plasma wave can be used to accelerate the electrons in plasma beat wave accelerator scheme.Equation(39)gives the expression for energy gain by the electrons.This equation has been solved numerically with the help of Eq.(37)i.e.energy gain depends on the electric field associated with excited electron plasma wave.Figures 4(a)and 4(b)respectively illustrate the effect of changing the value ofnand the intensity of second laser beam(a2)on energy gain by the electrons.These figures clearly indicate that the maximum energy gain by electrons is signi ficantly increased by increasing the value ofbanda2.Although,the nature of these results are similar to Figs.3(a)and 3(b)due to the same reasons as discussed above.Thus,we see that cross-focusing of laser beams plays a crucial role for efficient generation of electron plasma wave and electron acceleration.

    5 Conclusions

    In conclusion,plasma wave generation and electron acceleration by beating of two intense HGBs in collisionless plasma with dominant relativistic-ponderomotive nonlinearity has been discussed.Paraxial-ray approximation has been used to establish the given formulation.Effects of laser and plasma parameters on the focusing of two HGBs in plasma at difference frequency,generation of electron plasma wave and particle acceleration process is examined.Following conclusions are made from the results:

    (i)The order of the hollow Gaussian laser beams plays an important role in plasma beat wave accelerator scheme.

    (ii)Focusing of both hollow Gaussian laser beams in plasma is enhanced by increasing the laser beam orders,incident laser intensity,and plasma density.

    (iii) The intensity of both laser beams in plasma is higher for higher orders of the HGBs.

    (iv)Maximum power of generated electron plasma wave depends on the extent of focusing of laser beams in plasma and the electric field associated with electron plasma wave respectively.

    (v)The power of electron plasma wave increases by increasing the laser beam orders and the initial intensity of second/ first laser beams.

    (vi)The maximum energy gain also depends on the electric field associated with electron plasma wave and increases by increasing the laser beam orders and the initial intensity of second/ first laser beams.

    The results of the present investigation are relevant to laser beat wave based particle accelerators,terahertz generation and in other applications requiring multiple laser beams.

    [1]S.M.Hooker,Nature Photonics 7(2013)775.

    [2]E.Esarey,C.B.Schroeder,and W.P.Leemans,Rev.Mod.Phys.81(2009)1229.

    [3]V.Malka,J.Faure,Y.A.Gauduel,et al.,Nature Physics 4(2008)447.

    [4]R.Bingham,Phil.Trans.R.Soc.A.364(2006)559.

    [5]T.Tajima and J.M.Dawson,Phys.Rev.Lett.43(1979)267.

    [6]A.Pukhov and J.Meyer-ter-vehn,Appl.Phys.B 74(2002)355.

    [7]F.Albert,A.G.R.Thomas,S.P.D.Mangles,et al.,Plasma Phys.Control.Fusion 56(2014)084015.

    [8]C.V.Filip,R.Narang,S.Ya.Tochitsky,et al.,Phys.Rev.E 69(2004)026404.

    [9]K.Nakajima,Phys.Rev.A 45(1992)1149.

    [10]D.Umstadter,E.Esarey,and J.Kim,Phys.Rev.Lett.72(1994)1224.

    [11]W.P.Leemans,P.Catravas,E.Esarey,et al.,Phys.Rev.Lett.89(2002)174802.

    [12]W.Chen,T.Chien,C.Lee,et al.,Phys.Rev.Lett.92(2004)075003.

    [13]M.N.Rosenbluth and C.S.Liu,Phys.Rev.Lett.29(1972)701.

    [14]C.Joshi,W.B.Mori,T.Katsouleas,et al.,Nature(London)311(1984)525.

    [15]Y.Kitagawa,T.Matsumoto,T.Minamihata,et al.,Phys.Rev.Lett.68(1992)48.

    [16]C.M.Tang,P.Sprangle,and R.N.Sudan,Appl.Phys.Lett.45(1984)375.

    [17]A.Modena,Z.Najmudin,A.E.Dangor,et al.,Nature(London)377(2002)606.

    [18]C.E.Clayton,C.Joshi,C.Darrow,and D.Umstadter,Phys.Rev.Lett.54(1985)2343.

    [19]N.A.Ebrahim,P.Lavigne,and S.Aithal,IEEE Trans.Nucl.Sci.32(1985)3539.

    [20]C.E.Clayton,K.A.Marsh,A.Dyson,et al.,Phys.Rev.Lett.70(1993)37.

