• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      魚藤酮誘導(dǎo)神經(jīng)毒性機(jī)制的研究進(jìn)展

      2018-04-23 07:09:01沈建平
      中國野生植物資源 2018年1期
      關(guān)鍵詞:魚藤酮多巴胺線粒體

      周 謙, 陳 斌,曹 鵬,沈建平

      (1. 南京中醫(yī)藥大學(xué)附屬中西醫(yī)結(jié)合醫(yī)院,江蘇 南京210028; 2. 江蘇省中醫(yī)藥研究院,江蘇 南京 210028;3. 南京野生植物綜合利用研究院,江蘇 南京 210042)

      魚藤酮是魚藤酮類植物家族成員之一,是一種從豆科魚藤屬(Derris)和醉魚豆屬(Lonhocarpus)植物萃取的天然毒性物質(zhì)[1]。魚藤酮光下易分解。一般情況,其有毒成分5~6天分解,而陽光充足的夏天,僅需2~3天。魚藤酮在泥土和水中也易降解。半衰期僅1~3天[2]。由于魚藤酮半衰期短,易分解,不污染環(huán)境,因此在世界各地都普遍應(yīng)用于農(nóng)作物蟲害治理和魚塘清理,被視為是一種天然低毒且高效的殺蟲劑[3]。

      1 魚藤酮危害人體的方式

      魚藤酮作為農(nóng)藥而大規(guī)模使用,因此進(jìn)入人體的最可能途徑是呼吸攝入[1]。但是,資料顯示魚藤酮在胃腸道吸收緩慢且不完全,而肝臟又能有效解毒,魚藤酮進(jìn)入全身血液循環(huán)十分困難。因此,魚藤酮由于呼吸攝入而誘發(fā)Parkinson’s disease (PD)存在質(zhì)疑。有一個(gè)證據(jù)與這個(gè)假說相一致,小鼠通過霧化方式染毒魚藤酮24個(gè)月,并未導(dǎo)致神經(jīng)系統(tǒng)損傷相關(guān)疾病發(fā)生[4]。

      圖1 魚藤酮的分子結(jié)構(gòu)[1]

      2 魚藤酮的神經(jīng)毒性

      魚藤酮高度親脂,能透過血腦屏障,極易跨膜且不需跨膜受體,因此極易造成中樞神經(jīng)系統(tǒng)損傷,特別是對神經(jīng)元的損傷[5-6]。數(shù)據(jù)顯示,小鼠靜脈注射魚藤酮后,僅需15 min,魚藤酮便在中樞系統(tǒng)積累并達(dá)到最高濃度[7]。此外,魚藤酮是一種與線粒體復(fù)合物Ⅰ具有高親和力的非競爭性抑制劑[3, 8],魚藤酮進(jìn)入神經(jīng)細(xì)胞后,能夠在線粒體中集聚,損壞呼吸鏈的氧化磷酸化,抑制ATP的合成[9]。近期一個(gè)NIH的病例顯示,魚藤酮職業(yè)暴露的人患PD的風(fēng)險(xiǎn)是不接觸魚藤酮人的2.5倍[10]。此外,一項(xiàng)來自得克薩斯州的農(nóng)業(yè)調(diào)查顯示,農(nóng)業(yè)使用魚藤酮會增加PD的患病風(fēng)險(xiǎn)[11]。

      3 魚藤酮誘發(fā)神經(jīng)毒性的潛在機(jī)制

      研究表明,魚藤酮作為線粒體復(fù)合物Ⅰ抑制劑,能夠從多方面觸發(fā)神經(jīng)毒性。可能的機(jī)制包括抑制線粒體功能,誘導(dǎo)氧化應(yīng)激,觸發(fā)凋亡,聚集/降解蛋白,誘發(fā)興奮性中毒,抑制細(xì)胞周期等,或是以上眾多因素綜合作用的結(jié)果[3, 11-12]。

