• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical algorithm for rigid body position estimation using the quaternion approach

    2018-04-18 02:56:11MiodragZigicNenadGrahovac
    Acta Mechanica Sinica 2018年2期

    Miodrag Zigic·Nenad Grahovac

    1 Introduction

    Accurate rigid body attitude estimation is of a great importance in aerospace,marine and automotive engineering,autonomous robotic systems and human movement analysis.Position and orientation determination of unmanned aerial vehicles(UAVs),which have become part of daily life,and which are used as toys,or to perform different tasks and missions in both the civilian and the military sectors,is essential,see Ref.[1].For these purposes,different positioning and navigation systems are developed.An inertial measurement unit(IMU)is a device containing accelerometers and gyroscopes,used for measuring the angular velocity of a body and the acceleration of its point in the body reference frame.Some of the devices enable measuring the Earth’s magnetic field as well.From these data the body attitude needs to be determined.Measurement errors varies and depend on the type of IMU.Contrary to high-quality and expensive inertial navigation systems,the popularity of miniature low-cost inertial sensors has increased due to recent technological development.However,the latter devices are not so accurate as the former ones.Also,small errors in output data accumulate and grow with time and distance,see Ref.[2].Thus,a lot of effort has been made by both industry and the scientific community in order to improve resultsofapplicationsoflow-cost inertial devices.In the direction of reducing the errors,different filtering techniques are developed,see Refs.[3,4].In this manner,Chao et al.[5]performed a comparative study of low-cost IMUs,including both hardware and software solutions.The rigid body state estimation problem using low-pass sensors is observed in Ref.[6].Comparison of a gyroscope vs.an accelerometer measurement and investigation in which only accelerometers are used for computation of linear and angular motions of a rigid body are presented in Refs.[7,8].The scheme for rigid body position estimation using the Lagrange-d’Alambert principle from variational mechanics is proposed in Ref.[9].Low-cost wearable sensors,such as IMUs,are widely used in biomechanics,see Refs.[10,11].Their usage for rehabilitation purposes are studied in Ref.[12].Accurate orientation tracking of ahuman body parts,by the use of inertial and magnetic sensors,is presented in Ref.[13].An application of IMU in a gait monitoring is analyzed in Ref.[14],while Esser et al.[15]studied their application to determine the center of mass acceleration during human walking,using the quaternion representation.

    Quaternions represent an excellent tool for describing arbitrary rotations in space,without singularities.The name of quaternion denotes a quadrinomial expression,where one term represents the real part,while the other terms together stand for the imaginary part,see Ref.[16].Analytical properties of quaternions and their application in mechanics,computer vision,graphics,and animation can be found in numerous papers,see for example,in Refs.[17–20].The quaternion approach for a rigid body attitude estimation in bio-logging,in order to determine an animal’s movements and behavior,via IMU attached to the animal,is presented in Refs.[21,22].Expressions of physical quantities,such as angle of rotation,velocity,acceleration and momentum,in quaternion space,are given in the paper of Chou[23].Recent results in the field of rigid body dynamics in terms of quaternions are presented in Refs.[24,25]via Hamilton’s equations,while both Lagrange’s and Hamilton’s frameworks are used in Ref.[26].Equations of motion of a rigid body derived from the D’Alambert’s variational principle using quaternions are analyzed in Ref.[27].Equations of motion in the last four mentioned papers assume the form of differential-algebraic equations,due to the algebraic constraint.Contrary to the analysis of the rigid body dynamics by quaternion parameters,in this study quaternions are used in rigid body kinematics,i.e.,for determination of a rotation matrix.We propose the numerical algorithm for estimation of both a rigid body orientation and the linear acceleration of an arbitrary point of the body,based on the quaternion approach,which can be easily applied to a wide class of engineering problems.

    2 The problem

    The free motion of a rigid body is considered.In order to estimate its attitude two coordinate systems are introduced:a nonmoving(inertial)reference frameOξηζwith unit vectorsλ,μ,νand a reference frameC x yzwith unit vectorsi,j,k,which is fixed to the body and moves together with it,where the pointCrepresents the center of mass of the rigid body,Fig.1.An IMU is located at an arbitrary pointAof the body,providing the projections¨x A,¨y A,¨z Aof the absolute accelerationa A,as well as the projectionsωx,ωy,ωzof the angular velocityωof the body onto the moving axesx,y,z.

    Fig.1 Free motion of a rigid body,inertial reference frame Oξηζ and moving reference frame C x yz

    The task is to determine both the accelerationa Cof the center of massC,and the accelerationa Bof an arbitrary pointBof the body,as well as its attitude,expressed in the inertial reference frameOξηζ,on the basis of¨x A,¨y A,¨z Aandωx,ωy,ωzobtained from the IMU.

    Let the position vectors of the center of massC,of the pointAwhere IMU is mounted and of an arbitrary pointBof the rigid body,relative to the moving reference frame be denoted as

    Following considerations of a rigid body kinematics,the acceleration of pointAcan be written as

    where the acceleration of pointArelative toC,using the Rivals theorem,reads

    whereωand˙ωstand for the angular velocity vectorω=ωx i+ωy j+ωz kand angular acceleration vector˙ω=˙ωx i+˙ωy j+˙ωz k,whiler CA=x CA i+yCA j+zCA krepresents the position vector of pointArelative to the mass centerC,expressed by unit vectors of the moving coordinate system.Further,a Creads

    denote the terms multiplying unit vectorsi,j,kwhen the cross productω×r CAfrom Eq.(4)is evaluated.Finally,the acceleration of pointCcan be written as

    where the projections ofa Con the moving axes are

    The acceleration of pointCexpressed in the inertial coor-

    which represent the cosines of the angles between corresponding moving and nonmoving axes.

