• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Generalized mixed finite element method for 3D elasticity problems

    2018-04-18 02:56:05GuanghuiQingJunhuiMaoYanhongLiu
    Acta Mechanica Sinica 2018年2期

    Guanghui Qing·Junhui Mao·Yanhong Liu

    1 Introduction

    In standard finite element displacement methods,the displacements are usually computed first,then the stresses or/and strains are calculated by numerically differentiating,based upon the constitutive relations and compatible equations at element level,usually resulting in loss of accuracy.Meanwhile,the values of the strain component computed from different elements connected at a node are different.Consequently,a smoothing or recovery procedure for nodal stresses may be carried out over the local or whole finite element domain.The boundary nodal stresses obtained from such finite element analysis are inconsistent with the prescribed stresses in displacement methods[1,2].

    For equilibrium finite element methods,stresses are equilibrated within the element and tractions are balanced at interelement boundaries.However,equilibrium methods have been found to have limited use in general-purpose computer codes because of their behavior without judicious choice of basis functions[2].

    Numerous mathematical models result from physical problems in the form of systems of partial differential equations involving several physically disparate quantities that need to be approximated simultaneously.The finite element approximations of such problems are well known as mixed finite element methods.Generally,the dual variable is computed as a fundamental unknown in mixed methods.Early contributions towards mixed methods can be found in Refs.[3–10].More recent developments can be found in Refs.[11–25].As a class of numerical methods,mixed models are widely used in the field of fluid mechanics;For example,displacement models are impractical for the Stokes problem.For such problems,mixed methods represent the simplest and most direct alternative[25].Several main advantages and disadvantages of mixed methods can be summarized as follows:

    (1)Linear interpolation functions are often sufficient to give satisfactory results for practical applications.Boundary and interelement conditions can be represented properly,and no difficulties arise due to higher derivatives;

    (2)The stress or strain variables,as the main design parameters of a structure,are the direct results of the finite element governing equation without requiring differentiation of displacements.This is also advantageous for physically nonlinear analysis,in which yield conditions etc.are expressed in terms of stresses[8,11];

    (3)It is well known that,for nearly incompressible and incompressible materials,finite element computations based on the standard displacement formulation fail due to the onset of the locking phenomenon.Classical mixed formulations are a valid alternative to locking-affected methods,since they provide mathematical models capable of treating both compressible and incompressible elasticity problems in a unified framework[8,26];

    (4)Compared with displacement methods,the mathematical theory of mixed methods is relatively complex.For mixed methods based on the Hellinger–Reissner(H–R)variational principle alone,stability is paramount.The stability of numerical results is related to the invertibility of the coefficient matrix of the finite element governing equation.A main drawback of mixed methods is the indefiniteness of the resulting system matrix[20].It is not easy to construct a pair of finite elements for the displacement vector and symmetric stress tensor which satisfies the stability conditions of Brezzi’s theory[4].

    Some representative studies on mixed methods published in recent years should be mentioned here:Arnold and Winther[16]suggested some stable elements for a two dimensional problem,while the corresponding method in three-dimensional space was first characterized by Adams and Cockburn[17],and thorough analyses of the finite elements were provided in Ref.[19].The construction of these elements is not convenient for computer programs, since they are of high polynomial order,implying high cost even for the lowest-order scheme.A family of symmetric tensor-valued finite elements of arbitrary order was constructed using the tangential-displacement normal-normal-stress(TDNNS)formulation in Ref.[10].However,the mathematical theory and the process of construction of the TDNNS formulation are not simple and not suitable for engineers.

    No doubt,some open questions remain in connection with displacement methods,equilibrium methods,and mixed methods for two-or three-dimensional elasticity problems.For mixed methods,some questions of stable elements require further study.

    The objective of this work is to propose two simple generalized mixed methods without any stable element schemes but with automatically stable numerical results.

    2 Variational principles for elasticity

    Consider a body under static loading.The body occupies the volumeV.Sis the surface of the body.S=Su∪Sσ,whereSuandSσare the segments ofSwhere displacements and surface tractions are prescribed,respectively;the outward unit normal onSis denoted byN≡ni.Let?be the gradient operator in the deformed body which,under the assumption of infinitesimal deformation,is indistinguishable from the deformed body.

    Assuming the displacement boundary conditionsu?u=0 is satisfied a priori for all variational principles in the following.

    The minimum potential energy principle for elasticity problems has the form

    whereCis the symmetric stiffness matrix of a material.

    The H–variational principle [27] for elasticity problems contains both displacement and stress fields

    whereS=C?1is the compliance matrix.

    Like the H–R variational principle,there are also both displacement and stress fields in the generalized variational principle[28].This principle can be expressed in the following form

    It should be pointed out that Felippa[29,30]constructed a one-parameter family of mixed variational principles for linear elasticity in 1989.Equation(3)is such a one-parameter family of mixed variational principles.

    Generally,we expect to take 0?λ?1 in Eq.(3).Values of the parameterλ<0 orλ>1 are not of practical interest.It is clear that,lettingλ=0,Eq.(3)becomes the H–R variational principle.Meanwhile,lettingλ=1,one obtains the minimum potential energy principle in Eq.(1).