      3.1 魚藤酮抑制線粒體

      Kweon等學(xué)者指出,魚藤酮能夠通過抑制線粒體復(fù)合物Ⅰ,降低線粒體活力,抑制ATP的合成[13-14]。暗示著魚藤酮導(dǎo)致的線粒體功能受損可能是PD發(fā)生的誘因。Moon等學(xué)者指出,小鼠原代神經(jīng)元暴露低劑量魚藤酮,會造成線粒體去極化、激活caspase凋亡通路、導(dǎo)致DNA斷裂等觸發(fā)多巴胺能神經(jīng)元死亡[15]。此外,魚藤酮作用于復(fù)合物Ⅰ,會降低線粒體膜電位,誘導(dǎo)線粒體膜通透性轉(zhuǎn)換(MPT),并觸發(fā)凋亡[16]。暗示魚藤酮關(guān)聯(lián)的線粒體功能受損是魚藤酮誘發(fā)神經(jīng)毒性的一個(gè)因素。

      3.2 魚藤酮誘導(dǎo)氧化應(yīng)激

      體內(nèi)體外大量研究結(jié)果表明,魚藤酮會通過誘導(dǎo)活性氧簇(ROS)和活性氮簇(NOS)的高漲,線粒體氧化磷酸化失衡,脂質(zhì)過氧化等觸發(fā)神經(jīng)毒性,且毒性作用可以被抗氧化劑抑制[17-19]。資料顯示,慢性魚藤酮染毒小鼠在第30天和第60天,神經(jīng)細(xì)胞的NO和脂質(zhì)過氧化產(chǎn)物TBARS水平上升。并且,還出現(xiàn)了PD相關(guān)的行為學(xué)特征,如麻痹和強(qiáng)直[20]。數(shù)據(jù)表明,魚藤酮模型中的抗氧化物酶,如GSH和SOD活性下降[21],而一些過氧化物如過氧硝酸鹽的含量上升[22],證明了魚藤酮模型中氧化應(yīng)激的產(chǎn)生。此外,PD病人腦內(nèi)也會發(fā)生氧化應(yīng)激,表現(xiàn)包括GSH含量降低,DNA磷脂,蛋白的過氧化等。Tada-Oikawa指出,魚藤酮能夠刺激人源細(xì)胞HL-60和NJAB H2O2水平高漲,推測為存在一種魚藤酮誘導(dǎo)- H2O2機(jī)制誘發(fā)神經(jīng)毒性[12, 23]。以上數(shù)據(jù)暗示魚藤酮會通過氧化應(yīng)激關(guān)聯(lián)神經(jīng)系統(tǒng)損傷。

      3.3 魚藤酮觸發(fā)凋亡

      凋亡發(fā)生常涉及兩條經(jīng)典通路,分別是Fas介導(dǎo)的Caspase-8和應(yīng)急壓力介導(dǎo)的caspase-9,兩條通路最終于caspase-3匯聚,激活,導(dǎo)致核降解和細(xì)胞形態(tài)改變[24]。資料顯示,魚藤酮在誘導(dǎo)神經(jīng)毒性時(shí),能夠觸發(fā)多種凋亡指標(biāo),包括:細(xì)胞膜電位下降、caspase-3和caspase-9激活、Bax和細(xì)胞色素C釋放等[25]。如Wang等研究發(fā)現(xiàn)魚藤酮能夠以劑量依賴的方式觸發(fā)caspase-3的激活[26]。Ethell于2009年指出,魚藤酮誘導(dǎo)的氧化應(yīng)激會導(dǎo)致脂質(zhì)過氧化和蛋白錯(cuò)折疊,誘使神經(jīng)細(xì)胞通過Bcl-2家族級聯(lián)的方式死亡[18]。Abdin等人發(fā)現(xiàn),在慢性魚藤酮染毒的小鼠動物模型中,隨著紋狀體線粒體復(fù)合物Ⅰ活性下降、ATP合成抑制、血漿和紋狀體Q10活性降低、抗凋亡蛋白Bcl-2活性卻增強(qiáng)。他給予的解釋是魚藤酮在誘導(dǎo)神經(jīng)毒性時(shí)觸發(fā)了線粒體的抗凋亡保護(hù)路徑。

