• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Particle Filter Object Tracking Algorithm Based on Sparse Representation and Nonlinear Resampling

    2018-04-16 07:27:01ZheyiFanShuqinWengJiaoJiangYixuanZhuandZhiwenLiu

    Zheyi Fan, Shuqin Weng, Jiao Jiang, Yixuan Zhu and Zhiwen Liu

    (School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China)

    As an active research topic in the field of image processing and computer vision, video real-time object tracking[1]is important in establishing spatial and temporal coherent relationships of object motion states between consecutive frames. Yet it is still challenging to guarantee the stability and accuracy of tracking in complex real-world scenarios due to occlusion, illumination changes and abrupt motion[2-3]. Abrupt motions of objects, such as uncertain and fast motions, fast and high dynamic changing directions range, are ubiquitous in the scenes like sport events as well as in low frame rate videos, so tracking these kinds of objects have attracted wide attention.

    However, most traditional tracking methods cannot accurately track objects with abrupt motions due to their smooth motion assumptions. Therefore, some novel methods have been proposed to handle the abrupt motion tracking. On the one hand, Kwon et al.[4]combined the Wang-Landau sampling with Markov Chain Monte Carlo (MCMC) to propose the WLMC-based tracking. Nguyen et al.[5]utilized sparse estimates of motion direction derived from local features to generate particles by MCMC, which can effectively reduce the search space and handle abrupt motions. Zhou et al.[6]proposed an adaptive stochastic approximation Monte Carlo sampling to solve the problem of abrupt motion tracking.

    On the other hand, considering that particle-filtering based tracking methods[7]can be effectively applied to estimate the object motion states of nonlinear and non-Gaussian system, researchers have proposed abrupt motion tracking algorithms based on the particle filter (PF) method[8-10]. Su et al.[8]detect the regions with visual saliency as the global proposal distribution and then sample particles from it to avoid suffering from local maxima. Morimitsu et al.[9]combined frame description with attributed relational graphs with PF, to track multiple objects with abrupt motions in structured sports videos. These PF-based methods can handle abrupt motions, however, most of them cause the problem of particle diversity impoverishment.The traditional resampling process of PF duplicates particles with large weights and removes those with small weights, which leaves many repetitive particles in the sample set. Thus, the posteriori distribution of object states cannot be accurately represented by these samples. Aiming at this problem, Choi et al.[10]retained the diversity of particles through resampling particles based on the Gaussian distribution.

    To better handle the problem of abrupt motions and particle diversity impoverishment in existing object tracking algorithms, an improved PF object tracking algorithm based on sparse representation and nonlinear resampling is proposed. First, considering the fact that particle weights are sparse when object moves abruptly, the sparse representation is used to compute particle weights, which can reconstruct the object of interest effectively and further predict the potential object region more accurately. Then, a nonlinear resampling process based on the nonlinear sorting strategy is proposed to reserve more kinds of valid particles, so the problem of particle diversity impoverishment can be alleviated.

    1 PF Tracking Method

    Based on Monte Carlo importance sampling, PF uses Bayesian estimation as the main framework to express a posteriori probability of object state. The core of PF tracking method is applying the empirical conditional probability distribution of state system to generate a set of weighted discrete particles. The weights and locations of particles are updated in each frame to estimate the object state by minimum variance. Assume xkand zkrespectively denote the object state and observation result of thekth frame. The tracking process includes the prediction and update stages.

    In the prediction stage, the current object state can be predicted by previous observation results

    (1)

    In the update stage, a posteriori distribution can be updated by the current observation result

    (2)

    wherep(xk-1|z1:k-1) is the posteriori density of framek-1,p(xk|xk-1) is the transition model,p(zk|xk) is the observation model, andp(zk|z1:k-1) is a normalization constant.