    Sometimes,it is necessary to determine the acceleration of some other point,which does not coincide either with the center of massCor with the pointA,in which IMU is mounted.For determination of acceleration of such a point,sayB,whose position vector relative toCis known and given asr CB=x CB i+yCB j+zCB k,we can use the expressiona B=a A+a AB,i.e.,the procedure very similar to the one presented by Eqs.(4)–(9).It should be noted that it is possible to determine the accelerationa Busing the calculated acceleration of the center of mass,but in order to achieve higher degree of accuracy in engineering applications,it is better to use data obtained from the IMU directly,which is positioned at pointA.Therefore,the acceleration of pointBcan be expressed as

    and termsIB1,IB2,IB3,similar to Eq.(6),are given as

    Accelerationa Bin a moving reference frame reads

    3 Estimation of rigid body attitude

    In order to determine the acceleration of some point of a rigid body in the inertial coordinate systemOξηζ,in addition to knowing the acceleration of that point in a coordinate system,which moves together with the bodyC x yz,it is necessary to estimate the attitude of the body in three dimensional space,i.e.,the orientation of a moving reference frame relative to the inertial one.For that purpose the theory of quaternions will be applied.It is widely used in various fields due to compactness and simple implementation into numerical algorithms.By using quaternions for a rigid body attitude estimation,the singularity problem(which can arise when Euler angles are used)is avoided,see Ref.[28].The discovery of quaternions is related to William Rowan Hamilton and the middle of XIX century,but their intensive application started more than hundred years later,in classical mechanics,flight simulations,computer graphics,and virtual reality,see Ref.[19].The rotation matrixRwill be determined by the use of that theory.

    There are different ways for interpretation of quaternions.On the one hand,they can be considered as a combination of a scalar valueq0and a vectorv=v1e1+v2e2+v3e3,as follows

    wheree1,e2,e3stand for base vectors of the nonmovable coordinate system,or in a vector form

    in whichq0,q1,q2,q3are often called the Euler parameters[28–30].If Euler’s theorem is taken into account,which states that the rotation of a rigid body about a fixed point may be expressed as a rotation about some axesχwith the unit vectorvfor an angleδ,then the quantitiesqi(i=0,1,2,3)from Eq.(19)can be written as

    The parameterq0refers to the angle of rotation about the axisχ,while the remaining three parametersq1,q2,andq3take into account both the angle of rotation and the orientation of the axisχrelative to the nonmovable reference frame.According to the Euler’s statement that any rotation of a rigid body about a fixed point can be described by three values,then there is a relation between four parametersq0,q1,q2,q3,which reads

    in which case the quantityqis a unit quaternion,with unity norm,see Ref.[28].

    On the other hand,quaternions can be addressed as quadrinomial expressions consisting of a real and an imaginary part.The former can be considered as a scalar value,whose square is always positive,while the square of the latter part is always negative[16].Actually,v1,v2,andv3are real coefficients,whilee1,e2,ande3represent imaginary units,which satisfy the following relations

    More about quaternion algebra can be found in Refs.[18,28].

    In the case when originsOandCof the reference frames from Fig.1 coincide during the motion of a rigid body(rotation about a fixed point),as stated in Euler’s theorem it is possible to bring the moving reference frame into coincidence with the inertial one by a single rotation for an angleδabout axisχ.Ifα,β,γare the angles between the axes of rotationχand nonmovable axesξ,η,ζ,then the rotation matrixR,for the transformation from body to inertial axes

    The set ofbξ,bη,bζorb x,b y,b zin Eq.(23)stands for the projections of a vector of any kind,such as position vector,velocity or acceleration,to corresponding coordinate axes.Note that in the case when the originsOandCdo not coincide,the moving axes become parallel to the axes of the inertial coordinate system,when applying the transformation given by Eq.(23).

    If the following variables are introduced

    the elements of the transformation matrix become

    The time derivative of the Euler parameters read

    Eulerangles(3,2,1)or(ψy?ya w,θp?pitch,?r?roll),whereψydenotes the rotation angle about initial position of axisζ,by whichξandηtake new positionsξ1andη1,θpstands for the rotation angle about axisη1bringingξ1andζ1into new positionsξ2andζ2,while?rdenotes the rotation angle aboutξ2,can be calculated using Euler parameters,see Ref.[29]:

    It is desirable to use the function arctan 2,with two arguments,which takes into account the appropriate quadrant of the computed angle.

    For practical applications of presented considerations,it is useful to perform a time discretization,tn=n·h(n=0,1,2,...),wherehrepresents the time step,while the first derivative of a functionq0(t)over time may be approximated as

    From Eq.(28)followsq0n+1=h˙q0n+q0n,so using Eq.(27)discretized Euler parameters read

    represent the numerical algorithm for determination of the Euler parameters,as well as the rotation matrixRin discrete time instants with time steph.If the movable and the nonmovable reference frames coincide at the initial time instantt=t0,the rotation angleδ0=δ(t0)=0,which implies

    from Eq.(30a).For known elementscijof the rotation matrixR,by the use of Eqs.(9)and(17)it is possible to determine the absolute acceleration of the rigid body mass centerC,or the absolute acceleration of an arbitrary pointBof the body,in the inertial reference frame.Also,angular accelerations about the body axes and positions of pointsAandBrelative toCare considered as known quantities,according to Eqs.(6),(8),(14),and(16).

