• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Layer-Constrained Triangulated Irregular Network Algorithm Based on Ground Penetrating Radar Data and Its Application

    2018-04-16 07:27:22ZhenwuWangandJianqiangMa

    Zhenwu Wang and Jianqiang Ma

    (Department of Computer Science and Technology, China University of Mining and Technology (Beijing), Beijing 100083, China)

    With the rapid development of visualization technology in scientific computing, three-dimensional (3D) geological modelling technology has increasingly attracted more and more attention, and has been widely used in the fields of digital geology, petroleum exploration and geotechnical engineering. The 3D geological modelling is the abstract reconstruction and reproduction for the geological bodies through 3D visualization technology[1]. The complexity of geological spatial relation increases the complicacy of data structure, topological relation and corresponding algorithms, which makes geological modelling very difficult[2], and the 3D modelling and visualization of geological data is the hotspot in the domain of geosciences. Surface element model[3]is widely applied to represent the digital geological surface, including regular rectangular grid and triangular irregular network (TIN).Compared with regular rectangular grid, the TIN method can change the size and number of triangular patches according to the complexity of the geological surface, which eliminates the data redundancy in visualization step, and maintain a high fitting accuracy[4]. The current research work[4-16]of TIN construction assumes that the discrete data point set is static and does not discuss how to handle dynamic data points in different levels. From the application view, the research of TIN application in geology field focused on terrain and stratum information, and almost all of them do not involve the 3D modelling of geological disease information according to our knowledge. Geological disease is a disaster phenomenen in geological environment, such as underground cavity, stagnant water and loose soil, and it has a great destructive effect on railway subgrade[17], highway tunnel lining[18]and cultural relics[19-20].

    According to the hierarchical division of the discrete data points, the paper proposes a layer-constrained TIN (named LC-TIN) algorithm, which can construct a closed or non-closed 2D/3D surface model, and the construction procedure is dynamic from layer to layer, which can realize high precision and arbitrary shape. In addition, a detection platform of geological disease has been developed which adopted the LC-TIN algorithm, and the practice proved its validity.

    The rest of this paper is organized as follows. Section 1 presents the related work about TIN algorithm and geological disease detection based on GPR data, some preliminary definitions are given in Section 2 and Section 3 discusses the details of the LC-TIN method. In Section 4, the experimental results are analyzed, and the application of LC-TIN in the detection platform of geological disease is discussed in Section 5, Section 6 concludes this work.

    1 Related Work

    The principle of TIN algorithm is to construct scattered and non-duplication points to form a continuous and non-overlapping irregular triangle network according to certain rules (such as Delaunay criterion) in order to simulate the 2D/3D object surface, and many scholars studied the TIN algorithm. Aiming at dealing with the inefficiency of network construction, Miao[8]rapidly constructed TIN in linear time by making virtual grid, and then adopted a local optimization method to handle the redundancy problem; Zheng[13]proposed a constrained lines embedding method in the TIN model, which first checked the influence domain of every constrained line and then extracted the influence domain boundary; Xuan[14]gave a new method(the sum of the quadratic distance from three vertices to the gravity center) to determine the skinny triangle for LiDAR data, in which the edge points cannot be detected only by the triangle shape variable; Longtin[15]gave a representation method for density elevation data, which transforms digital evaluation data to a TIN expression in order to reduce the quantity of terrain data; Chen[16]proposed a high precision model of digital elevation, which is based on 3D TIN method.

    The TIN method has been widely used to model terrain and stratum information[4-7,9].Xiong[3]used TIN to realize 3D modelling for the fault information, and adopted VTK (Visualization Toolkit) to implement the prototype system; Tan[5]proposed an automatic triangulation algorithm based on the triangular topological relation, and applied this algorithm to develop a 3D TIN platform; Wang[6]used the improved TIN algorithm to merge the adjacent convex shell blocks, which can optimize the sub-TIN data to form a complete topographic data for underwater navigation. Huang[7]emphatically discussed the robustness of Delaunay mesh generation based on the Bowyer-Watson incremental point insertion technology,and also addressed the stripping algorithm of TINs; Mao[9]proposed a new method of morphological analysis for geological interfaces based on TIN model, which used 3D TIN model to simulate geological interfaces and calculate the general geometry parameters. From the view of geological disease, most of research work[17-20]focused on the detailed diagnosis and preventive measures, and didn’t concern how to model them in 3D platform.

    From the above discussion it is obvious that the above algorithms do not constrain discrete data points in TIN model, and do not illustrate how to use TIN algorithm to model geological disease data. This paper gives a layer-constrained TIN method, which can construct TIN layer by layer dynamically, and the proposed algorithm has been applied to detect geological disease information, the details of LC-TIN are described in Section 2.

    2 Preliminaries

    In order to describe the LC-TIN algorithm, some basic conceptions have been given as follows.