    It is interesting that the generalized variational principle above is one-half of the sum of the minimum potential energy principle and H–R variational principle.Our practice shows that,indeed,only forλ=1/2 can good accuracy and stability of the generalized mixed method be obtained.

    Note that the H–R variational principle in Eq.(2)and generalized variational principle in Eq.(4)are the principles of stationarity.For the principles in Eqs.(2)and(4),the nonvariational constraint is the constitutive relations.The equilibrium equations,the tractions boundary condition can be satisfied a posteriori.

    3 Element formulations

    3.1 Compatible mixed element formulations

    Without loss of generality,consider first ann-node compatible linear element for 3D problems.Both the displacement vectoruand stress vectorσare expressed using the same shape functions

    It is well known that,inserting Eqs.(5)and(6)into Eq.(2)and performing the energy integration,one obtains the discrete form of the H–R variational principle

    In what follows,the superscript“i”will be dropped for clarity.

    Considerpeandqeas independent variables.ByδΠHR(pe,qe)=0,one has two Euler–Lagrange(EL)equations

    It can be seen that the classical formulation in Eq.(8)resulting from the H–R variational principle of various physical problems is symmetric,but it possesses zeros on the diagonal.Indeed,the coefficient matrix of Eq.(8)is non-positive definite.If stable elements[16,20,26]are not employed,it is very difficult to obtain stable solutions directly from Eq.(8).

    3.2 Compatible displacement element formulations

    In the same way,using Eq.(5),the discrete form of the minimum potential energy principle in Eq.(1)is

    3.3 Compatible generalized mixed element formulations

    It is of interest to see that adding Eq.(10)to the second equation of Eq.(8)yields

    In the above equation,the coefficient matrix is not only symmetric,but also there are no zeros on the diagonal.This is a main difference from Eq.(8).Equation(11)is termed the compatible generalized mixed element with 8 nodes(CGME8)for 3D problems in this work.

    Certainly,Eq.(11)can be proved by the generalized variational principle in Eq.(4).Using Eqs.(5)and(6),the discrete form of Eq.(4)can be written as

    In Eq.(12),the integral expressions ofKpp,Kpq,andfqare the same as those in Eq.(7),respectively;the integral expressionKqqis identical to theKqqin Eq.(9).

    Taking the variation of Eq.(12)with respect to variablespeandqeleads immediately to Eq.(11).

    The summation of Eq.(11)on all elements gives a novel algebraic system for finite element analysis

    In general,at system level,the whole coefficient matrix has a structure equivalent to that of an element.It is clear that the coefficient matrix of Eq.(13)is characterized by symmetry with respect to the stress and displacement variables of all nodes.Certainly,the coefficient matrix of Eq.(13)is invertible,which implies that its numerical results will be stable[26,31].

    3.4 Noncompatible generalized mixed element formulations

    On the basis of Refs.[32,33],for a noncompatible element,the element displacementucan be expressed as a sum of the compatible partNqqeand the noncompatible partNrre

    Here,Nris the shape function matrix with respect to points within elements;reis the displacement vector corresponding to points within elements.

    In a similar way,substituting Eq.(14)into Eq.(1)results in

    The result of the variation of Eq.(15)with respect toreis given by

    Here,Krris an invertible matrix[32,33].From this,one obtains

    Eliminatingrein Eq.(15)using Eq.(17),the following EL equation can be derived from the new form of Eq.(15)

    In a similar way,on substitution of Eqs.(6)and(14)into Eq.(2),the resulting noncompatible finite element functional has the form

    Using Eq.(17),one can also eliminaterefrom the above equation to yield

    Considering the combination of the result ofδΠHR(pe,qe)= 0 of Eq.(20)with respect topeand Eq.(18),one has

    Therefore,the simplified noncompatible generalized mixed element with 8 nodes(NCGME8)for 3D problems is given by

    The algebraic system for the finite element analysis corresponding to Eq.(22)has the form

    4 Imposing boundary conditions

    For common finite element problems with prescribed but nonzero values atvarious locations,one approach in practice is to add a large number or penalty term,for instance 1020,to the leading diagonal of the stiffness matrix in the row corresponding to the prescribed value.The term in the same row of the right-hand side vector is then set to the prescribed value multiplied by the augmented stiffness coefficient[33].

    Such a procedure is only successful if small terms are indeed very small relative to 1020.Another prerequisite may be required,i.e.,that the coefficient matrix of the algebraic system is a bandwidth matrix.Our practice shows that this procedure is not suitable for Eqs.(13)and(23),which involve known nonzero stress values(e.g.,the prescribed surface tractions)since the submatrixK12in Eq.(13)orK12in Eq.(23)is not a zero matrix.

    Taking Eq.(23)as an example,interchanging rows and columns,it can be recast into the following form

    Therefore,one has

    Of course,Eq.(25c)is redundant.Consequently,the final governing equation for the solutions of unknown nodal displacements and stresses is

    The simple technique presented above for imposing stress and displacement boundary conditions is employed in our program.In the next section,numerical examples show that the boundary nodal stresses are consistent with the prescribed stresses onSσ.

    5 Numerical examples and discussion

    5.1 A thick rectangular plate with simply supported edges

    Consider a thick rectangular plate with in-plane dimensionsa=b=1.0 and total thicknessh=0.10(Fig.1).Here,we assume that the edgesx=0,aandy=0,bare simply supported,and use material propertiesE11=10E22=10E33,G12=G13=0.6E33,G23=0.5E33,andν12=ν13=ν23=0.25.Uniform normal load of 1.0 is applied on the upper surface of the plate[34].