    [21]M.Everett,A.Lal,D.Gordon,et al.,Nature(London)368(1994)527.

    [22]N.A.Ebrahim,J.Appl.Phys.76f50(1994)7645.

    [23]F.Amirano ff,D.Bernard,B.Cros,et al.,Phys.Rev.Lett.74(1995)5220.

    [24]A.Ghizzo,P.Bertrand,J.Lebas,et al.,Phys.Plasmas 5(1998)4044.

    [25]S.Y.Tochitsky,R.Narang,C.V.Filip,et al.,Phys.Rev.Lett.92(2004)095004.

    [26]C.V.Filip,R.Narang,S.Ya.Tochitsky,et al.,Phys.Rev.E 69(2004)026404.

    [27]B.Walton,Z.Najmudin,M.S.Wei,et al.,Phys.Plasmas 13(2006)013103.

    [28]S.Kalmykov,S.A.Yi,and G.Shvets,Plasma Phys.Control.Fusion 51(2009)024011.

    [29]D.N.Gupta,M.Singh,and H.Suk,J.Plasma Phys.81(2015)905810324.

    [30]A.Singh and N.Gupta,Phys.Plasmas 22(2015)062115.

    [31]M.S.Sodha,Govind,D.P.Tewari,et al.,J.Appl.Phys.50(1979)158.

    [32]S.T.Mahmoud,H.D.Pandey,and R.P.Sharma,J.Plasma Phys.69(2003)45.

    [33]P.Chauhan,S.T.Mahmoud,R.P.Sharma,and H.D.Pandey,J.Plasma Phys.73(2007)117.

    [34]G.Purohit,P.K.Chauhan,and R.P.Sharma,Phys.Scr.77(2008)065503.

    [35]M.K.Gupta,R.P.Sharma,and V.L.Gupta,Phys.Plasmas 12(2005)123101.

    [36]R.P.Sharma and P.K.Chauhan,Phys.Plasmas 15(2008)063103.

    [37]P.Rawat,R.K.Singh,R.P.Sharma,and G.Purohit,Eur.Phys.J.D 68(2014)57.

    [38]J.Yin,W.Gao,and Y.Zhu,Progress in Optics 44(2003)119.

    [39]Y.Yuan,Y.Cai,J.Qu,et al.,Opt.Express 17(2009)17344.

    [40]X.Xu,Y.Wang,and W.Jhe,J.Opt.Soc.Am.B 17(2002)1039.

    [41]Y.Cai,X.Lu,and Q.Lin,Opt.Lett.28(2003)1084.

    [42]Y.Cai and Q.Lin,J.Opt.Soc.Am.A 21(2004)1058.

    [43]Z.Mei and D.Zhao,J.Opt.Soc.Am.A 22(2005)1898.

    [44]M.S.Sodha,S.K.Mishra,and S.Misra,J.Plasma Phys.75(2009)731.

    [45]N.A.Chaitanya,M.V.Jabir,J.Banerji,and G.K.Samanta,Sci.Report 6(2016)32464.

    [46]S.Misra and S.K.Mishra,Prog.Electromagnetics Res.B 16(2009)291.

    [47]R.M.Herman and T.A.Wiggins,J.Opt.Soc.Am.A 8(1991)932.

    [48]X.Wang and M.G.Littman,Opt.Lett.1(1993)767.

    [49]C.Paterson and R.Smith,Opt.Commun.124(1996)121.

    [50]C.Zhao,Y.Cai,F.Wang,et al.,Opt.Lett.33(2008)1389.

    [51]A.B.Borisov,A.V.Borovskiy,O.B.Shiryaev,et al.,Phys.Rev.A 45(1992)5830.

    [52]H.S.Brandi,C.Manus,G.Mainfray,and T.Lehner,Phys.Rev.E 47(1993)3780.

    [53]R.Gupta,P.Sharma,M.Rafat,and R.P.Sharma,Laser part.Beams 29(2011)227.

    [54]P.Sharma,A.K.Bhardwaj,and R.P.Sharma,J.Phys.:Conf.Ser.534(2014)012049.

    [55]P.Sharma,Laser Part.Beams 33(2015)755.

    [56]J.T.Mendonca and J.Vieira,Phys.Plasmas 21(2014)033107.

    [57]J.Vieira and J.T.Mendonca,Phys.Rev.Lett.112(2014)215001.