    Def1Geological data pointδ=<ζ,γ>

    The geological data pointδis a tuple,ζrepresents a 3D coordinate value, andζ=,γis the attribute value ofδ, for example the reflection value of electromagnetic wave.

    Def2Geological data sliceζ

    (1)

    Def3Pickup line l

    Def4Pickup line setψ

    Def5Adjacent pickup line pairη

    Def6Base line ?

    Def7Base edgeσ

    Def8Pickup triangleT

    Def9Pickup triangle setΦ

    Def10Pickup 3D bodyΩ

    The 3D body constructed byΦb={Φbc|c=1,2,…,Nb} is defined asΩb, andΩ={Ωb|b=1,2,…,t}.

    Def11Cosine value and circumcircle radius

    (2)

    The lengths of the other two edges (A and B) are defined as follows

    (3)

    (4)

    (5)

    (6)

    The above conceptions can be summarized in Tab.1.

    Tab.1 Basic conceptions in LC-TIN algorithm

    3 Principles of LC-TIN Algorithm

    In order to triangulate the finite point sets in three-dimensional space, the Delaunay criterion should satisfy the following rules.

    According to closeness, 3D bodies can be classified into closed and non-closed types, and corresponding toηthere are 4 cases, which are described in Fig. 1.

    Fig.1 Closeness of ηbc

    The LC-TIN algorithm is the greedy algorithm based on Delaunay rules, which is also a local optimum algorithm. The algorithm input isψ, the output isΩ, step (2) represents traversing all theζ, steps (3) and (4) indicate to traverse all the geological disease bodies and their l, and steps (5)(6) can generate the currentηand select ?, step (7) traverses all the points on the ?, steps (8)-(10) selectσand constructTthrough choosing the third point following some rules (such as the sum of circumcircle areas is minimum or the maximum angle), at lastΦis generated and formedΩ. The LC-TIN algorithm, which constructstgeological bodies, is described as follows.

    Algorithm: LC-TIN

    Input:Ψ

    Output:Ω

    (1) ifΨ≠NULL{

    (2) for(b=1;b

    (3) for(c=1;Nb-1;c+){

    (4) for (p=1;p

    (6) select ?bcfromηbc

    (7) for (i=1;Nηbc;i++) {

    (11) Handle other special points to formT

    (12) } ∥end for (7)

    (13) }∥ end for(4)

    (14) }∥end for (3)

    (15) addΦbctoΦb

    (16) }∥end for (2)

    (17) generate the wholeΦand form the wholeΩ

    (18) } ∥ end if

    4 Experimental Results Analysis

    4.1 Comparison of 3D modelling effects

    Fig.2 Application of LC-TIN

    Described in Fig. 2, the LC-TIN algorithm can construct a triangle network under the constraint of triangle non-overlap and satisfy the Delaunay criterion. Fig.2b and Fig.2c show the details of 3D body 1 and 2 in Fig. 2a respectively, and they compare with the corresponding 3D bodies (described by Fig. 2d and Fig.2e) which adopt the method of connecting triangles sequentially and layer by layer.Obviously,the LC-TIN algorithm can draw the 3D body more smoothly and naturally than the compared method.

    4.2 Comparison of time complexity

    Different experiments have been conducted according to differentζamounts, differentσnumbers, no matter whether data points are allocated equally on differentζor not, in order to test the runtime of the LC-TIN algorithm. The hardware and software running environments are specified as follows: CPU is Intel(R) Core(TM) i5-4210H 2.90 GHz, memory is RAM 4.00 GB, the operating system is Windows 8 64 bit, the development platform is VS.NET 2013, programming language is C++, and the rendering method is OpenGL.

    For the construction of one geological body, the amount of total data points is supposed to beN, the number of total layers isM, the amount of data points allocating to every layer ismi,i∈[1,m]. Shown in Fig. 3, this paper gave the running time of LC-TIN algorithm when data points are allocated equally on every layer, andN=1 000, 3 000, 5 000,10 000 andM=10, 20,30,40,50 respectively (m=mi=N/M). From Fig. 3 it can be noted that the data point number is reduced and running time is decreased with the increasing layer amount under the constraint of the same data point amount. DifferentNdescribes the same trend and biggerM, more running time. The running time deceases with the layer increasing on the premise that the total data point amount does not change, the reason is that the time complexity of the LC-TIN isO(Mm2) andM

    Fig.3 Runtime of LC-TIN (points average distribution)

    LayeramountTotalpointamount100030005000100001021166135102012025420210961131019320213302097614110255203044021576201103122032750224762521032620357

    Shown as Tab.2, with the increasing of total points, the generated triangles rise continuously under the same layer amount, with the increasing of total layers, the generated triangles have little changes and the running time decreased under the same total point amount, described as Fig. 3, the decreased point number on each layer leads to the reduced running time, and this characteristic is useful to construct a complex 3D body.