    Fig.1 A thick rectangular plate

    Using the symmetry about thex1-andx2-axes,only one quarter of the plate(Fig.1b)is analyzed with uniform meshes.The convergence rate and accuracy of displacements and stresses at specific locations are depicted in Figs.2–12.The results for the noncompatible displacement element with 8 nodes(NCDE8)were obtained using commercially available software ABAQUS?.

    For Figs.2–10,Table 1 presents the size of each mesh using the notationl×mforlsubdivisions along thex1-axis andmsubdivisions along thex2-axis with the same type of elements,with four subdivisions in thex3direction for all models.

    On the basis of the results for the 12×12×4 mesh,the errors presented in the legends to Figs.2–10 were computed using the formula(Exact? Numerical)/Exact× 100%.

    Fig.2 Comparison of displacement

    Fig.3 Comparison of displacement

    Fig.4 Comparison of displacement

    Fig.5 Comparison of stress

    Fig.6 Comparison of stress

    Fig.7 Comparison of stress

    Fig.8 Comparison of stress

    In the present computer program,two Gauss quadrature points in each direction were employed for CGME8 and NCGME8.

    Fig.9 Comparison of stress

    Fig.10 Comparison of stress

    Fig.11 Distribution along thickness of

    Fig.12 Distribution along thickness of

    Table 1 Mesh sizes

    5.2 A classical cantilever beam problem

    Consider a cantilever beam[35]under pure bending or acted upon by shear forces at the tip(Fig.13a,b),with geometric dimensions of2×2×10 and material properties ofE=1500 andν=0.25.The vertical displacement at point A and the bending stressσ11at point B for different meshes(as shown in Figs.14–19)are presented in Tables 2–4,respectively,compared withQ S11?1[35],Q S11?2[35],and exact solutions.

    Based on the results in Tables 2–5,it can be concluded that:

    Most of the displacement and stress results obtained using NCGME8 appear to be more accurate than those obtained using the hybrid stress elementsQ S11?1,Q S11?2,and CGME8.NCGME8 is less sensitive to geometric distortions(see Figs.14–19,in which the elements are severely distorted).It is also very obvious that the accuracy of CGME8 was very poor due to the geometric distortion of the elements.

    Fig.13 Two load cases for a cantilever beam

    Fig.14 Mesh a

    Fig.15 Mesh b

    Fig.16 Mesh c

    Fig.17 Mesh d

    Fig.18 Mesh e

    Fig.19 Mesh f

    Table 2 Displacement u3 at point A(load case 1)

    Table 3 Stress σ11 at point B(load case 1)

    5.3 Cook’s skew beam

    Table 4 Displacement u3 at point A(load case 2)

    Table 5 Stress σ11 at point B(load case 2)

    Table 6 Results for Cook’s skew beam(Fig.20)

    Fig.20 Cook’s skew beam

    The numerical results in Table 6 show that NCGME8 was softer than the other elements in Ref.[36].Without doubt,the results obtained using NCGME8 are closer to the best known answers.

    6 Conclusions

    Generally,classical mixed methods yield the simplest and most flexible system of equations for finite element analysis of some problems.However,the corresponding mathematical theory is relatively complex due to the requirement for stable elements.

    Applying usual linear interpolation functions,two novel and simple generalized mixed elements were developed by combining two variational principles.As mentioned in Sect.3,one of the most prominent advantages of the generalized mixed methods(GMMs)corresponding to the present mixed elements for the 3D problems presented in this work is that symmetry with respect to both displacement and stress variables is guaranteed in the finite element governing equations.On the other hand,the GMMs are preferable for introduction of displacement and tractions boundary conditions simultaneously.The convergence rates of stress and displacement variables using NCGME8 were balanced,stable,and with fine precision.

    This noncompatible generalized mixed method should be extended to important applications in a wide range of engineering structures,including treatment of the combination with other structural members and investigation of the possible advantages in stress singularity problems and nonlinear applications which may result for special structures.The pertinent theories of the generalized mixed elements should also be explored deeply,for instance,investigation of local error bounds or practical estimates for variables in threedimensional problems.

    If one starts from the generalized variational principles of plate and shell theories,simple corresponding generalized element formulations and generalized mixed methods can also be constructed.

    AcknowledgementsThis work was supported by the National Natural Science Foundation of China(Grant 11502286).