    4 Numerical algorithm for deriving the acceleration of a point and the attitude of a rigid body

    wheren=0,1,2,....The last four terms enables the calculation of the Euler parameters for the next time step,and the whole procedure repeats.For the rigid body attitude estimation,Euler angles(3,2,1)can be calculated by

    Acceleration of an arbitrary point of a rigid body a BThe algorithm for calculating the absolute acceleration of an arbitrary pointBof the rigid body,expressed in the inertial coordinate system,is presented below.Again,initial values of the Euler parameters are given by Eq.(31)for the case when the reference frames coincide at the beginning of the process.The algorithm is very similar to the previous one.Namely,the algorithm for deriving the acceleration of pointB,and rigid body attitude,is given by the following set of equations

    together with Eqs.(34),(35),(37),and(38),wheren=0,1,2,....

    5 Numerical example:heavy symmetrical gyroscope

    In this section we show an example of application of the presented algorithm given by Eqs.(32)–(37).The acceleration of a pointA(where the IMU is mounted),as well as the pro-jections of the angular velocity,are considered as known in the body reference frame.Both the attitude and acceleration of the center of massCof the rigid body in a nonmovable reference frame will be calculated.For that purpose,without loss of generality, we consider the motion of a heavy symmetrical gyroscope.A homogeneous rectangular cuboid of massmand dimensionsl1,l2,andl3rotates about a fixed pointO,which is in the center of the face with edgesl1andl2,as in Fig.2.Due to the fact that its motion can be completely determined by the use of general theory,see Ref.[32],all necessary kinematical data will be obtained by solving differential equations of motion,instead of using the IMU.Actually,the data obtained from general theory will serve as input data for the numerical algorithm presented by Eqs.(32)–(37),and for the comparison with algorithm output as well.

    LagrangianLfor a heavy symmetrical gyroscope from Fig.2 reads

    Fig.2 Heavy symmetrical gyroscope.a The initial state.b An arbitrary position with Euler angles(3,1,3)

    and projections of the angular velocity to the body axesωx,ωy,ωz,by the use of Euler angles(3,1,3),read(see Fig.2b))

    where the angles of precession,nutation and spin are denoted byψ,θ,and?,respectively.By solving the system of a three second order differential equations,derived using the well known Lagrange’s equations of the second kind

    Accelerations of pointsAandCin the moving coordinate system can be calculated by using the Rivals theorem,as follows

    Fig.3 Absolute acceleration of the center of mass of the heavy symmetrical gyroscope.Results of the numerical algorithm are presented by dots,while the results obtained by solving the system of differential equations of motion are presented by solid lines

    so the acceleration obtained by the use of general theory reads

    This figure shows good agreement between the results of the numerical algorithm presented by Eqs.(32)–(37)and the results obtained by solving the system of differential equations of motion for the heavy symmetrical gyroscope.

    6 Conclusion

    In this paper a free motion of a rigid body is analyzed in order to determine its attitude and the acceleration of an arbitrary point of the body.We proposed the numerical procedures for calculation of the acceleration of the center of mass and any other point of the body,as well as Euler angles(3,2,1)in an inertial coordinate system,on the basis of acceleration data of a certain point of the body,sayA,and the angular velocity expressed in a body reference frame.Input data can be obtained by an IMU attached to the body,measuring kinematical data in the sensor reference frame,with axes parallel to the axes of body reference frame.The quaternion representation is used to form the rotation matrix for transformations from the body to the inertial reference frame.The advantage of application of quaternions for determination of the rotation matrix is that there are no singularities,which can arise when Euler angles are used.The initial values of quaternions are to be chosen according to the initial state of the system. The case in which the movable and nonmovable coordinate systems coincide is considered in the preceding analysis,Eq.(31).Discrete values of quaternions after the initial time instant are calculated by the presented numerical procedure.

    The algorithm is applied to the problem of a heavy symmetrical gyroscope,to calculate the acceleration of the center of mass in an inertial coordinate system.Instead of using IMU,input data are obtained from the solution of the differential equations of motion given by Eq.(45)and using the Rivals theorem.By using the numerical algorithm,the rotation matrix presented by Eq.(24)is calculated during each time step and the acceleration of the center of massCis obtained in the inertial reference frame.The results are compared with the ones obtained by the application of general theory,see Eq.(48),where satisfactory agreement is achieved.The proposed numerical procedure can be applied to a wide class of problems in aerospace and marine engineering,unmanned aerial vehicles and robotic systems.

    AcknowledgementsThe project was supported by the Serbian Ministry of Education,Science and Technological Development(Grant 174016).