    The amount of triangles is described in Tab. 3 under the inequality allocation situation. Similar to Tab. 2, with the increasing of total points amount, the generated triangles rise gradually at the same layer number, and for the same total point amount, with the increasing of total layer number, the generated triangles little changed, but if the total layer amount increases, the running time reduces at the same data points, described as Fig. 4.

    Fig.4 Runtime of LC-TIN (points non-average distribution)

    TotallayerTotaldatapoints100030005000100001021146145102212023120211661251017920230302127616810273203194021376232103012023950219062401031720336

    5 Application in Geological Disease Recognition

    For geological engineering application, it has important significance that how to quickly identify the geological diseases (such as underground water or empty) and underground landfill (such as underground pipeline), which can prevent and diagnize the public disasters. The paper verified the validity of LC-TIN algorithm based on GPR data, and the GPR instrument is MTGR-4F vehicle borne geological radar which is independently developed by our research team. Its detailed parameters are shown as follows: the detection depth is 5 m, the time window is 100 ns, the sampling number is 512, and the antenna frequency is 200 MHz. The experimental data is obtained from Middle East Third Ring Road, Chaoyang District, Beijing City. The survey targets include: ① the layered structure of the underground; ② whether there are underground pipelines or not; and ③ whether there are empty cavities or not. The value ranges of experimental data is in [-23 679, 15 421], the number of measured lines is 3, the number of sampling paths is 18 632, 18 088 and 18 838 respectively, the experimental data collection work is shown in Fig.5.

    Fig.5 Acquirement of experiment data

    C++ programming language and OpenGL have been adopted to develop the 3D visualization platform based on GPR data, which used LC-TIN algorithm to construct 3D model for geological diseases.

    Shown in Fig. 6a, the GPR data should be organized firstly, which are the original survey line data generated by our MTGR-4F GPR instrument, then the Kriging algorithm has been adopted to interpolate the GPR data, which can generate the spatial data covered all the detection area and is described by Fig. 6b,the paper utilized the disease information on the 1-5 slices in Fig. 6c, which based on geological expert experience through human-computer interaction model, and the LC-TIN algorithm has been used to construct the 3D model of geological diseases in Fig. 6d, this method can not only compute the total or partial volume of disease body accuracy and flexibly, but also can project the 3D disease object onto any 3D plane, which can provide a reliable basis for the prevention and diagnosis of the geological disaster problems. As described in Fig.6d, the geological diseases can be displayed in the detection area totally or partially, which is generated by visualizing different parts between two slices.

    Fig.6 3D visualization platform based on LC-TIN

    6 Conclusion

    The TIN algorithm is widely used in digital geology, petroleum exploration, geotechnical engineering and other fields, which solves a series of problems, such as the formation of terrain modelling, the drainage network extraction, the routes design, and so on. At present, the automatic extraction of geological disease information is very difficult, while it is necessary for geological experts to recognize and extract the information in the process of human-computer interaction. In this process, discrete data points are dynamically changing at different levels. To solve this problem, the paper proposed a layered-constrained TIN algorithm for 3D modelling , and the algorithm is adopted to construct a geological disease model, which can calculate geological diseases (such as underground cavity or water) information conveniently, and provide a reliable basis for accurate treatment of geological disasters. In the future, how to deeply analyze the inner information of 3D geological bodies is an important research topic, which needs to design proper volume element models. In addition GPU-based rendering technology is another research hotpot which can enhance the graphics processing efficiency.

    [1] Wu C L, He Z W, Weng Z P, et al. Property, classification and key technologies of three-dimensional geological data visualization[J]. Geological Bulletin of China, 2011,30(5):642-649. (in Chinese)

    [2] Wu Q, Xu H. Research of three-dimensional geological modeling and visualization method [J]. Science in China Ser.D Earth Sciences, 2004,34(1):54-60. (in Chinese)

    [3] Li Fangxing, Wu Pingdong, Sun Huafei, et al. 3D object recognition based on linear Lie algebra model[J]. Journal of Beijing Institute of Technology, 2009, 18(1): 46-50.

    [4] Xiong Z Q, He H J, Xia Y H. Study on technology of 3D stratum modeling and visualization based on TIN[J]. Rock and Soil Mechanics, 2007,28(9):1954-1958. (in Chinese)

    [5] Tan R C, Du Q Y, Yang P F, et al. Optimized triangulation arithmetic in modeling terrain[J]. Geomatics and Information Science of Wuhan University, 2006,31(5):436-439. (in Chinese)

    [6] Wang L H, Gao X Z, Liang B B, et al. Optimized method of building underwater terrain navigation database based on triangular irregular network[J]. Journal of Chinese Inertial Technology, 2015,23(3):345-349. (in Chinese)

    [7] Huang Z G, Chen J J, Zheng Y. Triangulated irregular network based chunk griddling algorithm for terrain render-ing[J]. Journal of Zhejiang University(Engineering Science), 2009, 43(10):1939-1944. (in Chinese)