      3.4 魚藤酮導(dǎo)致蛋白集聚

      魚藤酮能夠高度復(fù)制PD的病理特征,其一就是形成淀粉樣集聚蛋白-Lewy小體[27],Lwey小體的主要成分是α-synuclein,為一種廣泛分布于中樞神經(jīng)系統(tǒng)突觸前末梢的小分子蛋白,其正常生理功能尚不明確,推測可能是與突觸的可塑性和多巴胺神經(jīng)遞質(zhì)傳遞等有關(guān)[28-30]。應(yīng)激條件下,α-synuclein易發(fā)生錯(cuò)誤折疊、集聚,并最終形成不溶性纖維結(jié)構(gòu),導(dǎo)致細(xì)胞死亡[28, 31]。Uversky等人研究顯示魚藤酮能夠顯著加速α-synuclein纖維化和聚集[28]。此外Huang等人指出,魚藤酮還能夠誘導(dǎo)管家蛋白GADPH易位,使分子間二硫鍵的形成,導(dǎo)致GADPH在胞漿中聚集[32]。

      3.5 魚藤酮導(dǎo)致蛋白降解

      泛素-蛋白酶系統(tǒng)(UPS)和自嗜-溶酶體系統(tǒng)(ALP)是機(jī)體正常修復(fù)、清除機(jī)體錯(cuò)誤折疊或異常集聚蛋白質(zhì)的重要途徑[33]。然而近年來研究顯示,這兩條途徑在PD病理學(xué)的發(fā)生中起著重要作用[34]。Ren等人指出PD相關(guān)蛋白parkin能夠?qū)﹀e(cuò)誤折疊的微管蛋白起到泛素化降解作用,可能是機(jī)體保護(hù)神經(jīng)細(xì)胞避免PD發(fā)生的一個(gè)機(jī)制[35]。

      目前尚無直接證據(jù)表明自噬直接參與了魚藤酮關(guān)聯(lián)PD。但是,Pan等指出自噬增強(qiáng)子雷帕霉素(Rapamycin)能夠通過加強(qiáng)自噬,削弱魚藤酮誘導(dǎo)的神經(jīng)細(xì)胞凋亡。暗示Rapamycin觸發(fā)的自噬或因參與清除不需要的集聚蛋白或損傷的線粒體起到神經(jīng)保護(hù)作用[36]。

      3.6 魚藤酮導(dǎo)致興奮中毒

      興奮中毒是指各種原因引起腦損傷時(shí),興奮性神經(jīng)遞質(zhì)從神經(jīng)末梢釋放增加,受體過度激活,引起興奮毒性,興奮毒性參與了多種神經(jīng)系統(tǒng)疾病的發(fā)生,如中風(fēng)、腦損傷、多發(fā)性硬化和神經(jīng)變性疾病的發(fā)生壞死和凋亡[37]。谷氨酸是機(jī)體中一種重要的興奮性的神經(jīng)遞質(zhì),存在于50%以上的神經(jīng)組織,并在神經(jīng)元興奮中起到扮演重要角色。在病理狀態(tài)如能量不足、氧化應(yīng)激、線粒體功能紊亂、鈣超載等時(shí),谷氨酸釋放過多,產(chǎn)生興奮毒性,對神經(jīng)元細(xì)胞產(chǎn)生損傷[37-38]。Wu等人分別于2007年和2009年報(bào)道,魚藤酮能夠加強(qiáng)谷氨酸興奮中毒誘導(dǎo)多巴胺神經(jīng)元產(chǎn)生毒性。這個(gè)結(jié)果出現(xiàn),暗示魚藤酮觸發(fā)的中腦多巴胺能神經(jīng)元毒性可能與興奮中毒有關(guān)[39-40]。

      3.7 魚藤酮耗竭神經(jīng)元營養(yǎng)因子

      資料顯示,神經(jīng)營養(yǎng)因子在魚藤酮誘發(fā)的神經(jīng)變性疾病中起著關(guān)鍵作用[41-43]。Ming等人在2009年發(fā)現(xiàn)人視網(wǎng)膜內(nèi)皮細(xì)胞會分泌源于神經(jīng)膠質(zhì)細(xì)胞的和大腦的神經(jīng)營養(yǎng)因子以保護(hù)多巴胺能神經(jīng)元免于魚藤酮誘導(dǎo)的神經(jīng)毒性[43]。之后,Xiong等人發(fā)現(xiàn)魚藤酮會導(dǎo)致血管內(nèi)皮生長因子(VEGF)在中腦的表達(dá)顯著降低[44]。這兩個(gè)結(jié)果的出現(xiàn),暗示了魚藤酮誘導(dǎo)的神經(jīng)毒性涉及了相關(guān)神經(jīng)營養(yǎng)因子耗竭。