    1.Grauer,J.A.,Hubbard Jr.,J.E.:Flight Dynamics and System Identification for Modern Feedback Control.Woodhead Publishing,Philadelphia,USA(2013)

    2.Barshan,B.,Durrant-Whyte,H.F.:Inertial navigation systems for mobiel robots.IEEE Trans.Robot.Autom.11,328–342(1995)

    3.Beard,R.W.:State Estimation for Micro Air Vehicles,Studies in Computational Intelligence,vol.70,173–199.Springer,Berlin(2007)

    4.Marins,J.L.,Yun,X.,Bachmann,E.R.,et al.:An extended Kalman filter for quaternion-based orientation estimation using MARG sensors.In:Proceedings of the 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems,Maui,Hawaii,USA,October 29–November 03(2001)

    5.Chao,H.,Coopmans,C.,Di,L.,et al.:A comparative evaluation of low-cost IMUs for unmanned autonomus systems.In:2010 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems,Salt Lake City,UT,USA,September 5–7(2010)

    6.Rehbinder,H.,Hu,X.:Nonlinear state estimation for rigid-body motion with low-pass sensors.Syst.Control Lett.40,183–190(2000)

    7.Casson,A.J.,Galvez,A.V.,Jarchi,D.:Gyroscope versus accelerometer measurements of motion from wrist PPG during physical exercise.ICT Express 2,175–179(2016)

    8.Wang,X.,Xiao,L.:Gyroscope-reduced inertial navigation system for flight vehicle motion estimation.Adv.Space Res.59,413–424(2017)

    9.Izadi,M.,Sanyal,A.K.:Rigid body pose estimation based on the Lagrange–d’Alembert principle.Automatica 71,78–88(2016)

    10.Luinge,H.J.,Veltink,P.H.:Inclination measurement of human movement using a 3-D accelerometer with autocalibration.IEEE Trans.Neural Syst.Rehabil.Eng.12,112–121(2004)

    11.Ma,J.,Kharboutly,H.,Benali,A.,et al.:Joint angle estimation with accelerometers for dynamic postural analysis.J.Biomech.48,3616–3624(2015)

    12.Madgwick,S.O.H.,Harrison,A.J.L.,Vaidyanathan,R.:Estimation of IMU and MARG orientation using a gradient descent algorithm.In:2011 IEEE International Conference on Rehabilitation Robotics,Rehab week Zurich,ETH Zurich Science City,Switzerland,June 29–July 1(2011)

    13.Sabatini,A.M.:Estimating three-dimensional orientation of human body parts by inertial/magnetic sensing.Sensors 11,1489–1525(2011)

    14.Santhiranayagam,B.K.,Lai,D.T.H.,Sparrow,W.A.,et al.:A machine learning approach to estimate minimum toe clearance using inertial measurement units.J.Biomech.48,4309–4316(2015)

    15.Esser,P.,Dawes,H.,Collett,J.,et al.:IMU:inertial sensing of vertical CoM movement.J.Biomech.42,1578–1581(2009)

    16.Hamilton,W.R.:On quaternions.Proc.R.Irish Acad.3,1–16(1847)

    17.Goldman,R.:Rethinking Quaternions:Theory and Computation,Synthesis Lectures on Computer Graphics and Animation.Morgan&Claypool Publishers,San Rafael(2010)

    18.Kuipers,J.B.:Quaternions and Rotation Sequences.Princeton University Press,Princeton(1999)

    19.Mukundan,R.:Quaternions:from clasical mechanics to computer graphics,and beyond.In:Proceedings of the 7th Asian Technology Conference in Mathematics,Melaka,Malaysia,December 17–21(2002)

    20.Spring,K.W.:Euler parameters and the use of quaternon algebra in the manipulation of finite rotations:a review.Mech.Mach.Theory 21,365–373(1986)

    21.Fourati,H.,Manamanni,N.,Afilal,L.,et al.:Rigid body motions estimation using inertial sensors:bio-logging application.In:Proceedings of the 7th IFAC Symposium on Medelling and Control in Biomedical Systems,Aalborg,Denmark,August 12–14(2009)

    22.Fourati,H.,Manamanni,N.,Afilal,L.,et al.:Sensing technique of dynamic marine mammal’s attitude by use of low-cost inertial and magnetic sensors.In:8th IFAC Conference on Control Applications in Marine Systems,Rostock-Warnemünde,Germany,September 15–17(2010)

    23.Chou,J.C.K.:Quaternion kinematic and dynamic differential equations.IEEE Trans.Robot.Autom.8,53–64(1992)

    24.Betsch,P.,Siebert,R.:Rigid body dynamics in terms of quaternions:Hamiltonian formulation and conserving numerical integration.Int.J.Numer.Methods Eng.79,444–473(2009)

    25.Nielsen,M.B.,Krenk,S.:Conservative integration of rigid body motion by quaternion parameters with implicit constraints.Int.J.Numer.Methods Eng.92,734–752(2012)

    26.Xu,X.,Zhong,W.:On the numerical influences of inertia representation for rigid body dynamics in terms of unit quaternion.J.Appl.Mech.83,061006-1–061006-11(2016)

    27.Sherif,K.,Nachbagauer,K.,Stainer,W.:On the rotational equations of motion in rigid body dynamics when using Euler parameters.Nonlinear Dyn.81,343–352(2015)

    28.Diebel,J.:Representing Attitude:Euler Angles,Unit Quaternions,and Rotation Vectors.Stanford University,Stanford(2006)

    29.Durham,W.:Aircraft Flight Dynamics and Control.Wiley,New York(2013)

    30.Goldstein,H.:Classical Mechanics.Addison-Wesley Publishing Company,Boston(1980)