    1.Tian,S.Z.,Pian,T.H.:Variational Principles with Multi-variables and Finite Elements with Multi-variables.Science Press,Beijing(2011).(in Chinese)

    2.Hoa,S.V.,Wei,F.:Hybrid Finite Element Method for Stress Analysis of Laminated Composites.Springer Science&Business Media,New York(2013)

    3.Herrmann,L.R.:Finite element bending analysis for plates.J.Eng.Mech.Div.ASCE 98,13–26(1967)

    4.Brezzi,F.:On the existence,uniqueness and approximation of saddle-point problems arising from lagrangian multipliers.Rev.Fr.Autom.Inf.Rech.Opér.Anal.Numér.8,129–151(1974)

    5.Reddy,J.N.,Oden,J.T.:Mathematical theory of mixed finite element approximations.Quart.Appl.Math 33,255–280(1975)

    6.Oden,J.T.,Reddy,J.N.:On mixed finite element approximations.SIAM J.Numer.Anal.13,393–404(1976)

    7.Strang,G.,Fix,G.J.:An Analysis of the Finite Element Method.Prentice-Hall,Englewood Cliffs(1973)

    8.Atluri,S.N.,Gallagher,R.H.,Zienkiewicz,O.C.:Hybrid and Mixed Finite Element Methods.Wiley,New York(1983)

    9.Hughes,T.J.:The Finite Element Method:Linear Static and Dynamic Finite Element Analysis.Courier Corporation,North Chelmsford(2012)

    10.Morley,M.E.:A family of mixed finite elements for linear elasticity.Numer.Math.55,633–666(1989)

    11.Brezzi,F.,Fortin,M.:Mixed and Hybrid Finite Element Methods.Springer Science&Business Media,New York(2012)

    12.Belytschko,T.,Liu,W.K.,Moran,B.,et al.:Nonlinear Finite Elements for Continua and Structures.Wiley,New York(2013)

    13.Bonet,J.,Wood,R.D.:Nonlinear Continuum Mechanics for Finite Element Analysis.Cambridge University Press,London(1997)

    14.Zienkiewicz,O.C.,Taylor,R.L.:The Finite Element Method:Solid Mechanics.Butterworth,London(2000)

    15.Arnold,D.N.:Differential complexes and numerical stability.Preprint.arXiv:math/0212391(2002)

    16.Arnold,D.N.,Winther,R.:Mixed finite elements for elasticity.Numer.Math.92,401–419(2002)

    17.Adams,S.,Cockburn,B.:A mixed finite element method for elasticity in three dimensions.J.Sci.Comput.25,515–521(2005)

    18.Arnold,D.N.,Falk,R.,Winther,R.:Mixed finite element methods for linear elasticity with weakly imposed symmetry.Math.Comput.76,1699–1723(2007)

    19.Arnold,D.N.,Awanou,G.,Winther,R.:Finite elements for symmetric tensors in three dimensions.Math.Comput.77,1229–1251(2008)

    20.Sinwel,A.:A new family of mixed finite elements for elasticity.[Ph.D.Thesis],Johannes Kepler University,Austria(2009)

    21.Qiu,W.,Demkowicz,L.:Variable order mixedh-finite element method for linear elasticity with weakly imposed symmetry.II.Affine and curvilinear elements in 2D.Mathematics 11,510–539(2010)

    22.Gopalakrishnan,J.,Guzm,J.N.:Symmetric nonconforming mixed finite elements for linear elasticity.SIAM J.Numer.Anal.49,1504–1520(2011)

    23.Qiu,W.:Mixed variable orderh-finite element method for linear elasticity with weakly imposed symmetry.Curvilinear elements in 2D.Comput.Methods Appl.Math.11,510–539(2011)

    24.Hu,J.,Man,H.G.,Zhang,S.G.:The simplest mixed finite element method for linear elasticity in the symmetric formulation onnrectangular grids.Comput.Math.Appl.71,1317–1336(2013)

    25.Liu,Z.D.:Basis of Mixed Finite Element Methods and Its Application.Science Press,Beijing(2006).(in Chinese)

    26.Arnold,D.N.:Mixed finite element methods for elliptic problems.Comput.Methods Appl.Mech.Eng.82,281–300(1990)

    27.Reissner,E.:On a variational theorem in elasticity.J.Math.Phys.29,90–95(1950)

    28.Chien,W.Z.:Method of high-order lagrange multiplier and generalized variational principles of elasticity with more general forms of functionals.Appl.Math.Mech.4,143–157(1983)

    29.Felippa,C.A.:Parameterized multifid variational principles in elasticity:I.Mixed functionals.Commun.Appl.Numer.Methods 5,79–88(1989)

    30.Felippa,C.A.:Parametrized multifid variational principles in elasticity:II.Hybrid functionals and the free formulation.Commun.Appl.Numer.Methods 5,89–98(1989)

    31.Zhong,W.X.:Force,Work,Energy and Symplectic Mathematics.Dalian University of Technology Press,Dalian(2007).(in Chinese)

    32.Chen,W.J.:A high preccision eight-node hexahedron element.Chin.J.Theor.Appl.Mech.10,1211–1219(1976)

    33.Taylor,R.L.,Beresford,P.J.,Wilson,E.L.:A non-conforming element for stress analysis.Int.J.Numer.Methods Eng.10,1211–1219(1976)

    34.Fan,J.R.:Exact Theory of Laminated Thick Plates and Shells.Science Press,Beijing(1996).(in Chinese)

    35.Cheung,Y.K.,Chen,W.J.:Isoparametric hybrid hexahedral elements for 3-D stress analysis.Int.J.Numer.Methods Eng.26,677–693(1988)

    36.Cook,R.D.:A plane hybrid element with rotational DOF and adjustable stiffness.Int.J.Numer.Methods Eng.24,1499–1508(1987)