    (3)

    (4)

    2 Proposed Tracking Method

    2.1 Motion model

    As a basic element of PF tracking, the motion model describes the transition process between consecutive frames. The random motion model can effectively capture the motion state of object, whose motion features are difficult to be accurately gained, thereby making it suitable for abrupt motions. The definition of the random motion model is

    Xk=Xk-1+Rk+Uk

    (5)

    where Xkis the predicted state of the interested object at timek, Ukis white Gaussian noise with zero mean, Rkis the spread radius of particles, which is proportional to the mean value of the object states changing in the previoustframes

    (6)

    whereCis a scaling factor.

    The object is usually denoted by a rectangle, whose state can be defined as

    X=(x,vx,y,vy)T

    (7)

    where (x,y) is the coordinate of object region center; (vx,vy) denotes the velocity of object in thexandydirections, respectively.

    2.2 Observation model

    The observation model describes the object appearance. A suitable observation can effectively differentiate the object from the background, which is crucial to the tracking accuracy. The color feature can be easily calculated and is insensitive to the changes of image sizes and viewing angles, so we adopt blocked color histogram[11]as the observation model. The object region is firstly partitioned into 4 sub-regions in HSV color space, and then the color histogram is extracted from each sub-region. Finally, all 4 histograms are concatenated to form a 512-bins color feature.

    2.3 Weights calculation based on sparse representation

    The core idea of the sparse representation classification (SRC) method is to reach the sparsest representation of the coefficient matrix when the reconstruction error is minimum. Since this method can reduce the importance of feature choice and is robust to occlusion, it has been widely applied in pattern recognition. Object tracking can be considered as a binary classification problem, which recognizes object region from background and then tracks the interested object by classification approach.

    In the PF tracking framework, a weighted particle set is used to approximate a posteriori distribution of the object state. When the object moves abruptly, only a few particles close to the object have relatively large weights, while the weights of others are roughly zeros, as shown in Fig. 1. Thus, considering the fact that the particle weights have sparsity under the situation of abrupt motions, the observation model can be represented by the linear combination of the features of all particles, and the coefficients can be calculated by constrainedl1norm minimization.

    Fig.1 Particle weights for a single object with abrupt motion

    Assuming that M denotes the observation model extracted from the object template at initial frame, yi(i=1,2,…,N) denotes the feature extracted from theith particle region, when the background is invariant as the object moves abruptly, only a few particles match the object and other particle weights vanish. So the object model can be described by the linear representation of all particle feature vectors, namely

    M=ω1y1+ω2y2+ω3y3+…+ωNyN

    (8)

    whereω=(ω1,ω2,ω3,…,ωN)Tis the weight vector, andNis the number of particles.

    Transform Eq.(8) to al1norm problem and set each element value of the weight vector between 0 and 1. The optimization problem can then be described as

    (9)

    whereεis the error term, which is a user-defined small positive-valued parameter.

    2.4 Nonlinear resampling

    The resampling process can effectively solve the problem of particle degradation by duplicating the particles with large weights and removing the ones carrying small weights. However, the traditional resampling method duplicates or removes particles depending on their weights only, resulting in many repetitive particles in the sample set and causing particle diversity impoverishment. This can reduce the kinds of particles to a great extent and seriously influence the representation ability of object state probability distribution when the object moves abruptly. Aiming at this problem, this paper proposes an improved resampling algorithm based on a nonlinear sorting strategy. The details are as follows.

    ② The sorted indices of each particle are mapped to the reservation probability through a nonlinear function. And then the reservation probability is normalized by

    (10)

    (11)

    ③ The duplicated number of each particle is determined by its corresponding reservation probability and the number of all particles, namely

    (12)

    The proposed resampling algorithm based on the nonlinear sorting strategy allocates the reservation probability to each particle depending on its corresponding weight and avoids the situation where most particle reservation probabilities are approximately zero. The validity and diversity of particles are guaranteed.

    2.5 Tracking algorithm

    A robust tracking algorithm for the object with abrupt motions is proposed in this paper. The main procedures are summarized as follows.

    Step1Initialization

    ② The motion model of object is established by Eq.(5).

    ③ The observation model of the initial object region is established by extracting its color features.

    Step2Object tracking

    ① The new particle set in thetth frame is predicted by Eq.(5).

    ② The color features of particle regions are extracted and the corresponding weight of each particle is calculated by Eq.(9).