    [8] Miao Q G, Shi J J, Liu T G, et al. New efficient DSM gener-ating algorithm based on TIN[J]. Systems Engineering and Electronics, 2014,36(9):1868-1973. (in Chinese)

    [9] Mao X C, Zhao Y, Tang Y H, et al. Three-dimensional morphological analysis method for geological interfaces based on TIN and its application[J]. Journal of Central South University(Science and Technology),2013, 44(4):1493-1499. (in Chinese)

    [10] Liu X J, Wang Y J, Ren Z, et al. Algorithm for extracting drainage network based on triangulated irregular network[J]. Journal of Hydraulic Engineering, 2008, 39(1):27-34. (in Chinese)

    [11] Chen H F, Ye S P, Huang Z C, et al. Ocean scientific sur-vey route designing method syncretizing triangulated ir-regular networks and genetic algorithm[J]. Journal of Zhejiang University(Engineering Science), 2009,43(11) :1951-1957. (in Chinese)

    [12] Ma C H, Dai Q, Wang J M, et al. Based on clump organi-zation rules to construct Triangular Irregular Networks[J]. Computer Engineering and Applications, 2012,48(3):169-172. (in Chinese)

    [13] Zheng J T, Zhang T , He H H, et al. Embedding of a con-strained line into a triangulated irregular network[J]. Journal of Tsinghua University(Science & Technology), 2014,54(12):1155-1159. (in Chinese)

    [14] Xuan H J, Miao Q G, Liu R Y, et al. A novel algorithm based on triangulated irregular network for edge detection from LiDAR data[J]. Acta Optica Sinica, 2014, 34(12):1-7. (in Chinese)

    [15] Longtin, Michael J. Efficient representation of dense ele-vation grids via triangulated irregular networks[C]∥Fall Simulation Interoperability Workshop, Orlando, United States,2014:162-170.

    [16] Chen B S, Fu Z, Ouyang H Y. High accuracy regular grid digital elevation model modeling based on 3D triangulated irregular network using total station measured points[J]. Sensor Letters,2014,12(3-5):499-508.

    [17] Yang X A, Gao Y L. GPR inspection for Shanghai-Nanjing railway trackbed[J]. Chinese Journal of Rock Mechanics and Engineering, 2004,23(1):116-119. (in Chinese)

    [18] Qian R Q, Yang X Y, Wang X H. Control of geological disaster in Huayingshan highway tunnel[J]. Coal Geology & Exploration, 2003,31(2):48-50. (in Chinese)

    [19] He Y. A study of geological disease analyses and renova-tion methods in Lingquan Temple Grotto of Henan, China[J]. Rock and Soil Mechanics, 2000,21(1):56-59. (in Chinese)

    [20] Li Y R, Chen Z X, Zhou L Z. Research on prevention countermeasure and main geoenvironmental cause of large-scale ancient sites in South China[J]. Chinese Journal of Rock Mechanics and Engineering, 2009,28(Supp.2):3795-3800. (in Chinese)