      3.8 魚藤酮與衰老

      PD是三大神經(jīng)變性疾病之一,其發(fā)病率僅次于AD。證據(jù)表明,PD是一個(gè)與年齡相關(guān)的神經(jīng)變性疾病[45]。而Cannon 2009年報(bào)道,不同年齡的雄性小鼠(3,7,12~14個(gè)月),以腹腔注射的方式攝入魚藤酮,中年鼠相比于年輕小鼠對魚藤酮更加敏感,更易產(chǎn)生神經(jīng)毒性[46]。暗示衰老參與魚藤酮誘導(dǎo)的神經(jīng)毒性并關(guān)聯(lián)PD的發(fā)生。

      3.9 魚藤酮與Ca2+過載

      資料顯示,胞內(nèi)Ca2+穩(wěn)態(tài)失衡,會造成急性神經(jīng)損傷,誘導(dǎo)神經(jīng)毒性和神經(jīng)凋亡,并參與神經(jīng)系統(tǒng)疾病的發(fā)生[47-48]。Wang等學(xué)者發(fā)現(xiàn),魚藤酮在誘導(dǎo)SH-SY5Y細(xì)胞凋亡時(shí)相伴著 Ca2+通道開放,胞內(nèi)Ca2+水平高漲[26]。表明Ca2+穩(wěn)態(tài)失衡可能是魚藤酮誘導(dǎo)的神經(jīng)毒性的因素之一。

      3.10 魚藤酮與多巴胺

      多巴胺是中樞系統(tǒng)的一種神經(jīng)遞質(zhì),能夠幫助調(diào)節(jié)機(jī)體運(yùn)動和機(jī)械行為,此外,它又是下丘腦神經(jīng)內(nèi)分泌軸的一個(gè)重要成分,對合成去甲腎上腺素、腎上腺素和中樞神經(jīng)系統(tǒng)都起著重要作用[12]。資料顯示,多巴胺神經(jīng)傳遞畸參與了多種神經(jīng)系統(tǒng)疾病,如AD、PD的發(fā)生[49]。然而,有關(guān)魚藤酮關(guān)聯(lián)多巴胺導(dǎo)致神經(jīng)毒性的假說存在分歧。比如Abdin等人報(bào)道魚藤酮能夠以劑量依賴的方式導(dǎo)致中腦紋狀體電壓降低、線粒體去極化、氨基酸和多巴胺的釋放增加,誘發(fā)神經(jīng)毒性[14]。而Bayersdorfer指出,胞內(nèi)多巴胺水平降低,會減小神經(jīng)毒性,并對多巴胺神經(jīng)能元起到保護(hù)作用[50]。暗示多巴胺內(nèi)功能穩(wěn)態(tài)對多巴胺能神經(jīng)元活性起著關(guān)鍵作用。

      3.11 魚藤酮與細(xì)胞周期

      近年來,迷亂的細(xì)胞周期被認(rèn)為與神經(jīng)死亡和神經(jīng)系統(tǒng)疾病的發(fā)生有關(guān)[51]。證據(jù)表明魚藤酮會導(dǎo)致細(xì)胞周期紊亂,誘導(dǎo)細(xì)胞凋亡[52-53]。如Wang等人發(fā)現(xiàn),魚藤酮能以濃度依賴的方式,使SH-SY5Y細(xì)胞停滯停留在G2/M期,而用胞內(nèi)Ca2+螯合劑BAPTA能夠抑制魚藤酮導(dǎo)致的G2/M期停滯,并起到抑制凋亡,保護(hù)神經(jīng)的作用[54]。