    31.Cooke,J.M.,Zyda,M.J.,Pratt,D.R.,et al.:NPSNET:flight simulation dynamics modeling using quaternions.Presence 1,404–420(1994)

    32.Gantmacher,F.:Lectures in Analytical Mechanics.Mir Publishers,Moscow(1975)

    av福利片在线| 我要看黄色一级片免费的| 一级毛片电影观看| 超碰97精品在线观看| 久久久久精品性色| 欧美成人午夜精品| 三上悠亚av全集在线观看| 久久人人97超碰香蕉20202| 亚洲精品国产区一区二| 99久久综合免费| 男女床上黄色一级片免费看| www.av在线官网国产| 1024视频免费在线观看| 日韩伦理黄色片| 欧美中文综合在线视频| 99久久99久久久精品蜜桃| 天堂俺去俺来也www色官网| 99久久人妻综合| 一区福利在线观看| 国产精品.久久久| 一级,二级,三级黄色视频| 日韩制服骚丝袜av| 免费在线观看黄色视频的| 亚洲天堂av无毛| 久久久久视频综合| 熟女少妇亚洲综合色aaa.| 午夜久久久在线观看| 日韩伦理黄色片| 日本一区二区免费在线视频| 国产福利在线免费观看视频| 精品一区二区三区av网在线观看 | 国产日韩欧美亚洲二区| 中文精品一卡2卡3卡4更新| 欧美激情高清一区二区三区 | 黑人猛操日本美女一级片| 在线观看三级黄色| 99热国产这里只有精品6| 国产精品国产三级专区第一集| 精品一区二区三卡| av在线播放精品| 黑丝袜美女国产一区| 少妇精品久久久久久久| 精品久久久精品久久久| 日韩不卡一区二区三区视频在线| 两个人免费观看高清视频| 日日摸夜夜添夜夜爱| 久久久精品国产亚洲av高清涩受| 精品人妻熟女毛片av久久网站| 亚洲综合精品二区| 欧美日韩视频精品一区| 亚洲色图 男人天堂 中文字幕| 国产97色在线日韩免费| 国产精品女同一区二区软件| 日本vs欧美在线观看视频| 大片电影免费在线观看免费| 亚洲精品av麻豆狂野| 国产av国产精品国产| 久久精品国产综合久久久| 精品少妇内射三级| 丝袜脚勾引网站| 久久久久久人妻| 欧美97在线视频| 亚洲在久久综合| 欧美最新免费一区二区三区| 久久天躁狠狠躁夜夜2o2o | 一区二区av电影网| 免费久久久久久久精品成人欧美视频| 啦啦啦中文免费视频观看日本| 国产精品久久久久久精品电影小说| 18禁观看日本| 国产有黄有色有爽视频| 免费av中文字幕在线| 久热爱精品视频在线9| 在线观看免费视频网站a站| 亚洲av欧美aⅴ国产| 熟女少妇亚洲综合色aaa.| a 毛片基地| 午夜福利一区二区在线看| 麻豆av在线久日| 国产高清国产精品国产三级| 韩国高清视频一区二区三区| 亚洲免费av在线视频| 男男h啪啪无遮挡| 久久人人97超碰香蕉20202| 午夜福利免费观看在线| 啦啦啦在线观看免费高清www| 亚洲国产最新在线播放| 最近的中文字幕免费完整| 十分钟在线观看高清视频www| 天天躁狠狠躁夜夜躁狠狠躁| 91成人精品电影| 欧美黑人精品巨大| 亚洲人成网站在线观看播放| 水蜜桃什么品种好| 老司机靠b影院| 国产成人一区二区在线| 十八禁人妻一区二区| 日本vs欧美在线观看视频| 国产精品女同一区二区软件| 国产老妇伦熟女老妇高清| 如何舔出高潮| 男人添女人高潮全过程视频| 看十八女毛片水多多多| 欧美日韩成人在线一区二区| 久久久久视频综合| 久久人人爽av亚洲精品天堂| 大片免费播放器 马上看| 亚洲欧美精品综合一区二区三区| 亚洲国产精品国产精品| 久久久精品免费免费高清| 最近中文字幕2019免费版| 日本色播在线视频| 精品一区在线观看国产| 好男人视频免费观看在线| 超碰97精品在线观看| 赤兔流量卡办理| 人体艺术视频欧美日本| 69精品国产乱码久久久| 中国国产av一级| 国产片特级美女逼逼视频| 国产野战对白在线观看| 久久鲁丝午夜福利片| a级毛片在线看网站| 亚洲精品乱久久久久久| 校园人妻丝袜中文字幕| 国产乱来视频区| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲av电影在线进入| 日韩人妻精品一区2区三区| 午夜av观看不卡| 亚洲成国产人片在线观看| 一二三四中文在线观看免费高清| 妹子高潮喷水视频| 搡老岳熟女国产| 黄色一级大片看看| 黄片无遮挡物在线观看| 少妇被粗大猛烈的视频| 