    ③ The weights are normalized by

    (13)

    ④ The motion state of the tracked object is estimated by

    (14)

    ⑤ Particles are resampled based on our proposed algorithm in section 2.4.

    ⑥t=t+1, turn to ①.

    3 Experiments and Analysis

    In this section, two experiments are described to prove the effectiveness of the proposed method. First, a single moving point tracking program is designed to compare the proposed nonlinear resampling with other resampling algorithms. Then, the tracking experiments are conducted on videos containing objects with different kinds of abrupt motions, and the tracking results are compared with other approaches. All experimented are performed by MATLAB R2014a on a 3.10 GHz Intel Core computer with 4 GB of RAM.

    3.1 Performance of the nonlinear resampling

    First, we design a tracking program based on a one-dimensional system to compare the proposed nonlinear resampling with some typical resampling methods, like residual resampling, multinomial resampling, systematic resampling, Gaussian distribution[10]resampling and partial systematic[12]resampling. The number of particles isN=500 and the state vector is

    (15)

    (16)

    wherex0~N(0,5),nk~N(0,10) andvk~N(0,1) are white Gaussian noises. The tracking errors are compared in Fig.2. Since our resampling strategy effectively ensures the diversity of particles during the tracking process, it can obtain better tracking results with smaller errors than other methods.

    Fig.2 Comparisons of the tracking errors with different resampling methods

    The root mean square error (RMSE) is calculated to quantitatively evaluate the performance of each resampling method. The RMSE results obtained by 6 kinds of resampling strategies are listed in Tab.1. The results demonstrate that our nonlinear resampling has the smallest RMSE value.

    3.2 Video object tracking results

    Tracking experiments are conducted on several videos including various abrupt motions, such as low frame rate videos, sudden dynamic changes and multi-cameras switching. The tracking results are compared among the traditional PF, WLMC[4]and our proposed method. The number of particles isN=500 and the observation model is blocked color histogram feature.

    Tab.1 RMSE results of 6 resampling methods

    Fig.3 Tracking results of groundtruth (solid line), our algorithm (dotted line), the traditional PF (dash dot line) and WLMC (dashed line) on video sequences with various kinds of abrupt motions

    The tracking results of each method are shown in Fig. 3. Fig. 3a and Fig. 3b are Face[13]and Animal scenarios for sudden dynamic changes. The tracked object in video Face is a human face that moves left and right rapidly, and the target in video Animal jumps fast between consecutive two frames. Fig. 3c is a Boxing sport event in which the camera switches 8 times. Fig. 3d is a low frame rate video of Tennis, constructed manually by keeping one in every 35 frames in this experiment, so a large shift of object position between adjacent frames exists. The tracking results reveal that our proposed method can predict and track the object of interest more successfully owing to the effectiveness of the proposed weight calculation method and nonlinear resampling. The traditional PF, by contrast, cannot accurately track the object due to its smooth motion assumption. Although WLMC searches the object in the whole state space, it is unstable throughout the tracking process and usually deviates to other wrong locations.

    To quantitatively analyze the results of different methods mentioned above, success rate is used to evaluate the performance. If the center of the ground truth is in the estimated rectangle, the object is considered accurately tracked at that frame[6]. The success rate is represented by the ratio between the number of accurately tracked frames and the number of total frames, and is shown in Tab.2. Obviously, the object with abrupt motion is difficult to track successfully, so the success rates are relatively low. But our algorithm shows better tracking performance handling this challenge. Tab.3 shows the average run time of each algorithm for the test videos. The time cost of our algorithm is longer than the traditional PF method for the introduction of sparse representation. However, the WLMC needs longer time due to its global search strategy. Thus, our method can obtain better tracking results and has a relatively high efficiency.

    Tab.2 Success rate of 3 methods on test videos %

    Tab.3 Run time of 3 algorithms on test videos s

    4 Conclusion

    To track the objects with abrupt motions accurately, sparse representation is introduced to calculate the particle weights byl1norm minimization, which can reconstruct the interested object better. Moreover, a nonlinear resampling strategy is proposed to improve the traditional resampling process. This method gains the duplicated number of each particle depending on its corresponding reservation probability and the number of all particles in the set, so it effectively maintains the diversity of particles. Experiments show that the proposed resampling algorithm has improved performance compared to previous algorithms, and our tracking method is robust to abrupt motions.