    别揉我奶头~嗯~啊~动态视频| 国产精品,欧美在线| 国产精品免费视频内射| 亚洲av成人精品一区久久| 亚洲欧美激情综合另类| 久久亚洲真实| 男女床上黄色一级片免费看| www.自偷自拍.com| 熟妇人妻久久中文字幕3abv| 最新在线观看一区二区三区| 久久精品91无色码中文字幕| 久久精品影院6| 在线视频色国产色| 久热爱精品视频在线9| 精品国产乱子伦一区二区三区| 久久精品国产99精品国产亚洲性色| 最近最新中文字幕大全免费视频| 亚洲中文av在线| 美女黄网站色视频| 日韩欧美 国产精品| 婷婷亚洲欧美| 亚洲成av人片在线播放无| 欧美大码av| 精品午夜福利视频在线观看一区| 日韩有码中文字幕| 在线观看午夜福利视频| 欧美日韩乱码在线| 久久久国产精品麻豆| 88av欧美| 午夜福利欧美成人| 日本五十路高清| 嫩草影视91久久| 精品国产超薄肉色丝袜足j| 女同久久另类99精品国产91| 国产精品乱码一区二三区的特点| 久久精品国产综合久久久| 波多野结衣巨乳人妻| 男女那种视频在线观看| 欧美大码av| 99热这里只有精品一区 | 最好的美女福利视频网| 午夜视频精品福利| 亚洲成人免费电影在线观看| 熟女电影av网| 久久久久久免费高清国产稀缺| 日本成人三级电影网站| 国产精品99久久99久久久不卡| 757午夜福利合集在线观看| 女人爽到高潮嗷嗷叫在线视频| 天堂av国产一区二区熟女人妻 | 不卡一级毛片| 我的老师免费观看完整版| 国产精品影院久久| 每晚都被弄得嗷嗷叫到高潮| 妹子高潮喷水视频| 人妻夜夜爽99麻豆av| av福利片在线观看| 亚洲最大成人中文| 在线国产一区二区在线| 最近最新中文字幕大全电影3| 国产高清videossex| 国产精品久久电影中文字幕| 中出人妻视频一区二区| 免费看日本二区| 狂野欧美激情性xxxx| 99精品久久久久人妻精品| 久久久久国内视频| 久久久久国内视频| 最近最新中文字幕大全免费视频| 淫秽高清视频在线观看| 日本精品一区二区三区蜜桃| 男女午夜视频在线观看| 午夜两性在线视频| 不卡av一区二区三区| 亚洲午夜理论影院| 国产成人精品久久二区二区免费| 怎么达到女性高潮| 伦理电影免费视频| 国产精品永久免费网站| 熟女少妇亚洲综合色aaa.| 精品欧美国产一区二区三| 久久精品91无色码中文字幕| 最近最新免费中文字幕在线| 麻豆国产97在线/欧美 | 天堂√8在线中文| 美女高潮喷水抽搐中文字幕| 亚洲精品久久成人aⅴ小说| 女人高潮潮喷娇喘18禁视频| 国产一区二区三区视频了| 久久精品91蜜桃| 亚洲精品一卡2卡三卡4卡5卡| 亚洲精品av麻豆狂野| 高清在线国产一区| 精品午夜福利视频在线观看一区| 国产亚洲欧美98| 国产真实乱freesex| 午夜福利视频1000在线观看| 亚洲性夜色夜夜综合| 国产精品日韩av在线免费观看| 久久精品影院6| 香蕉av资源在线| 国产蜜桃级精品一区二区三区| 国产一区二区在线观看日韩 | 99久久国产精品久久久| 母亲3免费完整高清在线观看| 亚洲av第一区精品v没综合| 久久久久久国产a免费观看| 90打野战视频偷拍视频| 露出奶头的视频| 黄色视频,在线免费观看| 亚洲性夜色夜夜综合| 91av网站免费观看| 欧美在线一区亚洲| 国产高清有码在线观看视频 | 99久久国产精品久久久| 欧美丝袜亚洲另类 | 村上凉子中文字幕在线| 国产又色又爽无遮挡免费看| 亚洲欧美日韩无卡精品| 少妇人妻一区二区三区视频| av欧美777| 欧美黑人欧美精品刺激| 九色成人免费人妻av| 99国产精品一区二区蜜桃av| 精品久久久久久久末码| 十八禁人妻一区二区| tocl精华| 97超级碰碰碰精品色视频在线观看| 日本三级黄在线观看| 丁香六月欧美| 成人高潮视频无遮挡免费网站| 熟女电影av网| 欧美日本亚洲视频在线播放| 美女黄网站色视频| 国产精品av久久久久免费| 久久久久九九精品影院| 国产97色在线日韩免费| 国产aⅴ精品一区二区三区波| 久久精品国产综合久久久| 在线观看免费视频日本深夜| 亚洲 国产 在线| 在线观看一区二区三区| 午夜免费观看网址| av在线天堂中文字幕| 最近最新中文字幕大全免费视频| 欧美日韩一级在线毛片| 国产69精品久久久久777片 | 在线看三级毛片| 伦理电影免费视频| 亚洲午夜理论影院| 一边摸一边做爽爽视频免费| 亚洲成人精品中文字幕电影| 天堂动漫精品| 