久久午夜综合久久蜜桃| 国产老妇伦熟女老妇高清| av在线app专区| 国产在线免费精品| 亚洲激情五月婷婷啪啪| 日本vs欧美在线观看视频| 久久99热这里只频精品6学生| 国产精品一区二区精品视频观看| 精品亚洲成a人片在线观看| 国产一卡二卡三卡精品 | 欧美在线一区亚洲| 七月丁香在线播放| 日韩成人av中文字幕在线观看| 欧美日韩av久久| 日日啪夜夜爽| 黄片小视频在线播放| 亚洲精品aⅴ在线观看| av福利片在线| 欧美日韩视频高清一区二区三区二| av女优亚洲男人天堂| 国产精品久久久av美女十八| 看免费成人av毛片| 久久性视频一级片| 国产人伦9x9x在线观看| 亚洲欧美一区二区三区久久| 天天躁夜夜躁狠狠躁躁| 亚洲国产精品999| 天天躁夜夜躁狠狠久久av| 成人三级做爰电影| 咕卡用的链子| 国产欧美日韩一区二区三区在线| 久热这里只有精品99| 九草在线视频观看| 亚洲精品,欧美精品| 亚洲欧洲精品一区二区精品久久久 | 这个男人来自地球电影免费观看 | 国产免费又黄又爽又色| 欧美激情极品国产一区二区三区| 亚洲精品视频女| 亚洲国产欧美在线一区| 一级毛片我不卡| 一区二区三区激情视频| 免费看不卡的av| 日韩av不卡免费在线播放| 各种免费的搞黄视频| 精品久久久精品久久久| 日日啪夜夜爽| 在线天堂中文资源库| 免费人妻精品一区二区三区视频| 国产男女内射视频| 好男人视频免费观看在线| 中文字幕亚洲精品专区| 在线精品无人区一区二区三| 如日韩欧美国产精品一区二区三区| 亚洲熟女精品中文字幕| 最近最新中文字幕免费大全7| 夫妻午夜视频| 久久综合国产亚洲精品| 亚洲自偷自拍图片 自拍| 如何舔出高潮| 亚洲欧美成人精品一区二区| 天天躁夜夜躁狠狠久久av| 啦啦啦在线观看免费高清www| 精品久久久精品久久久| 韩国精品一区二区三区| 黄片小视频在线播放| 国产精品 国内视频| 桃花免费在线播放| 在线观看免费高清a一片| 蜜桃国产av成人99| 另类亚洲欧美激情| 中文字幕人妻丝袜制服| av免费观看日本| 搡老乐熟女国产| 亚洲欧美中文字幕日韩二区| 99久久人妻综合| 亚洲一级一片aⅴ在线观看| 亚洲色图综合在线观看| 建设人人有责人人尽责人人享有的| 波多野结衣av一区二区av| 国产在线免费精品| 亚洲精品久久久久久婷婷小说| 一本色道久久久久久精品综合| 久久国产亚洲av麻豆专区| 国产 精品1| 国产日韩欧美在线精品| 国产男女超爽视频在线观看| 日韩伦理黄色片| 在线观看国产h片| 老司机深夜福利视频在线观看 | 91国产中文字幕| 亚洲国产中文字幕在线视频| 人妻人人澡人人爽人人| 自线自在国产av| 国产成人一区二区在线| 免费观看人在逋| 久久这里只有精品19| 综合色丁香网| 建设人人有责人人尽责人人享有的| 久久精品熟女亚洲av麻豆精品| 成年美女黄网站色视频大全免费| 精品一区二区免费观看| 国精品久久久久久国模美| 亚洲欧美日韩另类电影网站| 国产乱人偷精品视频| 高清视频免费观看一区二区| 免费观看av网站的网址| 99香蕉大伊视频| 日本av手机在线免费观看| 精品国产超薄肉色丝袜足j| 人妻一区二区av| 男女边摸边吃奶| 国产精品 欧美亚洲| 777久久人妻少妇嫩草av网站| 美女午夜性视频免费| 大话2 男鬼变身卡| 99热网站在线观看| 亚洲婷婷狠狠爱综合网| 超碰97精品在线观看| 欧美黄色片欧美黄色片| 欧美日韩成人在线一区二区| 激情五月婷婷亚洲| 久久久久国产精品人妻一区二区| 免费看不卡的av| 十八禁人妻一区二区| 国产日韩一区二区三区精品不卡| 午夜激情av网站| 欧美在线黄色| 男女之事视频高清在线观看 | 汤姆久久久久久久影院中文字幕| 欧美精品av麻豆av| 秋霞在线观看毛片| 中文字幕人妻丝袜一区二区 | 国产精品99久久99久久久不卡 | 亚洲欧洲精品一区二区精品久久久 | av电影中文网址| 在线观看人妻少妇| 美女高潮到喷水免费观看| 国产成人91sexporn| 毛片一级片免费看久久久久| 国产亚洲精品第一综合不卡| 亚洲国产精品一区二区三区在线| 亚洲av男天堂| 国产黄色视频一区二区在线观看| 亚洲精品一二三| 日本色播在线视频| netflix在线观看网站| 少妇精品久久久久久久| 日韩av在线免费看完整版不卡| 精品第一国产精品| 免费黄网站久久成人精品| 亚洲第一区二区三区不卡| 国产视频首页在线观看| 秋霞在线观看毛片| 人妻一区二区av| 成人国产麻豆网| 国产精品久久久久成人av| 久久久精品免费免费高清| 亚洲一卡2卡3卡4卡5卡精品中文| 精品少妇内射三级| 一级爰片在线观看| 亚洲av中文av极速乱| 国产99久久九九免费精品| 免费黄网站久久成人精品| 亚洲国产精品一区二区三区在线| www.