    [58]A.S.Akhmanov,A.P.Sukhorukov,and R.V.Khokhlov,Sov.Phys.Usp.10(1968)609.

    [59]M.S.Sodha,V.K.Tripathi,and A.K.Ghatak,Prog.Optics 13(1976)169.

    [60]J.Krall,A.Ting,E.Esarey,and P.Sprangle,Phys.Rev.E 48(1993)2157.

    只有这里有精品99| 国产有黄有色有爽视频| 老熟女久久久| 在线观看免费视频网站a站| 免费观看人在逋| 欧美日韩一区二区视频在线观看视频在线| 最新在线观看一区二区三区 | 久久天躁狠狠躁夜夜2o2o | 日本欧美国产在线视频| 水蜜桃什么品种好| 国产欧美日韩一区二区三区在线| 国产精品二区激情视频| 18在线观看网站| 亚洲熟女精品中文字幕| 精品少妇久久久久久888优播| 国产亚洲av高清不卡| 在线观看免费视频网站a站| 大话2 男鬼变身卡| 操美女的视频在线观看| 一本大道久久a久久精品| 亚洲精品第二区| 久热爱精品视频在线9| 美女中出高潮动态图| 男女之事视频高清在线观看 | 国产精品三级大全| 一级a爱视频在线免费观看| 日韩电影二区| 亚洲一区二区三区欧美精品| 久久久久人妻精品一区果冻| 久热爱精品视频在线9| 欧美黑人精品巨大| 亚洲av国产av综合av卡| 亚洲av电影在线观看一区二区三区| 成年人午夜在线观看视频| 91成人精品电影| 人人妻人人澡人人爽人人夜夜| 中文字幕人妻熟女乱码| 嫩草影院入口| 极品少妇高潮喷水抽搐| 一区二区日韩欧美中文字幕| 欧美人与善性xxx| 日韩欧美一区视频在线观看| 日韩,欧美,国产一区二区三区| 少妇被粗大的猛进出69影院| av.在线天堂| 久久这里只有精品19| 精品一区二区三区av网在线观看 | 国产 精品1| 老司机亚洲免费影院| 老司机亚洲免费影院| 国产精品久久久久久久久免| 极品少妇高潮喷水抽搐| 午夜免费观看性视频| 美女高潮到喷水免费观看| 黄色毛片三级朝国网站| 91精品伊人久久大香线蕉| 黄色视频在线播放观看不卡| 晚上一个人看的免费电影| 日韩电影二区| 亚洲精品美女久久久久99蜜臀 | 男女下面插进去视频免费观看| 国产精品成人在线| 久久 成人 亚洲| 天天躁夜夜躁狠狠躁躁| 亚洲中文av在线| 在线观看免费午夜福利视频| 亚洲精品国产av成人精品| 丁香六月天网| 国产成人精品久久二区二区91 | videos熟女内射| 欧美日韩亚洲综合一区二区三区_| 极品人妻少妇av视频| 一级毛片我不卡| 免费黄频网站在线观看国产| 国产精品 国内视频| 夫妻午夜视频| 国产精品免费视频内射| 少妇被粗大的猛进出69影院| 99香蕉大伊视频| 国产免费视频播放在线视频| 人人妻,人人澡人人爽秒播 | 哪个播放器可以免费观看大片| 观看美女的网站| 国产一级毛片在线| 看免费成人av毛片| av片东京热男人的天堂| 9热在线视频观看99| 欧美黑人精品巨大| 一区在线观看完整版| av在线播放精品| 狠狠精品人妻久久久久久综合| 女性生殖器流出的白浆| 爱豆传媒免费全集在线观看| 少妇 在线观看| 18禁国产床啪视频网站| 亚洲色图 男人天堂 中文字幕| 久久久久久久精品精品| 久久久国产欧美日韩av| 亚洲国产精品一区二区三区在线| 在线观看国产h片| 在线观看www视频免费| 捣出白浆h1v1| 最近最新中文字幕免费大全7| www日本在线高清视频| 久久狼人影院| 欧美日韩视频精品一区| 国语对白做爰xxxⅹ性视频网站| 无遮挡黄片免费观看| 高清黄色对白视频在线免费看| 