    免费在线观看成人毛片| 香蕉av资源在线| 黑人高潮一二区| a级毛片a级免费在线| 少妇裸体淫交视频免费看高清| 麻豆成人午夜福利视频| 国产又黄又爽又无遮挡在线| 欧美激情久久久久久爽电影| 午夜a级毛片| 免费看美女性在线毛片视频| 在线观看午夜福利视频| 欧美另类亚洲清纯唯美| 国产精品国产高清国产av| 最好的美女福利视频网| 亚洲av一区综合| 最近的中文字幕免费完整| 观看免费一级毛片| 九九在线视频观看精品| av免费在线看不卡| 国产精华一区二区三区| 成人美女网站在线观看视频| 色哟哟哟哟哟哟| 久久久久久伊人网av| 国产高清有码在线观看视频| 午夜福利成人在线免费观看| 成人永久免费在线观看视频| 国产 一区精品| a级毛片a级免费在线| 久久久国产成人免费| 十八禁国产超污无遮挡网站| 三级男女做爰猛烈吃奶摸视频| 精品久久久久久久久亚洲| av在线天堂中文字幕| 成人性生交大片免费视频hd| 午夜视频国产福利| 亚洲精品日韩在线中文字幕 | 欧美日韩乱码在线| 蜜桃亚洲精品一区二区三区| 久久久久免费精品人妻一区二区| 国产熟女欧美一区二区| 97超视频在线观看视频| 男人和女人高潮做爰伦理| 国产在视频线在精品| 国产黄片美女视频| 日韩欧美一区二区三区在线观看| 国产成人影院久久av| 亚洲成人中文字幕在线播放| 亚洲av熟女| 夜夜夜夜夜久久久久| 免费av观看视频| 国产三级中文精品| 偷拍熟女少妇极品色| 51国产日韩欧美| 可以在线观看毛片的网站| 人妻夜夜爽99麻豆av| 黑人高潮一二区| 亚洲精品国产av成人精品 | 99在线人妻在线中文字幕| 亚洲精品国产av成人精品 | 九九热线精品视视频播放| 成人av在线播放网站| 日韩大尺度精品在线看网址| 一区二区三区高清视频在线| 成年女人永久免费观看视频| 国产视频内射| 黄色配什么色好看| 国产成人91sexporn| 精品久久久久久久末码| 亚洲人成网站高清观看| 国产精品综合久久久久久久免费| 精品人妻视频免费看| 18禁在线播放成人免费| 国产91av在线免费观看| 九九在线视频观看精品| 九色成人免费人妻av| 精品一区二区三区视频在线| 国产精品不卡视频一区二区| 国产一级毛片七仙女欲春2| 91麻豆精品激情在线观看国产| 中国美女看黄片| 久久精品国产鲁丝片午夜精品| 国产黄片美女视频| 国产高清视频在线观看网站| 一个人免费在线观看电影| 欧美色欧美亚洲另类二区| 国产激情偷乱视频一区二区| 国产男靠女视频免费网站| 嫩草影院精品99| 国产视频内射| 亚洲经典国产精华液单| 国产高清视频在线观看网站| 精品人妻熟女av久视频| 成人美女网站在线观看视频| 国产高清不卡午夜福利| 亚洲一级一片aⅴ在线观看| 国产成人福利小说| 午夜福利视频1000在线观看| 美女被艹到高潮喷水动态| 国产乱人视频| 亚洲七黄色美女视频| 搡老妇女老女人老熟妇| 直男gayav资源| 大香蕉久久网| 国产精品无大码| 超碰av人人做人人爽久久| 国产人妻一区二区三区在| 精品久久久久久久人妻蜜臀av| 精品一区二区三区人妻视频| 噜噜噜噜噜久久久久久91| 麻豆av噜噜一区二区三区| 精品少妇黑人巨大在线播放 | 欧美一区二区精品小视频在线| 国产精品三级大全| 如何舔出高潮| 国产午夜福利久久久久久| 国产国拍精品亚洲av在线观看| 午夜爱爱视频在线播放| 国产精品亚洲美女久久久| 五月伊人婷婷丁香| 美女cb高潮喷水在线观看| 啦啦啦观看免费观看视频高清| 22中文网久久字幕| 18禁在线播放成人免费| 国产视频内射| 亚洲人成网站在线播放欧美日韩| 欧美一区二区国产精品久久精品| 又爽又黄无遮挡网站| 亚洲欧美日韩东京热| 在线观看一区二区三区| 免费观看的影片在线观看| 成人一区二区视频在线观看| 精华霜和精华液先用哪个| 99久久无色码亚洲精品果冻| 国产av麻豆久久久久久久| av天堂在线播放| 日本爱情动作片www.