熟女人妻精品国产| 激情视频va一区二区三区| 大陆偷拍与自拍| 黑人猛操日本美女一级片| 999精品在线视频| 亚洲成人av在线免费| 少妇的丰满在线观看| 亚洲五月色婷婷综合| 成人亚洲精品一区在线观看| e午夜精品久久久久久久| 人妻人人澡人人爽人人| 秋霞伦理黄片| 欧美日韩福利视频一区二区| 一本久久精品| 久久久精品免费免费高清| 国产 一区精品| 女人爽到高潮嗷嗷叫在线视频| 成人午夜精彩视频在线观看| 成人毛片60女人毛片免费| av又黄又爽大尺度在线免费看| 曰老女人黄片| 国产精品香港三级国产av潘金莲 | 欧美日韩福利视频一区二区| 中文字幕精品免费在线观看视频| 精品视频人人做人人爽| 久久99精品国语久久久| 亚洲,一卡二卡三卡| 欧美av亚洲av综合av国产av | 亚洲熟女毛片儿| 国产欧美亚洲国产| 最近最新中文字幕免费大全7| 亚洲欧美日韩另类电影网站| 久久精品人人爽人人爽视色| 亚洲综合色网址| 一边摸一边做爽爽视频免费| 女人久久www免费人成看片| 亚洲综合色网址| 久久久久久免费高清国产稀缺| 99精国产麻豆久久婷婷| 伦理电影免费视频| 高清不卡的av网站| 青春草视频在线免费观看| 观看av在线不卡| 一本大道久久a久久精品| 久久av网站| 七月丁香在线播放| 麻豆精品久久久久久蜜桃| 天天添夜夜摸| 亚洲精品国产色婷婷电影| 伊人久久大香线蕉亚洲五| 麻豆av在线久日| 王馨瑶露胸无遮挡在线观看| 久久久精品免费免费高清| 精品国产乱码久久久久久小说| 国产精品熟女久久久久浪| 亚洲男人天堂网一区| 性少妇av在线| 欧美日韩精品网址| 女人久久www免费人成看片| 免费av中文字幕在线| 国产乱人偷精品视频| 18在线观看网站| 精品卡一卡二卡四卡免费| 亚洲人成网站在线观看播放| 一区二区av电影网| 亚洲欧美一区二区三区国产| 女人久久www免费人成看片| 午夜激情久久久久久久| 一级a爱视频在线免费观看| 欧美日本中文国产一区发布| 亚洲一级一片aⅴ在线观看| 欧美成人午夜精品| 天堂中文最新版在线下载| 欧美日韩视频高清一区二区三区二| 国产日韩欧美亚洲二区| 两性夫妻黄色片| 女性被躁到高潮视频| 人人妻人人爽人人添夜夜欢视频| bbb黄色大片| 亚洲熟女毛片儿| 一级毛片黄色毛片免费观看视频| 国产精品欧美亚洲77777| 纯流量卡能插随身wifi吗| 母亲3免费完整高清在线观看| 卡戴珊不雅视频在线播放| 国产不卡av网站在线观看| 国产成人欧美在线观看 | 国产精品三级大全| 国产爽快片一区二区三区| 天天躁夜夜躁狠狠久久av| 国产免费视频播放在线视频| 午夜福利一区二区在线看| 国产精品亚洲av一区麻豆 | 日本色播在线视频| 中文乱码字字幕精品一区二区三区| 亚洲国产日韩一区二区| 又粗又硬又长又爽又黄的视频| 亚洲成人一二三区av| 男的添女的下面高潮视频| 午夜91福利影院| 欧美黄色片欧美黄色片| 大码成人一级视频| 自线自在国产av| 成人手机av| 亚洲欧美中文字幕日韩二区| 国产免费现黄频在线看| 免费av中文字幕在线| 伊人久久大香线蕉亚洲五| 1024视频免费在线观看| 人妻人人澡人人爽人人| 成年人免费黄色播放视频| 国产精品三级大全| 高清在线视频一区二区三区| 国产一区二区三区av在线| 国产 精品1| 在线天堂最新版资源| 日本av手机在线免费观看| 成年动漫av网址| 日韩不卡一区二区三区视频在线| 亚洲精品成人av观看孕妇| 久久国产精品大桥未久av| 亚洲国产精品一区三区| 国产精品久久久av美女十八| 日本午夜av视频| 国产精品久久久久久精品电影小说| 国产高清不卡午夜福利| 久久热在线av| 亚洲第一av免费看| 亚洲美女黄色视频免费看| 午夜激情av网站| 国产免费现黄频在线看| 色视频在线一区二区三区| 成年动漫av网址| 七月丁香在线播放| 18禁观看日本| 亚洲一区二区三区欧美精品| 日本欧美国产在线视频| 成人亚洲精品一区在线观看| 久久久精品94久久精品| 亚洲欧美色中文字幕在线| 午夜老司机福利片| 激情视频va一区二区三区| 国产精品久久久久久人妻精品电影 | 桃花免费在线播放| 在线观看免费高清a一片| a级片在线免费高清观看视频| 国产亚洲欧美精品永久| av线在线观看网站| 69精品国产乱码久久久| 