成人午夜高清在线视频| 后天国语完整版免费观看| 精品日产1卡2卡| 免费一级毛片在线播放高清视频| 777久久人妻少妇嫩草av网站| 12—13女人毛片做爰片一| 亚洲国产精品999在线| 欧美在线黄色| 国产男靠女视频免费网站| 法律面前人人平等表现在哪些方面| a在线观看视频网站| 亚洲熟妇中文字幕五十中出| 久久亚洲精品不卡| 国产不卡一卡二| 嫩草影视91久久| 一二三四在线观看免费中文在| 久久精品国产综合久久久| 亚洲人成网站高清观看| 校园春色视频在线观看| 成年女人毛片免费观看观看9| 人妻久久中文字幕网| 两性夫妻黄色片| 国产成人影院久久av| 国产成人影院久久av| 欧美成狂野欧美在线观看| 久久人妻福利社区极品人妻图片| 搡老岳熟女国产| 色哟哟哟哟哟哟| 免费观看精品视频网站| 成人欧美大片| 99热这里只有是精品50| 中文字幕久久专区| 亚洲国产欧美网| 国产伦在线观看视频一区| 中文字幕高清在线视频| 91在线观看av| 男男h啪啪无遮挡| 国产熟女xx| 不卡av一区二区三区| 波多野结衣巨乳人妻| 看免费av毛片| 正在播放国产对白刺激| 婷婷丁香在线五月| 最新在线观看一区二区三区| 男女视频在线观看网站免费 | 国产精品香港三级国产av潘金莲| 麻豆国产97在线/欧美 | 欧美另类亚洲清纯唯美| 1024手机看黄色片| 久久精品国产亚洲av高清一级| 久久久久久久久久黄片| av国产免费在线观看| 麻豆久久精品国产亚洲av| 国产黄片美女视频| 老司机在亚洲福利影院| 韩国av一区二区三区四区| 欧美 亚洲 国产 日韩一| 成人精品一区二区免费| 啦啦啦韩国在线观看视频| 桃色一区二区三区在线观看| 亚洲成a人片在线一区二区| 国产成人一区二区三区免费视频网站| 99热6这里只有精品| 热99re8久久精品国产| 嫁个100分男人电影在线观看| 久久中文字幕人妻熟女| 久久精品成人免费网站| 桃色一区二区三区在线观看| 亚洲人成伊人成综合网2020| 亚洲欧美精品综合久久99| 少妇的丰满在线观看| 亚洲欧美精品综合久久99| 亚洲成人中文字幕在线播放| 99国产精品一区二区三区| 韩国av一区二区三区四区| 国产探花在线观看一区二区| √禁漫天堂资源中文www| 一夜夜www| av有码第一页| 国产精品自产拍在线观看55亚洲| or卡值多少钱| 国内久久婷婷六月综合欲色啪| 操出白浆在线播放| 久99久视频精品免费| 久久天躁狠狠躁夜夜2o2o| 在线免费观看的www视频| 少妇被粗大的猛进出69影院| 免费高清视频大片| 国产成人精品无人区| 成人手机av| 女警被强在线播放| 99久久综合精品五月天人人| 免费看日本二区| 天堂av国产一区二区熟女人妻 | а√天堂www在线а√下载| 午夜亚洲福利在线播放| 国产高清有码在线观看视频 | 成人国产综合亚洲| 久久久水蜜桃国产精品网| 国产视频内射| 国产乱人伦免费视频| 国产片内射在线| 久久久国产成人精品二区| 国产区一区二久久| 成人18禁在线播放| 蜜桃久久精品国产亚洲av| 成人18禁在线播放| 看免费av毛片| av福利片在线观看| 老汉色∧v一级毛片| 国内少妇人妻偷人精品xxx网站 | 一级毛片女人18水好多| 日本三级黄在线观看| 中文字幕最新亚洲高清| 99久久99久久久精品蜜桃| 国产精品亚洲一级av第二区| 亚洲午夜精品一区,二区,三区| 麻豆久久精品国产亚洲av| 国产精品影院久久| 欧美+亚洲+日韩+国产| 少妇人妻一区二区三区视频| 午夜免费观看网址| 国产亚洲欧美在线一区二区| 色播亚洲综合网| 19禁男女啪啪无遮挡网站| 91av网站免费观看| 欧美zozozo另类| 午夜精品在线福利| 免费看日本二区| 久久热在线av| 亚洲av中文字字幕乱码综合| 欧美日韩国产亚洲二区| 三级男女做爰猛烈吃奶摸视频| 在线观看免费视频日本深夜| 精品无人区乱码1区二区| 国产亚洲欧美98| 久久性视频一级片| 久久香蕉激情| 又爽又黄无遮挡网站| 国产精品一区二区免费欧美| 欧美日本视频| 亚洲av片天天在线观看| 在线a可以看的网站| 国内少妇人妻偷人精品xxx网站 | 国产av一区在线观看免费| 久久亚洲真实| 在线免费观看的www视频| 欧美黄色片欧美黄色片| 巨乳人妻的诱惑在线观看| 丰满的人妻完整版| 久久精品影院6| 久久中文字幕一级| 国产精华一区二区三区| 欧美另类亚洲清纯唯美| 久久 成人 亚洲| 国产精品1区2区在线观看.