亚洲欧洲日产国产| 亚洲国产欧美日韩在线播放| 欧美日韩一区二区视频在线观看视频在线| 日韩av免费高清视频| 亚洲欧美一区二区三区国产| 久久久久精品人妻al黑| 18禁裸乳无遮挡动漫免费视频| 一边摸一边抽搐一进一出视频| 赤兔流量卡办理| 欧美亚洲 丝袜 人妻 在线| 日韩av免费高清视频| 水蜜桃什么品种好| 亚洲第一av免费看| videosex国产| 天天躁夜夜躁狠狠久久av| 日日撸夜夜添| 欧美日韩av久久| 亚洲精华国产精华液的使用体验| 菩萨蛮人人尽说江南好唐韦庄| 亚洲自偷自拍图片 自拍| 一区二区日韩欧美中文字幕| 日本色播在线视频| 2021少妇久久久久久久久久久| 成年动漫av网址| 亚洲精品久久久久久婷婷小说| 久久青草综合色| 亚洲av在线观看美女高潮| 免费女性裸体啪啪无遮挡网站| √禁漫天堂资源中文www| 久久久久久免费高清国产稀缺| 成年人免费黄色播放视频| 免费不卡黄色视频| 一边摸一边抽搐一进一出视频| 欧美激情 高清一区二区三区| 免费观看a级毛片全部| 毛片一级片免费看久久久久| 久久久精品免费免费高清| 欧美日韩视频精品一区| 人妻人人澡人人爽人人| 欧美黑人欧美精品刺激| 免费不卡黄色视频| 国产 精品1| 精品少妇黑人巨大在线播放| 亚洲国产欧美在线一区| 悠悠久久av| 国产精品一区二区在线观看99| 国产一区亚洲一区在线观看| 一边摸一边做爽爽视频免费| 看免费成人av毛片| 多毛熟女@视频| 亚洲国产欧美日韩在线播放| 满18在线观看网站| 天美传媒精品一区二区| 成年动漫av网址| 亚洲色图 男人天堂 中文字幕| 久久精品国产综合久久久| 青春草视频在线免费观看| 成人手机av| 丝袜美足系列| 久热这里只有精品99| 制服诱惑二区| 午夜91福利影院| 一区二区日韩欧美中文字幕| 色婷婷av一区二区三区视频| 韩国高清视频一区二区三区| 成年美女黄网站色视频大全免费| 亚洲色图综合在线观看| 男人添女人高潮全过程视频| bbb黄色大片| 国产精品嫩草影院av在线观看| 欧美激情 高清一区二区三区| 国产一区二区在线观看av| 97人妻天天添夜夜摸| 久久鲁丝午夜福利片| 日韩中文字幕视频在线看片| 久久久久久久大尺度免费视频| 免费观看人在逋| 亚洲av电影在线观看一区二区三区| av线在线观看网站| 国产黄频视频在线观看| 午夜91福利影院| 蜜桃在线观看..| 成人国产麻豆网| 99九九在线精品视频| 女人高潮潮喷娇喘18禁视频| 青春草国产在线视频| 狠狠精品人妻久久久久久综合| 国产成人午夜福利电影在线观看| 电影成人av| 在线观看国产h片| 欧美日韩av久久| 亚洲精品久久成人aⅴ小说| 欧美日韩亚洲综合一区二区三区_| 精品午夜福利在线看| 9色porny在线观看| 午夜91福利影院| 国产爽快片一区二区三区| 美女高潮到喷水免费观看| 哪个播放器可以免费观看大片| 搡老乐熟女国产| 在线 av 中文字幕| 在线观看人妻少妇| 色94色欧美一区二区| 哪个播放器可以免费观看大片| 久久久精品94久久精品| 男人爽女人下面视频在线观看| 国产乱人偷精品视频| 在线天堂中文资源库| av在线观看视频网站免费| www.