    [1] Li M, Fan Z Y, Liu Z W. An improved visual tracking algorithm based on particle filter[C]∥2013 IEEE International Conference of IEEE Region 10, Xi’an, Shaanxi, China, 2013:1-4.

    [2] Cai Z W, Wen L Y, Lei Z, et al. Robust deformable and occluded object tracking with dynamic graph[J]. IEEE Transaction on Image Processing, 2014, 23(12): 5497-5509.

    [3] Kwon J, Lee K M.Tracking by sampling and integrating multiple trackers[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(7): 1428-1441.

    [4] Kwon J, Lee K M. Wang-Landau Monte Carlo-based tracking methods for abrupt motions[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013,35(4): 1011-1024.

    [5] Nguyen T, Pridmore T P. Tracking using multiple linear searches and motion direction sampling[C]∥2014 22nd International Conference on Pattern Recognition, Stockholm, Sweden, 2014: 2191-2196.

    [6] Zhou X, Lu Y. Abrupt motion tracking via adaptive stochastic approximation Monte Carlo sampling[C]∥2010 IEEE Conference on Computer Vision and Pattern Recognition,San Francisco, CA, USA, 2010: 1847-1854.

    [7] Doucet A, Gordon N J. Sequential monte carlo methods in practice[M]. Berlin,Germany: Springer, 2001.

    [8] Su Y, Zhao Q, Zhao L, et al. Abrupt motion tracking using a visual saliency embedded particle filter[J]. Pattern Recognition, 2014, 47(5): 1826-1834.

    [9] Morimitsu H, Bloch I. Attributed graphs for tracking multiple objects in structured sports videos[C]∥Proceedings of the IEEE International Conference on Computer Vision Workshops, Santiago, Chile, 2015: 34-42.

    [10] Choi H D, Ahn C K, Lim M T. Gaussian distribution resampling algorithm of particle filter[C]∥Proceedings of the International Conference on Control, Automation and Systems, Gwangju, Korea, 2013.

    [11] Li Mo, Yin Licheng, Yan Tianyi.Particle filter tracking algorithm based on integral histogram and improved resampling[J]. Optics and Electronic Technology, 2013, 11(3): 45-48. (in Chinese)

    [12] Yu J X, Liu W J, Tang Y L. Improved particle filter algorithms based on partial systematic resampling[C] ∥ 2010 IEEE International Conference on Intelligent Computing and Intelligent Systems, Xiamen, China, 2010: 483-487.

    [13] Birchfield S. Elliptical head tracking using intensity gradients andcolor histograms[C] ∥1998 IEEE Computer Society Conferenceon Computer Vision and Pattern Recognition, Santa Barbara, CA, USA, 1998: 232-237.