| 麻豆久久精品国产亚洲av| 亚洲精品一区av在线观看| 麻豆久久精品国产亚洲av| 悠悠久久av| 97碰自拍视频| 久久亚洲精品不卡| 欧美日韩中文字幕国产精品一区二区三区| 日本免费a在线| 亚洲一码二码三码区别大吗| 国产亚洲av嫩草精品影院| 可以在线观看的亚洲视频| 日韩欧美在线二视频| 男男h啪啪无遮挡| 大型黄色视频在线免费观看| 丰满的人妻完整版| 一本久久中文字幕| 欧美乱妇无乱码| 精品欧美国产一区二区三| 欧美国产日韩亚洲一区| 久久午夜综合久久蜜桃| 搡老熟女国产l中国老女人| 久久精品91蜜桃| 欧美+亚洲+日韩+国产| 五月玫瑰六月丁香| 一个人免费在线观看的高清视频| 欧美成人一区二区免费高清观看 | 特大巨黑吊av在线直播| 18禁裸乳无遮挡免费网站照片| 美女 人体艺术 gogo| 国产精品永久免费网站| 看免费av毛片| 欧美日韩精品网址| 欧美一区二区精品小视频在线| 啦啦啦免费观看视频1| 免费在线观看完整版高清| 69av精品久久久久久| 国产亚洲av嫩草精品影院| 亚洲欧美日韩高清在线视频| 成人一区二区视频在线观看| 激情在线观看视频在线高清| 久久婷婷成人综合色麻豆| 美女大奶头视频| 免费搜索国产男女视频| 久久国产精品人妻蜜桃| 久久 成人 亚洲| 岛国在线观看网站| 亚洲精品中文字幕在线视频| 色在线成人网| 天堂动漫精品| 国产精品爽爽va在线观看网站| 成年人黄色毛片网站| 精品熟女少妇八av免费久了| 精品久久蜜臀av无| 亚洲va日本ⅴa欧美va伊人久久| 成人亚洲精品av一区二区| 99热这里只有是精品50| 9191精品国产免费久久| 成人精品一区二区免费| 亚洲一区二区三区不卡视频| 国产激情久久老熟女| 亚洲av片天天在线观看| 两个人看的免费小视频| www日本在线高清视频| 国产精品影院久久| 亚洲精品久久成人aⅴ小说| 国产午夜精品久久久久久| 国产精品九九99| 亚洲五月天丁香| www.www免费av| 欧美黄色淫秽网站| 亚洲国产中文字幕在线视频| 中文字幕久久专区| 亚洲国产高清在线一区二区三| 亚洲av成人不卡在线观看播放网| 欧美黄色片欧美黄色片| 精品久久久久久久末码| 国产真实乱freesex| 中出人妻视频一区二区| 好看av亚洲va欧美ⅴa在| 欧美日韩黄片免| 久久99热这里只有精品18| 舔av片在线| 999久久久精品免费观看国产| 亚洲av成人精品一区久久| 少妇熟女aⅴ在线视频| 久久久久久人人人人人| 日韩欧美一区二区三区在线观看| 视频区欧美日本亚洲| 在线观看免费午夜福利视频| 日本在线视频免费播放| 国产精品电影一区二区三区| 黄色成人免费大全| 久久久久亚洲av毛片大全| 欧美黑人欧美精品刺激| a在线观看视频网站| 黄色丝袜av网址大全| 熟妇人妻久久中文字幕3abv| 欧美一区二区精品小视频在线| 午夜福利18| 琪琪午夜伦伦电影理论片6080| 夜夜爽天天搞| 国产单亲对白刺激| 一区二区三区激情视频| 欧美av亚洲av综合av国产av| 亚洲激情在线av| 母亲3免费完整高清在线观看| 欧美黄色淫秽网站| 日日夜夜操网爽| 两个人的视频大全免费| 免费在线观看完整版高清| 高清毛片免费观看视频网站| 一卡2卡三卡四卡精品乱码亚洲| 欧美绝顶高潮抽搐喷水| 免费看a级黄色片| 黄色视频不卡| 91av网站免费观看| 又爽又黄无遮挡网站| 少妇熟女aⅴ在线视频| 免费看a级黄色片| 午夜亚洲福利在线播放| 国内精品久久久久久久电影| 亚洲av中文字字幕乱码综合| 成年版毛片免费区| 日韩中文字幕欧美一区二区| 999久久久国产精品视频| 在线视频色国产色| 大型黄色视频在线免费观看| 麻豆久久精品国产亚洲av| www日本黄色视频网| 国内毛片毛片毛片毛片毛片| 香蕉国产在线看| 久久午夜综合久久蜜桃| 91在线观看av| 日韩精品青青久久久久久| 国产精品久久久久久精品电影| 亚洲人成77777在线视频| 黄片大片在线免费观看| 国产区一区二久久| 一本大道久久a久久精品| 国产野战对白在线观看| 午夜福利18| 欧美日韩乱码在线| 中国美女看黄片| 校园春色视频在线观看| 色综合婷婷激情| 欧美成人午夜精品| 日韩欧美 国产精品| or卡值多少钱| 欧美日韩一级在线毛片| 两个人看的免费小视频| 动漫黄色视频在线观看| 亚洲av美国av| 亚洲色图 男人天堂 中文字幕| 无人区码免费观看不卡| 