精华液| 亚洲五月色婷婷综合| 国产又爽黄色视频| 国产成人精品无人区| 国产成人啪精品午夜网站| 午夜福利影视在线免费观看| 丰满迷人的少妇在线观看| 国产精品久久久久久精品古装| 亚洲精华国产精华液的使用体验| 免费人妻精品一区二区三区视频| 午夜久久久在线观看| 一边摸一边抽搐一进一出视频| 另类亚洲欧美激情| 国产熟女欧美一区二区| 大码成人一级视频| 亚洲欧美中文字幕日韩二区| 国产日韩欧美在线精品| 亚洲欧美一区二区三区黑人| 精品久久蜜臀av无| av女优亚洲男人天堂| 久热这里只有精品99| 男女边摸边吃奶| 亚洲精品国产色婷婷电影| 久久久久国产精品人妻一区二区| 另类亚洲欧美激情| av在线观看视频网站免费| 人人澡人人妻人| 悠悠久久av| 国产免费现黄频在线看| 亚洲av男天堂| 好男人视频免费观看在线| 国产日韩欧美在线精品| 91aial.com中文字幕在线观看| 国产老妇伦熟女老妇高清| 精品酒店卫生间| 久久久精品94久久精品| 久久精品熟女亚洲av麻豆精品| 国产极品粉嫩免费观看在线| 久久久久久免费高清国产稀缺| 亚洲一码二码三码区别大吗| 无限看片的www在线观看| 捣出白浆h1v1| 黑人猛操日本美女一级片| 欧美 日韩 精品 国产| 男女床上黄色一级片免费看| 国产亚洲av高清不卡| 蜜桃在线观看..| 波野结衣二区三区在线| 国产 一区精品| 久久 成人 亚洲| 一边摸一边做爽爽视频免费| 伦理电影大哥的女人| 久久久国产一区二区| 狂野欧美激情性bbbbbb| 欧美老熟妇乱子伦牲交| 男女免费视频国产| 国产精品免费大片| 少妇 在线观看| 成人午夜精彩视频在线观看| 色94色欧美一区二区| 欧美人与性动交α欧美精品济南到| 久久综合国产亚洲精品| 亚洲四区av| 人妻 亚洲 视频| 在线观看免费日韩欧美大片| 国精品久久久久久国模美| 嫩草影视91久久| 狠狠婷婷综合久久久久久88av| 精品久久蜜臀av无| 久久人人爽人人片av| 不卡视频在线观看欧美| 人人妻人人澡人人看| 又黄又粗又硬又大视频| 精品人妻在线不人妻| 1024视频免费在线观看| 777米奇影视久久| av国产久精品久网站免费入址| 国产野战对白在线观看| 国产熟女欧美一区二区| bbb黄色大片| 女人爽到高潮嗷嗷叫在线视频| 在线观看人妻少妇| 亚洲国产精品一区二区三区在线| 高清av免费在线| 国产乱来视频区| 欧美日本中文国产一区发布| 精品一区二区免费观看| 久久精品亚洲熟妇少妇任你| 亚洲精品久久成人aⅴ小说| 国产精品无大码| 久久精品国产综合久久久| 男女无遮挡免费网站观看| 午夜av观看不卡| 国产成人免费无遮挡视频| 国产一卡二卡三卡精品 | av国产久精品久网站免费入址| 日韩,欧美,国产一区二区三区| 久久影院123| 两个人免费观看高清视频| 爱豆传媒免费全集在线观看| 欧美av亚洲av综合av国产av | 赤兔流量卡办理| 成人三级做爰电影| av在线老鸭窝| 亚洲精品乱久久久久久| 国产精品麻豆人妻色哟哟久久| 日韩一卡2卡3卡4卡2021年| 狠狠精品人妻久久久久久综合| 亚洲美女黄色视频免费看| 亚洲欧美激情在线| 街头女战士在线观看网站| 一级黄片播放器| 欧美精品人与动牲交sv欧美| 午夜激情av网站| 国产成人精品久久二区二区91 | 最近中文字幕高清免费大全6| 精品视频人人做人人爽| 男女边吃奶边做爰视频| 国产精品久久久人人做人人爽| 狂野欧美激情性xxxx| 国产日韩欧美亚洲二区| 中国三级夫妇交换| 天天躁狠狠躁夜夜躁狠狠躁| 成人国产av品久久久| 美女主播在线视频| 18禁观看日本| 国产极品粉嫩免费观看在线| 亚洲图色成人| 日本vs欧美在线观看视频| 国产深夜福利视频在线观看| 男人操女人黄网站| 午夜精品国产一区二区电影| 看非洲黑人一级黄片| 欧美日韩亚洲高清精品| 在线观看免费午夜福利视频| 国产深夜福利视频在线观看| 桃花免费在线播放| 久久久国产欧美日韩av| 自拍欧美九色日韩亚洲蝌蚪91| 国产野战对白在线观看| 精品午夜福利在线看| 免费少妇av软件| 国产精品亚洲av一区麻豆 | www.