国产乱来视频区| a级毛片在线看网站| 曰老女人黄片| 久久婷婷青草| 一级毛片 在线播放| 熟妇人妻不卡中文字幕| 日本av免费视频播放| 建设人人有责人人尽责人人享有的| a级毛片在线看网站| 99九九在线精品视频| 五月开心婷婷网| av国产精品久久久久影院| 欧美老熟妇乱子伦牲交| 久久久精品94久久精品| avwww免费| 日韩中文字幕视频在线看片| 日日啪夜夜爽| 久久这里只有精品19| 亚洲专区中文字幕在线 | 久久久久国产精品人妻一区二区| 欧美xxⅹ黑人| 精品久久久精品久久久| 久久国产精品大桥未久av| 亚洲色图综合在线观看| 十八禁网站网址无遮挡| 青青草视频在线视频观看| 欧美老熟妇乱子伦牲交| 久久久精品94久久精品| 久久婷婷青草| 欧美日韩亚洲国产一区二区在线观看 | 亚洲,欧美精品.| 免费av中文字幕在线| 在线观看免费视频网站a站| 高清av免费在线| 国产又爽黄色视频| 久久久久国产一级毛片高清牌| 国产亚洲av片在线观看秒播厂| 视频区图区小说| 18禁动态无遮挡网站| 99香蕉大伊视频| 女人被躁到高潮嗷嗷叫费观| 欧美精品一区二区免费开放| 亚洲熟女毛片儿| 最新的欧美精品一区二区| 国产亚洲av高清不卡| 男女边摸边吃奶| 中文乱码字字幕精品一区二区三区| 国产成人精品久久久久久| 我要看黄色一级片免费的| 丝袜美腿诱惑在线| 我要看黄色一级片免费的| 大陆偷拍与自拍| 精品国产国语对白av| 国产免费现黄频在线看| 免费观看性生交大片5| 国产在线视频一区二区| 国产99久久九九免费精品| 黄色一级大片看看| 午夜福利视频精品| 午夜福利免费观看在线| 国产人伦9x9x在线观看| kizo精华| 久久午夜综合久久蜜桃| 热99久久久久精品小说推荐| 伦理电影免费视频| 少妇被粗大的猛进出69影院| 国产人伦9x9x在线观看| 熟女av电影| 丰满迷人的少妇在线观看| 国产午夜精品一二区理论片| 亚洲欧洲日产国产| 亚洲人成网站在线观看播放| 国产日韩一区二区三区精品不卡| 亚洲国产精品999| 色视频在线一区二区三区| 亚洲精品美女久久av网站| 久久97久久精品| 国产成人精品福利久久| 人人澡人人妻人| 国产在线免费精品| 国产免费视频播放在线视频| 久久女婷五月综合色啪小说| 午夜91福利影院| 精品国产露脸久久av麻豆| 高清不卡的av网站| 欧美日韩综合久久久久久| 久久久久久久精品精品| 19禁男女啪啪无遮挡网站| 在线观看免费高清a一片| 久久女婷五月综合色啪小说| 好男人视频免费观看在线| 欧美激情高清一区二区三区 | 人体艺术视频欧美日本| 中文字幕精品免费在线观看视频| 久久人妻熟女aⅴ| 水蜜桃什么品种好| 欧美亚洲 丝袜 人妻 在线| 麻豆精品久久久久久蜜桃| 国产一区二区三区av在线| 狠狠精品人妻久久久久久综合| 亚洲欧洲国产日韩| 丁香六月天网| 国产激情久久老熟女| 热99久久久久精品小说推荐| 黄片播放在线免费| 看免费成人av毛片| 99久久99久久久精品蜜桃| 国产探花极品一区二区| 亚洲,一卡二卡三卡| 久久久久久久久久久免费av| 9191精品国产免费久久| 免费观看av网站的网址| 曰老女人黄片| 久久99精品国语久久久| 悠悠久久av| 色婷婷av一区二区三区视频| 久久国产精品男人的天堂亚洲| 欧美国产精品一级二级三级| 欧美黑人欧美精品刺激| 亚洲精品av麻豆狂野| 色网站视频免费| 老司机影院成人| 日韩大码丰满熟妇| 如何舔出高潮| 亚洲av男天堂| 一区福利在线观看| 久久久久久久久免费视频了| av有码第一页| 2021少妇久久久久久久久久久| 天天操日日干夜夜撸| 在线观看www视频免费| 日韩伦理黄色片| 亚洲成人免费av在线播放| 久久久国产一区二区| 熟女av电影| 男男h啪啪无遮挡| 亚洲七黄色美女视频| 在线免费观看不下载黄p国产| 国产精品成人在线| 亚洲图色成人| 国产男人的电影天堂91| 亚洲第一青青草原| 精品少妇内射三级| 满18在线观看网站| 青春草国产在线视频| 日本一区二区免费在线视频| 亚洲欧美色中文字幕在线| 国产视频首页在线观看| 国产一区二区激情短视频 | 精品国产一区二区久久| 欧美97在线视频| 综合色丁香网| 欧美日韩综合久久久久久| 欧美日韩av久久| 婷婷色综合大香蕉| 精品亚洲成国产av| 精品一区在线观看国产| 久久久久久久久久久免费av| 五月天丁香电影| 午夜av观看不卡| 丝袜喷水一区| 亚洲国产精品一区三区| 免费高清在线观看日韩| 亚洲欧美一区二区三区国产|