后天国语完整版免费观看| 他把我摸到了高潮在线观看| 国产激情偷乱视频一区二区| 欧美三级亚洲精品| 香蕉av资源在线| 女人高潮潮喷娇喘18禁视频| 91成年电影在线观看| 精品熟女少妇八av免费久了| 高潮久久久久久久久久久不卡| 99久久久亚洲精品蜜臀av| a级毛片a级免费在线| 午夜激情福利司机影院| 一进一出抽搐动态| 在线国产一区二区在线| 国产av在哪里看| 久久人妻福利社区极品人妻图片| 1024手机看黄色片| 国产片内射在线| 老汉色∧v一级毛片| 97人妻精品一区二区三区麻豆| 俄罗斯特黄特色一大片| 在线观看美女被高潮喷水网站 | 国产精品一区二区精品视频观看| 亚洲无线在线观看| 午夜成年电影在线免费观看| 一级a爱片免费观看的视频| 在线观看免费午夜福利视频| av免费在线观看网站| av视频在线观看入口| 在线观看舔阴道视频| 国产真人三级小视频在线观看| 国产97色在线日韩免费| 成人av在线播放网站| 国产av一区在线观看免费| 一边摸一边做爽爽视频免费| 国产91精品成人一区二区三区| a在线观看视频网站| 亚洲天堂国产精品一区在线| 老司机福利观看| 精品一区二区三区四区五区乱码| 国产v大片淫在线免费观看| av福利片在线观看| 1024香蕉在线观看| 亚洲色图 男人天堂 中文字幕| 欧美日本视频| 亚洲中文字幕一区二区三区有码在线看 | 神马国产精品三级电影在线观看 | 国产私拍福利视频在线观看| 亚洲av电影在线进入| 1024手机看黄色片| 午夜成年电影在线免费观看| 欧美日韩精品网址| 香蕉久久夜色| 在线a可以看的网站| 国产亚洲av高清不卡| 18禁观看日本| 亚洲成av人片免费观看| 国产精品免费视频内射| cao死你这个sao货| 欧美日韩瑟瑟在线播放| 亚洲无线在线观看| 一级毛片高清免费大全| 日韩欧美一区二区三区在线观看| 亚洲国产中文字幕在线视频| avwww免费| 一卡2卡三卡四卡精品乱码亚洲| 美女大奶头视频| 少妇的丰满在线观看| 日韩欧美精品v在线| 精品欧美国产一区二区三| 欧美日韩黄片免| 淫秽高清视频在线观看| 成人精品一区二区免费| 国产av在哪里看| 久久久久国内视频| 无人区码免费观看不卡| 国产精品永久免费网站| 又粗又爽又猛毛片免费看| 国产亚洲精品第一综合不卡| 欧美日韩黄片免| 男女做爰动态图高潮gif福利片| 国产男靠女视频免费网站| 久久久久久国产a免费观看| 香蕉国产在线看| 看黄色毛片网站| www.自偷自拍.com| 国内毛片毛片毛片毛片毛片| 久久天躁狠狠躁夜夜2o2o| 成人国语在线视频| 亚洲午夜理论影院| 在线十欧美十亚洲十日本专区| 悠悠久久av| 五月玫瑰六月丁香| 亚洲天堂国产精品一区在线| 日本在线视频免费播放| 夜夜夜夜夜久久久久| 黑人欧美特级aaaaaa片| 999久久久国产精品视频| 宅男免费午夜| 又爽又黄无遮挡网站| 两性午夜刺激爽爽歪歪视频在线观看 | 久久国产乱子伦精品免费另类| 老司机午夜十八禁免费视频| 亚洲一区二区三区不卡视频| 国产成+人综合+亚洲专区| 99久久精品热视频| 国产高清视频在线观看网站| 欧美乱妇无乱码| 亚洲欧洲精品一区二区精品久久久| 麻豆成人av在线观看| 两个人免费观看高清视频| 99riav亚洲国产免费| 制服人妻中文乱码| 午夜激情av网站| 国产三级中文精品| 一区福利在线观看| 国产91精品成人一区二区三区| 亚洲一码二码三码区别大吗| 精品一区二区三区四区五区乱码| 国产乱人伦免费视频| 一级a爱片免费观看的视频| 男女之事视频高清在线观看| 国产精品日韩av在线免费观看| 亚洲aⅴ乱码一区二区在线播放 | 天天躁夜夜躁狠狠躁躁| 久久这里只有精品中国| 床上黄色一级片| 极品教师在线免费播放| 欧美极品一区二区三区四区| 身体一侧抽搐| 99久久精品热视频| 久久香蕉精品热| 黄色视频,在线免费观看| 欧美成人性av电影在线观看| 免费看日本二区| 在线观看美女被高潮喷水网站 | 国产1区2区3区精品| 最近视频中文字幕2019在线8| 国产精品乱码一区二三区的特点| 亚洲五月天丁香| 人妻夜夜爽99麻豆av| 麻豆国产av国片精品| 在线视频色国产色| 国产亚洲欧美在线一区二区| 国产激情偷乱视频一区二区| 国产欧美日韩一区二区三| 伦理电影免费视频| 国产精品香港三级国产av潘金莲| 日本 欧美在线| 桃色一区二区三区在线观看| 狂野欧美白嫩少妇大欣赏| 波多野结衣巨乳人妻|