      3.12 其他機(jī)制

      成人腦神經(jīng)元的新生主要發(fā)生在兩個(gè)區(qū)域,腦室下區(qū)和海馬齒狀回顆粒下層,這兩個(gè)腦區(qū)同樣也是神經(jīng)干細(xì)胞的來源,神經(jīng)干細(xì)胞能夠遷移到黑質(zhì)致密部并分化成多巴胺能神經(jīng)元[3]。而Ishido等人證明魚藤酮暴露能以濃度依賴的方式抑制體外模型中神經(jīng)干細(xì)胞的遷移和增殖,誘導(dǎo)神經(jīng)細(xì)胞凋亡[55]。這個(gè)證據(jù)也首次證明了魚藤酮的神經(jīng)毒性涉及了功能受損的神經(jīng)干細(xì)胞。

      此外,魚藤酮還能通過激活MAPK信號級聯(lián)的c-Jun,,JNK和P38誘導(dǎo)神經(jīng)細(xì)胞的凋亡,關(guān)聯(lián)PD的發(fā)生[56-57],如Wu等人發(fā)現(xiàn)魚藤酮能夠激活p38(MAPK), P-p38(MAPK), p53, 和Bax蛋白能誘發(fā)神經(jīng)毒性[57]。這些結(jié)果表明魚藤酮觸發(fā)的神經(jīng)毒性涉及了信號通路的參與。

      4 小 結(jié)

      魚藤酮原本是農(nóng)業(yè)上廣泛運(yùn)用的植物源殺蟲劑,現(xiàn)在卻被認(rèn)為具有神經(jīng)毒性,能夠高度復(fù)制PD的病理學(xué)和臨床學(xué)相關(guān)特征,如多巴胺能神經(jīng)元凋亡以及淀粉蛋白Lwey小體的集聚,關(guān)聯(lián)PD的發(fā)生。然而,目前關(guān)于魚藤酮誘發(fā)神經(jīng)毒性的機(jī)制并不全面,有些問題尚為查明。比半衰期短,降解快,難以進(jìn)入全身血液循環(huán)的魚藤酮是以何種機(jī)制進(jìn)入人體、如何抑制線粒體功能復(fù)合物Ⅰ、如何誘導(dǎo)氧化應(yīng)激、誘導(dǎo)氧化應(yīng)激的具體成分、其中是否存在重要信號通路交叉共同作用等。因而,更加深入研究魚藤酮誘發(fā)神經(jīng)毒性的分子機(jī)制,可為更好尋找魚藤酮相關(guān)的神經(jīng)系統(tǒng)疾病治療提供實(shí)驗(yàn)基礎(chǔ)和理論依據(jù),對人類健康起著重要意義。

      參考文獻(xiàn):

      [1] BOVE J, PROU D, PERIER C, et al. Toxin-induced models of Parkinson's disease [J]. Neurorx, 2005, 2(3): 484-494.

      [2] HISATA J S. Lake and stream rehabilitation: rotenone use and health risks [M]. Final Supplemental Environmental Impact Statement. Olympia: Washington Department of Fish and Wildlife, 2002,

      [3] XIONG N, LONG X, XIONG J, et al. Mitochondrial complex I inhibitor rotenone-induced toxicity and its potential mechanisms in Parkinson's disease models [J]. Crit Rev Toxicol, 2012, 42(7): 613-632.

      [4] MARKING L L. Oral toxicity of rotenone to mammals [M]. US Department of the Interior, Fish and Wildlife Service, 1988.

      [5] BOVE J, PERIER C. Neurotoxin-based models of Parkinson's disease [J]. Neuroscience, 2012, 211:51-76.

      [6] TANNER C M, KAMEL F, ROSS G W, et al. Rotenone, paraquat, and Parkinson's disease [J]. Environ Health Perspect, 2011, 119(6): 866-872.

      [7] TALPADE D J, GREENE J G, HIGGINS D S, et al. In vivo labeling of mitochondrial complex I (NADH:ubiquinone oxidoreductase) in rat brain using [(3)H]dihydrorotenone [J]. J Neurochem, 2000, 75(6): 2611-2621.

      [8] SCHAPIRA A H. Mitochondrial complex I deficiency in Parkinson's disease [J]. Adv Neurol, 1993, 60:288-291.

      [9] SCHULER F, CASIDA J E. Functional coupling of PSST and ND1 subunits in NADH:ubiquinone oxidoreductase established by photoaffinity labeling [J]. Biochim Biophys Acta, 2001, 1506(1): 79-87.