在线观看 | 在线免费观看的www视频| 亚洲va在线va天堂va国产| 免费观看精品视频网站| 久久欧美精品欧美久久欧美| 中国国产av一级| 国产69精品久久久久777片| 黄色配什么色好看| 国产成人福利小说| 成年女人毛片免费观看观看9| 网址你懂的国产日韩在线| 高清日韩中文字幕在线| 欧美色欧美亚洲另类二区| 国产精品国产高清国产av| 色吧在线观看| 99热6这里只有精品| 18+在线观看网站| 18禁黄网站禁片免费观看直播| 亚洲五月天丁香| 精品一区二区三区av网在线观看| 神马国产精品三级电影在线观看| 久久久a久久爽久久v久久| 国内揄拍国产精品人妻在线| 亚洲国产精品成人久久小说 | 日韩大尺度精品在线看网址| 深夜a级毛片| 性插视频无遮挡在线免费观看| 国产精品一区二区免费欧美| 少妇人妻一区二区三区视频| 在现免费观看毛片| 搡老熟女国产l中国老女人| avwww免费| 99久国产av精品国产电影| 亚洲人成网站在线观看播放| 高清日韩中文字幕在线| 久久久国产成人精品二区| 网址你懂的国产日韩在线| 免费av毛片视频| 春色校园在线视频观看| 日本熟妇午夜| 日本精品一区二区三区蜜桃| 欧美成人免费av一区二区三区| 夜夜看夜夜爽夜夜摸| av免费在线看不卡| 少妇熟女欧美另类| 白带黄色成豆腐渣| 日韩强制内射视频| 极品教师在线视频| 男女啪啪激烈高潮av片| 一级毛片我不卡| 免费一级毛片在线播放高清视频| 国产精品福利在线免费观看| av女优亚洲男人天堂| 熟妇人妻久久中文字幕3abv| 国产精品免费一区二区三区在线| 男人狂女人下面高潮的视频| 精品人妻偷拍中文字幕| 久久午夜福利片| 欧美一级a爱片免费观看看| 自拍偷自拍亚洲精品老妇| 亚洲高清免费不卡视频| 91狼人影院| 日日撸夜夜添| 最新在线观看一区二区三区| 三级国产精品欧美在线观看| 日日摸夜夜添夜夜爱| 黄色欧美视频在线观看| 热99在线观看视频| 国产亚洲欧美98| 国产精品亚洲一级av第二区| 国产黄色小视频在线观看| 国产大屁股一区二区在线视频| 久久久久免费精品人妻一区二区| 国产一区亚洲一区在线观看| 欧美高清性xxxxhd video| 日本黄大片高清| 日韩欧美免费精品| 日韩一区二区视频免费看| 久久人人精品亚洲av| 男女视频在线观看网站免费| 免费av观看视频| 久久久久久伊人网av| 在线看三级毛片| 一级黄色大片毛片| 在线观看美女被高潮喷水网站| 久久久a久久爽久久v久久| 国产三级在线视频| 成人av在线播放网站| 中国美白少妇内射xxxbb| 国产精品久久久久久精品电影| 简卡轻食公司| 欧美三级亚洲精品| 国产成人a∨麻豆精品| 淫妇啪啪啪对白视频| 国产一区二区三区av在线 | 免费观看精品视频网站| 久久久久久伊人网av| 最近的中文字幕免费完整| .国产精品久久| 成年女人永久免费观看视频| 天堂影院成人在线观看| 亚洲乱码一区二区免费版| 一级毛片久久久久久久久女| 欧美潮喷喷水| 精品乱码久久久久久99久播| 国产91av在线免费观看| 精品人妻视频免费看| 久久久国产成人免费| 欧美不卡视频在线免费观看| 免费大片18禁| 午夜免费男女啪啪视频观看 | 人人妻人人看人人澡| 99热网站在线观看| 一卡2卡三卡四卡精品乱码亚洲| 日韩欧美 国产精品| 99国产精品一区二区蜜桃av| 国产成人一区二区在线| 变态另类丝袜制服| 一本精品99久久精品77| 热99在线观看视频| 精品午夜福利视频在线观看一区| 国产高清视频在线播放一区| 亚洲精品国产av成人精品 | 国内精品宾馆在线| 三级男女做爰猛烈吃奶摸视频| 深爱激情五月婷婷| 真人做人爱边吃奶动态| 九九久久精品国产亚洲av麻豆| 国产日本99.免费观看| 日本黄大片高清| 夜夜爽天天搞| 色5月婷婷丁香| 十八禁网站免费在线| 欧美成人精品欧美一级黄| 22中文网久久字幕| 国产淫片久久久久久久久| 免费av不卡在线播放| av在线天堂中文字幕| 日韩大尺度精品在线看网址| 精品乱码久久久久久99久播| av黄色大香蕉| 久久99热这里只有精品18| 色视频www国产| 国产精品综合久久久久久久免费| 国产精品嫩草影院av在线观看| 婷婷亚洲欧美| а√天堂www在线а√下载| 波多野结衣巨乳人妻| 国产精品,欧美在线| 晚上一个人看的免费电影| 日韩精品青青久久久久久| 男插女下体视频免费在线播放| 日本熟妇午夜| 嫩草影院新地址| 赤兔流量卡办理| 亚洲精品色激情综合| 亚洲美女搞黄在线观看 | 在线播放国产精品三级| 美女大奶头视频| 51国产日韩欧美| 国产极品精品免费视频能看的| 一个人观看的视频www高清免费观看| 中文资源天堂在线| 最近视频中文字幕2019在线8| 啦啦啦观看免费观看视频高清| 精品一区二区免费观看| 99热这里只有精品一区| 日韩中字成人| 如何舔出高潮| av国产免费在线观看| 人妻少妇偷人精品九色| 日本黄大片高清| 日韩高清综合在线| .