熟女人妻精品国产| 国产一卡二卡三卡精品 | 精品国产一区二区三区四区第35| 啦啦啦在线观看免费高清www| 巨乳人妻的诱惑在线观看| 中文字幕色久视频| 国产色婷婷99| 欧美少妇被猛烈插入视频| 久久精品熟女亚洲av麻豆精品| 又粗又硬又长又爽又黄的视频| 免费少妇av软件| 777米奇影视久久| 欧美97在线视频| 欧美日韩亚洲国产一区二区在线观看 | 在线观看国产h片| 18禁国产床啪视频网站| 校园人妻丝袜中文字幕| 老汉色av国产亚洲站长工具| 啦啦啦视频在线资源免费观看| 国产在线免费精品| 丰满少妇做爰视频| 大陆偷拍与自拍| 精品国产国语对白av| 夫妻性生交免费视频一级片| 又黄又粗又硬又大视频| 中文天堂在线官网| 亚洲熟女毛片儿| 两性夫妻黄色片| 国产精品久久久久久久久免| 国产精品秋霞免费鲁丝片| 乱人伦中国视频| 日本vs欧美在线观看视频| 日本91视频免费播放| 亚洲一级一片aⅴ在线观看| 在线观看人妻少妇| 国产男女内射视频| 宅男免费午夜| 国产av国产精品国产| 五月开心婷婷网| 精品少妇内射三级| 男女之事视频高清在线观看 | 亚洲精品在线美女| 国产欧美日韩综合在线一区二区| 欧美成人精品欧美一级黄| 国产国语露脸激情在线看| 亚洲av成人不卡在线观看播放网 | 最黄视频免费看| www.自偷自拍.com| 亚洲精品乱久久久久久| 久久精品aⅴ一区二区三区四区| 伦理电影免费视频| 国产在线视频一区二区| 王馨瑶露胸无遮挡在线观看| 久久人妻熟女aⅴ| 亚洲国产精品成人久久小说| 日韩大码丰满熟妇| 久久久久久免费高清国产稀缺| 日本午夜av视频| 韩国精品一区二区三区| 18禁裸乳无遮挡动漫免费视频| 国产又爽黄色视频| 夫妻午夜视频| 亚洲精品美女久久久久99蜜臀 | 黑人巨大精品欧美一区二区蜜桃| 十分钟在线观看高清视频www| 欧美在线黄色| 成人影院久久| 美女高潮到喷水免费观看| 99九九在线精品视频| 成年美女黄网站色视频大全免费| 97精品久久久久久久久久精品| 只有这里有精品99| 成年av动漫网址| 日韩大片免费观看网站| av视频免费观看在线观看| 人人澡人人妻人| 女人久久www免费人成看片| 国语对白做爰xxxⅹ性视频网站| 国产免费福利视频在线观看| 亚洲欧美日韩另类电影网站| 成人黄色视频免费在线看| 三上悠亚av全集在线观看| 99热网站在线观看| 精品视频人人做人人爽| 欧美日韩视频高清一区二区三区二| 大香蕉久久网| 久久精品亚洲熟妇少妇任你| 汤姆久久久久久久影院中文字幕| 亚洲专区中文字幕在线 | 黄片小视频在线播放| 黄色怎么调成土黄色| 色94色欧美一区二区| 2021少妇久久久久久久久久久| 日韩人妻精品一区2区三区| 日韩伦理黄色片| 黄色 视频免费看| 国产一区二区在线观看av| 国产xxxxx性猛交| 成人影院久久| 色94色欧美一区二区| 日本欧美国产在线视频| 亚洲精品,欧美精品| 狠狠精品人妻久久久久久综合| 一本—道久久a久久精品蜜桃钙片| 日韩精品免费视频一区二区三区| 午夜免费鲁丝| 精品国产乱码久久久久久男人| 水蜜桃什么品种好| 99香蕉大伊视频| 91成人精品电影| 欧美国产精品一级二级三级| 九草在线视频观看| 无限看片的www在线观看| 日韩av在线免费看完整版不卡| 婷婷色av中文字幕| 亚洲免费av在线视频| 国产av一区二区精品久久| 日本爱情动作片www.