      [10] NISTICO R, MEHDAWY B, PICCIRILLI S, et al. Paraquat- and rotenone-induced models of Parkinson's disease [J]. Int J Immunopathol Pharmacol, 2011, 24(2): 313-322.

      [11] DHILLON A S, TARBUTTON G L, LEVIN J L, et al. Pesticide/environmental exposures and Parkinson's disease in East Texas [J]. Journal of Agromedicine, 2008, 13(1): 37-48.

      [12] UVERSKY V N. Neurotoxicant-induced animal models of Parkinson's disease: understanding the role of rotenone, maneb and paraquat in neurodegeneration [J]. Cell Tissue Res, 2004, 318(1): 225-241.

      [13] KWEON G R, MARKS J D, KRENCIK R, et al. Distinct mechanisms of neurodegeneration induced by chronic complex I inhibition in dopaminergic and non-dopaminergic cells [J]. J Biol Chem, 2004, 279(50): 51783-5192.

      [14] ABDIN A A, HAMOUDA H E. Mechanism of the neuroprotective role of coenzyme Q10 with or without L-dopa in rotenone-induced parkinsonism [J]. Neuropharmacology, 2008, 55(8): 1340-6.

      [15] MOON Y, LEE K H, PARK J H, et al. Mitochondrial membrane depolarization and the selective death of dopaminergic neurons by rotenone: protective effect of coenzyme Q10 [J]. J Neurochem, 2005, 93(5): 1199-208.

      [16] ISENBERG J S, KLAUNIG J E. Role of the mitochondrial membrane permeability transition (MPT) in rotenone-induced apoptosis in liver cells [J]. Toxicol Sci, 2000, 53(2): 340-351.

      [17] PRZEDBORSKI S, ISCHIROPOULOS H. Reactive oxygen and nitrogen species: weapons of neuronal destruction in models of Parkinson's disease [J]. Antioxid Redox Signal, 2005, 7(5-6): 685-693.

      [18] ETHELL D W, FEI Q. Parkinson-linked genes and toxins that affect neuronal cell death through the Bcl-2 family [J]. Antioxidants & Redox Signaling, 2009, 11(3): 529-540.

      [19] RADAD K, RAUSCH W D, GILLE G. Rotenone induces cell death in primary dopaminergic culture by increasing ROS production and inhibiting mitochondrial respiration [J]. Neurochem Int, 2006, 49(4): 379-386.

      [20] BASHKATOVA V, ALAM M, VANIN A, et al. Chronic administration of rotenone increases levels of nitric oxide and lipid peroxidation products in rat brain [J]. Exp Neurol, 2004, 186(2): 235-241.

      [21] XIONG N, HUANG J, ZHANG Z, et al. Stereotaxical infusion of rotenone: a reliable rodent model for Parkinson's disease [J]. PLoS One, 2009, 4(11): e7878.

      [22] CHOU A P, LI S, FITZMAURICE A G, et al. Mechanisms of rotenone-induced proteasome inhibition [J]. Neurotoxicology, 2010, 31(4): 367-372.

      [23] TADA-OIKAWA S, HIRAKU Y, KAWANISHI M, et al. Mechanism for generation of hydrogen peroxide and change of mitochondrial membrane potential during rotenone-induced apoptosis [J]. Life Sci, 2003, 73(25): 3277-3288.

      [24] UEDA S, MASUTANI H, NAKAMURA H, et al. Redox control of cell death [J]. Antioxid Redox Signal, 2002, 4(3): 405-414.

      [25] AHMADI F A, LINSEMAN D A, GRAMMATOPOULOS T N, et al. The pesticide rotenone induces caspase-3-mediated apoptosis in ventral mesencephalic dopaminergic neurons [J]. J Neurochem, 2003, 87(4): 914-921.

      [26] WANG X, QIN Z H, LENG Y, et al. Prostaglandin A1 inhibits rotenone-induced apoptosis in SH-SY5Y cells [J]. J Neurochem, 2002, 83(5): 1094-1102.

      [27] DAUER W, PRZEDBORSKI S. Parkinson's disease: mechanisms and models [J]. Neuron, 2003, 39(6): 889-909.