国产精品久久| 久久久久久久午夜电影| 亚洲av中文字字幕乱码综合| 国产男人的电影天堂91| 六月丁香七月| 精品少妇黑人巨大在线播放 | 国产一区亚洲一区在线观看| 又黄又爽又刺激的免费视频.| 99久久精品热视频| 亚洲av不卡在线观看| 身体一侧抽搐| 日韩亚洲欧美综合| 国产免费一级a男人的天堂| 在线观看午夜福利视频| 欧美区成人在线视频| 色播亚洲综合网| 色5月婷婷丁香| 五月玫瑰六月丁香| 亚洲av成人精品一区久久| 亚洲av.av天堂| 日本三级黄在线观看| 亚洲成人中文字幕在线播放| 中出人妻视频一区二区| 亚洲成人中文字幕在线播放| 老司机福利观看| 亚洲精品一区av在线观看| 成人av在线播放网站| 寂寞人妻少妇视频99o| 久久天躁狠狠躁夜夜2o2o| 99久久九九国产精品国产免费| 在线观看美女被高潮喷水网站| 亚洲欧美成人精品一区二区| 国产一区二区三区在线臀色熟女| 日韩在线高清观看一区二区三区| 国产精品三级大全| 成熟少妇高潮喷水视频| 一a级毛片在线观看| 亚洲一区高清亚洲精品| 亚洲精品日韩av片在线观看| 亚洲一区高清亚洲精品| 亚洲成人中文字幕在线播放| 午夜精品国产一区二区电影 | 国产精品,欧美在线| 久久久久精品国产欧美久久久| 日韩精品有码人妻一区| 亚洲人成网站在线播| 97人妻精品一区二区三区麻豆| 桃色一区二区三区在线观看| 午夜福利在线在线| 啦啦啦啦在线视频资源| 亚洲国产精品sss在线观看| 最近手机中文字幕大全| 婷婷亚洲欧美| 欧美成人一区二区免费高清观看| 国产视频一区二区在线看| 久久午夜福利片| 欧美最新免费一区二区三区| 久久天躁狠狠躁夜夜2o2o| 亚洲精品一卡2卡三卡4卡5卡| 两个人视频免费观看高清| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲国产欧美人成| 18+在线观看网站| 噜噜噜噜噜久久久久久91| 在线国产一区二区在线| 俄罗斯特黄特色一大片| 内射极品少妇av片p| 嫩草影院新地址| 久久鲁丝午夜福利片| 男女之事视频高清在线观看| 少妇高潮的动态图| 成人无遮挡网站| av福利片在线观看| 毛片女人毛片| 国产免费男女视频| 欧美在线一区亚洲| 国产精品亚洲一级av第二区| 老司机影院成人| 人妻夜夜爽99麻豆av| 好男人在线观看高清免费视频| 我的老师免费观看完整版| 麻豆成人午夜福利视频| 神马国产精品三级电影在线观看| 男人狂女人下面高潮的视频| 热99在线观看视频| 真实男女啪啪啪动态图| 亚洲熟妇熟女久久| 精品久久久久久久人妻蜜臀av| a级毛片a级免费在线| 亚洲国产日韩欧美精品在线观看| 天美传媒精品一区二区| 婷婷精品国产亚洲av| 精品久久久久久久末码| 欧美三级亚洲精品| 国产精品美女特级片免费视频播放器| 国产av在哪里看| 国产69精品久久久久777片| 精品人妻视频免费看| 亚洲av不卡在线观看| 亚洲美女视频黄频| 国产综合懂色| 亚洲熟妇熟女久久| 日韩成人伦理影院| 欧美在线一区亚洲| 日本黄色视频三级网站网址| 国产精品美女特级片免费视频播放器| 国产精品福利在线免费观看| 成年av动漫网址| 精品一区二区免费观看| 成人综合一区亚洲| 亚洲最大成人av| 熟妇人妻久久中文字幕3abv| 亚洲精品影视一区二区三区av| 九九在线视频观看精品| 亚洲欧美中文字幕日韩二区| 国产男靠女视频免费网站| 免费看日本二区| 搡女人真爽免费视频火全软件 | 亚洲精品成人久久久久久| 99热这里只有精品一区| 亚洲av免费在线观看| 99热精品在线国产| 久久久精品欧美日韩精品| 欧美+日韩+精品| 69av精品久久久久久| 三级男女做爰猛烈吃奶摸视频| 99久久精品国产国产毛片| 一进一出抽搐gif免费好疼| 最近2019中文字幕mv第一页| 91av网一区二区| 欧美高清性xxxxhd video| 国产精品免费一区二区三区在线| 天堂av国产一区二区熟女人妻| 淫秽高清视频在线观看| 久久鲁丝午夜福利片| 国产精品久久视频播放| 国产精品一区二区性色av| 少妇人妻精品综合一区二区 | 丰满人妻一区二区三区视频av| 联通29元200g的流量卡| 超碰av人人做人人爽久久| 成年版毛片免费区| 午夜精品在线福利| av天堂在线播放| 成熟少妇高潮喷水视频| 可以在线观看的亚洲视频| 国产精品1区2区在线观看.