在线观看| 日韩,欧美,国产一区二区三区| av电影中文网址| 美女大奶头黄色视频| 亚洲av综合色区一区| 精品一区二区免费观看| 欧美变态另类bdsm刘玥| 国产av国产精品国产| 亚洲第一区二区三区不卡| 欧美成人午夜精品| 精品一区二区免费观看| av视频免费观看在线观看| 国精品久久久久久国模美| 久久人妻熟女aⅴ| 国产精品国产三级国产专区5o| 最黄视频免费看| 国产日韩欧美在线精品| 青青草视频在线视频观看| 午夜福利免费观看在线| 一边摸一边抽搐一进一出视频| 如日韩欧美国产精品一区二区三区| 亚洲图色成人| 欧美另类一区| 美女高潮到喷水免费观看| www日本在线高清视频| 欧美精品一区二区免费开放| 久久久国产欧美日韩av| 成人18禁高潮啪啪吃奶动态图| 波野结衣二区三区在线| 一二三四在线观看免费中文在| 日韩伦理黄色片| 日韩电影二区| 久久 成人 亚洲| 亚洲精品aⅴ在线观看| 国产一级毛片在线| 亚洲av福利一区| 91精品三级在线观看| 高清欧美精品videossex| 十八禁人妻一区二区| 国产在线一区二区三区精| 欧美另类一区| 午夜福利在线免费观看网站| 亚洲五月色婷婷综合| 国产麻豆69| 一区福利在线观看| 卡戴珊不雅视频在线播放| 欧美精品人与动牲交sv欧美| 久久久久久人妻| 国产亚洲欧美精品永久| 在线天堂中文资源库| 久久亚洲国产成人精品v| 欧美日韩国产mv在线观看视频| 天天躁夜夜躁狠狠久久av| 狠狠精品人妻久久久久久综合| 一边亲一边摸免费视频| av有码第一页| 一二三四在线观看免费中文在| 亚洲欧美成人综合另类久久久| 久久精品aⅴ一区二区三区四区| 一二三四中文在线观看免费高清| 国产精品久久久久久人妻精品电影 | 天天操日日干夜夜撸| 亚洲国产成人一精品久久久| 日本猛色少妇xxxxx猛交久久| 国产精品.久久久| 丝袜脚勾引网站| 亚洲一卡2卡3卡4卡5卡精品中文| 日韩电影二区| 午夜福利视频精品| 久久天躁狠狠躁夜夜2o2o | 肉色欧美久久久久久久蜜桃| 天堂俺去俺来也www色官网| 操美女的视频在线观看| 1024香蕉在线观看| 亚洲欧美清纯卡通| 91aial.com中文字幕在线观看| 国产日韩欧美在线精品| 久久97久久精品| 电影成人av| 美女视频免费永久观看网站| 一边亲一边摸免费视频| 久久精品人人爽人人爽视色| 亚洲精品成人av观看孕妇| 色吧在线观看| 国产探花极品一区二区| www日本在线高清视频| 在线观看免费午夜福利视频| 欧美变态另类bdsm刘玥| 一区二区三区乱码不卡18| 国产精品成人在线| 国产又爽黄色视频| 91精品国产国语对白视频| a级毛片在线看网站| 97在线人人人人妻| 综合色丁香网| 中文天堂在线官网| 精品亚洲乱码少妇综合久久| 久久久久久久久免费视频了| 欧美xxⅹ黑人| 女人被躁到高潮嗷嗷叫费观| svipshipincom国产片| 大陆偷拍与自拍| 亚洲精品国产区一区二| 免费久久久久久久精品成人欧美视频| 五月开心婷婷网| 一边摸一边做爽爽视频免费| 国产一区亚洲一区在线观看| 美女高潮到喷水免费观看| 一级黄片播放器| 日韩中文字幕视频在线看片| 美女高潮到喷水免费观看| 久久人人爽人人片av| 久久久久视频综合| 成年人免费黄色播放视频| 97精品久久久久久久久久精品| 最新在线观看一区二区三区 | 亚洲欧美一区二区三区黑人| 18禁观看日本| 亚洲av电影在线观看一区二区三区| 国产免费福利视频在线观看| 免费黄网站久久成人精品| 亚洲精品国产色婷婷电影| 狠狠婷婷综合久久久久久88av| 欧美日韩亚洲高清精品| 亚洲国产中文字幕在线视频| 国产av精品麻豆| 悠悠久久av| 国产亚洲最大av| 亚洲第一区二区三区不卡| 男人舔女人的私密视频| 成人漫画全彩无遮挡| 国产女主播在线喷水免费视频网站| 乱人伦中国视频| 日韩成人av中文字幕在线观看| a级毛片在线看网站| 国产精品麻豆人妻色哟哟久久| 日日摸夜夜添夜夜爱|