      [28] UVERSKY V N, LI J, FINK A L. Pesticides directly accelerate the rate of alpha-synuclein fibril formation: a possible factor in Parkinson's disease [J]. FEBS Lett, 2001, 500(3): 105-108.

      [29] TIEU K. A guide to neurotoxic animal models of Parkinson's disease [J]. Cold Spring Harb Perspect Med, 2011, 1(1): a009316.

      [30] GEORGE S, MOK S S, NURJONO M, et al. alpha-Synuclein transgenic mice reveal compensatory increases in Parkinson's disease-associated proteins DJ-1 and parkin and have enhanced alpha-synuclein and PINK1 levels after rotenone treatment [J]. J Mol Neurosci, 2010, 42(2): 243-254.

      [31] SHERER T B, KIM J H, BETARBET R, et al. Subcutaneous rotenone exposure causes highly selective dopaminergic degeneration and alpha-synuclein aggregation [J]. Exp Neurol, 2003, 179(1): 9-16.

      [32] HUANG J, HAO L, XIONG N, et al. Involvement of glyceraldehyde-3-phosphate dehydrogenase in rotenone-induced cell apoptosis: relevance to protein misfolding and aggregation [J]. Brain Res, 2009, 1279:1-8.

      [33] GOLDBERG A L. Protein degradation and protection against misfolded or damaged proteins [J]. Nature, 2003, 426(6968): 895-899.

      [34] PAN T, KONDO S, LE W, et al. The role of autophagy-lysosome pathway in neurodegeneration associated with Parkinson's disease [J]. Brain, 2008, 131(Pt 8): 1969-1978.

      [35] REN Y, ZHAO J, FENG J. Parkin binds to α/β tubulin and increases their ubiquitination and degradation [J]. The Journal of Neuroscience, 2003, 23(8): 3316-3324.

      [36] PAN T, RAWAL P, WU Y, et al. Rapamycin protects against rotenone-induced apoptosis through autophagy induction [J]. Neuroscience, 2009, 164(2): 541-551.

      [37] MEHTA A, PRABHAKAR M, KUMAR P, et al. Excitotoxicity: bridge to various triggers in neurodegenerative disorders [J]. Eur J Pharmacol, 2013, 698(1-3): 6-18.

      [38] ISHIKAWA M. Abnormalities in glutamate metabolism and excitotoxicity in the retinal diseases [J]. Scientifica (Cairo), 2013(3), 2013(3):528-940.

      [39] WU Y N, JOHNSON S W. Rotenone reduces Mg2+-dependent block of NMDA currents in substantia nigra dopamine neurons [J]. Neurotoxicology, 2009, 30(2): 320-325.

      [40] WU Y N, JOHNSON S W. Rotenone potentiates NMDA currents in substantia nigra dopamine neurons [J]. Neurosci Lett, 2007, 421(2): 96-100.

      [41] FALK T, ZHANG S, SHERMAN S J. Vascular endothelial growth factor B (VEGF-B) is up-regulated and exogenous VEGF-B is neuroprotective in a culture model of Parkinson's disease [J]. Mol Neurodegener, 2009, 4:49.

      [42] CHO H S, KIM S, LEE S Y, et al. Protective effect of the green tea component, L-theanine on environmental toxins-induced neuronal cell death [J]. Neurotoxicology, 2008, 29(4): 656-662.

      [43] MING M, LI X, FAN X, et al. Retinal pigment epithelial cells secrete neurotrophic factors and synthesize dopamine: possible contribution to therapeutic effects of RPE cell transplantation in Parkinson's disease [J]. J Transl Med, 2009, 7(1):53.

      [44] XIONG N, ZHANG Z, HUANG J, et al. VEGF-expressing human umbilical cord mesenchymal stem cells, an improved therapy strategy for Parkinson's disease [J]. Gene Ther, 2011, 18(4): 394-402.

      [45] REEVE A, SIMCOX E, TURNBULL D. Ageing and Parkinson's disease: Why is advancing age the biggest risk factor? [J]. Ageing Res Rev, 2014, 14C:19-30.

      [46] CANNON J R, TAPIAS V, NA H M, et al. A highly reproducible rotenone model of Parkinson's disease [J]. Neurobiol Dis, 2009, 34(2): 279-290.