| 春色校园在线视频观看| 91午夜精品亚洲一区二区三区| 又爽又黄无遮挡网站| 婷婷六月久久综合丁香| 亚洲在线自拍视频| 九色成人免费人妻av| 久久亚洲国产成人精品v| 69av精品久久久久久| 夜夜看夜夜爽夜夜摸| 亚洲成人久久爱视频| 午夜福利18| 精品久久久久久成人av| 国产欧美日韩精品亚洲av| 看片在线看免费视频| 露出奶头的视频| 人妻制服诱惑在线中文字幕| 免费观看的影片在线观看| 又粗又爽又猛毛片免费看| 国产v大片淫在线免费观看| 色综合亚洲欧美另类图片| 国产精品一区二区免费欧美| 国产精品精品国产色婷婷| 少妇高潮的动态图| 中国美白少妇内射xxxbb| av视频在线观看入口| 全区人妻精品视频| 热99re8久久精品国产| 婷婷色综合大香蕉| 国产精品一区二区免费欧美| 久久久精品欧美日韩精品| 人妻制服诱惑在线中文字幕| 日韩高清综合在线| 久久欧美精品欧美久久欧美| 亚洲不卡免费看| 日韩欧美三级三区| 尾随美女入室| 校园人妻丝袜中文字幕| 国产黄片美女视频| 简卡轻食公司| 精华霜和精华液先用哪个| 观看免费一级毛片| 听说在线观看完整版免费高清| 黄色配什么色好看| 国产亚洲精品久久久com| 蜜臀久久99精品久久宅男| 欧美成人免费av一区二区三区| 日韩三级伦理在线观看| 国产探花在线观看一区二区| 91久久精品国产一区二区三区| 看免费成人av毛片| 国产欧美日韩一区二区精品| 免费看a级黄色片| 在线播放国产精品三级| 91久久精品国产一区二区三区| 看免费成人av毛片| 国产片特级美女逼逼视频| 神马国产精品三级电影在线观看| 晚上一个人看的免费电影| 国产精品免费一区二区三区在线| 久久亚洲国产成人精品v| videossex国产| 亚洲精品亚洲一区二区| 欧洲精品卡2卡3卡4卡5卡区| 国产精品三级大全| 免费无遮挡裸体视频| 亚洲国产精品成人久久小说 | av视频在线观看入口| 亚洲中文字幕一区二区三区有码在线看| 一级黄片播放器| 久久精品国产亚洲av香蕉五月| 免费一级毛片在线播放高清视频| 免费搜索国产男女视频| 在线观看av片永久免费下载| 欧美高清性xxxxhd video| 国国产精品蜜臀av免费| 网址你懂的国产日韩在线| 国产美女午夜福利| 国产伦精品一区二区三区视频9| 啦啦啦观看免费观看视频高清| 嫩草影院新地址| 色哟哟哟哟哟哟| 如何舔出高潮| 床上黄色一级片| 日韩精品中文字幕看吧| 亚洲欧美中文字幕日韩二区| 日韩精品有码人妻一区| 午夜视频国产福利| 成人无遮挡网站| av中文乱码字幕在线| 级片在线观看| 一级毛片久久久久久久久女| 永久网站在线| 精品日产1卡2卡| 国产亚洲91精品色在线| 黄色一级大片看看| 亚洲人与动物交配视频| www.色视频.com| 中文字幕av在线有码专区| 毛片一级片免费看久久久久| 中文字幕av成人在线电影| 别揉我奶头 嗯啊视频| a级毛片免费高清观看在线播放| 在线观看66精品国产| a级毛色黄片| 日韩三级伦理在线观看| 日韩,欧美,国产一区二区三区 | 亚洲精品国产av成人精品 | 久久久a久久爽久久v久久| 超碰av人人做人人爽久久| 日本黄大片高清| 亚洲av不卡在线观看| 女生性感内裤真人,穿戴方法视频| h日本视频在线播放| 少妇熟女欧美另类| 97超视频在线观看视频| 少妇熟女aⅴ在线视频| 亚洲成人久久爱视频| 菩萨蛮人人尽说江南好唐韦庄 | 国产精品伦人一区二区| 九色成人免费人妻av| 人人妻人人澡人人爽人人夜夜 | 1000部很黄的大片| 精品久久久久久成人av| or卡值多少钱| 日本-黄色视频高清免费观看| 老司机午夜福利在线观看视频| 亚洲精品粉嫩美女一区| av天堂中文字幕网| 久久99热6这里只有精品| 亚洲18禁久久av| 老熟妇乱子伦视频在线观看| 免费在线观看成人毛片| 亚洲18禁久久av| 白带黄色成豆腐渣| 欧美色欧美亚洲另类二区| 国产高清视频在线观看网站| 成年版毛片免费区| 日本撒尿小便嘘嘘汇集6| 亚洲18禁久久av| 亚洲色图av天堂| 久久精品国产亚洲网站| 亚洲18禁久久av| 精品福利观看| 99热全是精品| 国产男人的电影天堂91| 国产黄片美女视频| 成年免费大片在线观看| 亚洲av成人av| 变态另类成人亚洲欧美熟女| 欧美中文日本在线观看视频| 国产一区二区激情短视频| 九九在线视频观看精品| 特大巨黑吊av在线直播| 国产精品爽爽va在线观看网站| 精品熟女少妇av免费看| 免费黄网站久久成人精品| 中国国产av一级| 免费在线观看影片大全网站| 国产精品永久免费网站| 免费看美女性在线毛片视频|