      [47] LAZAREWICZ J W. Calcium transients in brain ischemia: role in neuronal injury [J]. Acta Neurobiol Exp (Wars), 1996, 56(1): 299-311.

      [48] MATTSON M P. Calcium and neuronal injury in Alzheimer's disease. Contributions of beta-amyloid precursor protein mismetabolism, free radicals, and metabolic compromise [J]. Ann N Y Acad Sci, 1994, 747:50-76.

      [49] MORGAN D G, MAY P C, FINCH C E. Dopamine and serotonin systems in human and rodent brain: effects of age and neurodegenerative disease [J]. J Am Geriatr Soc, 1987, 35(4): 334-45.

      [50] BAYERSDORFER F, VOIGT A, SCHNEUWLY S, et al. Dopamine-dependent neurodegeneration in Drosophila models of familial and sporadic Parkinson's Disease [J]. Neurobiology of Disease, 2010, 40(1): 113-119.

      [51] ZHANG Z, CAO X, XIONG N, et al. DNA polymerase-β is required for 1-methyl-4-phenylpyridinium-induced apoptotic death in neurons [J]. Apoptosis, 2010, 15(1): 105-15.

      [52] GONCALVES A P, MAXIMO V, LIMA J, et al. Involvement of p53 in cell death following cell cycle arrest and mitotic catastrophe induced by rotenone [J]. Biochim Biophys Acta, 2011, 1813(3): 492-499.

      [53] ARMSTRONG J S, HORNUNG B, LECANE P, et al. Rotenone-induced G2/M cell cycle arrest and apoptosis in a human B lymphoma cell line PW [J]. Biochem Biophys Res Commun, 2001, 289(5): 973-978.

      [54] WANG X J, XU J X. Possible involvement of Ca2+signaling in rotenone-induced apoptosis in human neuroblastoma SH-SY5Y cells [J]. Neurosci Lett, 2005, 376(2): 127-32.

      [55] ISHIDO M, SUZUKI J. Inhibition by rotenone of mesencephalic neural stem-cell migration in a neurosphere assay in vitro [J]. Toxicol In Vitro, 2010, 24(2): 552-557.

      [56] CHOI B S, KIM H, LEE H J, et al. Celastrol from 'Thunder God Vine' protects SH-SY5Y cells through the preservation of mitochondrial function and inhibition of p38 MAPK in a rotenone model of Parkinson's disease [J]. Neurochem Res, 2014, 39(1): 84-96.

      [57] WU F, WANG Z, GU J H, et al. p38(MAPK)/p53-Mediated Bax induction contributes to neurons degeneration in rotenone-induced cellular and rat models of Parkinson's disease [J]. Neurochem Int, 2013, 63(3): 133-140.

      猜你喜歡
      魚藤酮多巴胺線粒體
      活力多巴胺
      欣漾(2024年2期)2024-04-27 12:03:09
      正確面對焦慮
      Apelin-36對魚藤酮誘導(dǎo)的SH-SY5Y細(xì)胞凋亡及線粒體功能的影響*
      棘皮動物線粒體基因組研究進(jìn)展
      線粒體自噬與帕金森病的研究進(jìn)展
      How music changes your life
      跟蹤導(dǎo)練(四)(4)
      魚藤酮乳油中魚藤酮含量的反相HPLC-DAD法測定
      魚藤酮誘導(dǎo)PC12細(xì)胞凋亡及線粒體膜電位變化
      NF-κB介導(dǎo)線粒體依賴的神經(jīng)細(xì)胞凋亡途徑
      龙南县| 惠来县| 济宁市| 方山县| 桂阳县| 商丘市| 许昌市| 杭锦后旗| 弥勒县| 佛教| 敦化市| 嘉义县| 商洛市| 呼玛县| 黔东| 宜兰市| 汶川县| 喀什市| 龙门县| 招远市| 大新县| 石泉县| 盖州市| 禄劝| 黄龙县| 内江市| 松潘县| 洛南县| 新晃| 田东县| 确山县| 兰溪市| 晋中市| 奎屯市| 溧水县| 腾冲县| 德州市| 汪清县| 武邑县| 康平县| 孟津县|