    午夜免费鲁丝| 一区二区日韩欧美中文字幕 | 视频在线观看一区二区三区| 97在线视频观看| 一本大道久久a久久精品| 免费av中文字幕在线| 免费观看无遮挡的男女| 亚洲精品乱码久久久v下载方式| 免费看av在线观看网站| 精品人妻在线不人妻| 日韩熟女老妇一区二区性免费视频| 亚洲av欧美aⅴ国产| 日本vs欧美在线观看视频| 久久久久久久精品精品| 国模一区二区三区四区视频| 国产午夜精品久久久久久一区二区三区| 我的老师免费观看完整版| videosex国产| 欧美日韩一区二区视频在线观看视频在线| 免费高清在线观看视频在线观看| 精品少妇内射三级| 亚洲欧美成人综合另类久久久| 丰满迷人的少妇在线观看| 黑人巨大精品欧美一区二区蜜桃 | 成人国产av品久久久| 香蕉精品网在线| 免费看不卡的av| 永久网站在线| 一级a做视频免费观看| 国产精品熟女久久久久浪| 国产亚洲av片在线观看秒播厂| 久久女婷五月综合色啪小说| 女人精品久久久久毛片| 九色亚洲精品在线播放| 性高湖久久久久久久久免费观看| 亚洲欧美成人综合另类久久久| 亚洲精品亚洲一区二区| 黑人猛操日本美女一级片| 美女国产高潮福利片在线看| 99久久精品一区二区三区| 青春草亚洲视频在线观看| 97精品久久久久久久久久精品| h视频一区二区三区| 国产男女内射视频| 少妇熟女欧美另类| 精品人妻熟女毛片av久久网站| 久久99蜜桃精品久久| av不卡在线播放| 国产高清三级在线| 日本-黄色视频高清免费观看| 成人亚洲精品一区在线观看| 性高湖久久久久久久久免费观看| 又粗又硬又长又爽又黄的视频| 精品久久久久久久久av| 亚洲精品久久午夜乱码| 下体分泌物呈黄色| 日日摸夜夜添夜夜添av毛片| 尾随美女入室| 亚洲av二区三区四区| 人体艺术视频欧美日本| 久久午夜福利片| 男女国产视频网站| 国产黄片视频在线免费观看| 日韩成人伦理影院| 少妇的逼水好多| 边亲边吃奶的免费视频| 男的添女的下面高潮视频| 交换朋友夫妻互换小说| 久久久国产一区二区| 亚洲四区av| 日韩一区二区三区影片| 九九爱精品视频在线观看| 久久婷婷青草| 久久 成人 亚洲| 久久这里有精品视频免费| av网站免费在线观看视频| 精品久久国产蜜桃| 久久精品久久久久久久性| 色5月婷婷丁香| 国产精品一国产av| videossex国产| av黄色大香蕉| 男人爽女人下面视频在线观看| 男女无遮挡免费网站观看| 观看美女的网站| 晚上一个人看的免费电影| 国产男人的电影天堂91| 在线亚洲精品国产二区图片欧美 | 久久97久久精品| 亚洲av福利一区| 久久久久精品性色| 91成人精品电影| 制服丝袜香蕉在线| 美女xxoo啪啪120秒动态图| 欧美人与善性xxx| 中文乱码字字幕精品一区二区三区| 精品一区二区三卡| 国产 一区精品| 999精品在线视频| 日韩,欧美,国产一区二区三区| 99热国产这里只有精品6| 午夜福利视频精品| 日韩精品免费视频一区二区三区 | 哪个播放器可以免费观看大片| 如何舔出高潮| 午夜av观看不卡| 久久 成人 亚洲| 亚洲av在线观看美女高潮| 王馨瑶露胸无遮挡在线观看| 日韩视频在线欧美| 日本与韩国留学比较| 日本爱情动作片www.在线观看| 久久久久久人妻| 国产欧美另类精品又又久久亚洲欧美| 80岁老熟妇乱子伦牲交| 哪个播放器可以免费观看大片| 在线观看免费高清a一片| 日日啪夜夜爽| 亚洲精品亚洲一区二区| 男男h啪啪无遮挡| 乱码一卡2卡4卡精品| 满18在线观看网站| 青青草视频在线视频观看| 特大巨黑吊av在线直播| 你懂的网址亚洲精品在线观看| 欧美xxxx性猛交bbbb| 国产毛片在线视频| 国产精品一国产av| 亚洲三级黄色毛片| 亚洲天堂av无毛| 大片免费播放器 马上看| videos熟女内射| 边亲边吃奶的免费视频| 亚洲,一卡二卡三卡| 欧美激情国产日韩精品一区| 午夜福利视频精品| 久久久精品免费免费高清| 91国产中文字幕| 热re99久久国产66热| 久久久a久久爽久久v久久| 亚洲av欧美aⅴ国产| 亚洲情色 制服丝袜| 国产欧美日韩一区二区三区在线 | 亚洲欧美一区二区三区国产| 久久久久国产网址| 亚洲综合色网址| av.在线天堂| 18禁裸乳无遮挡动漫免费视频| 国产 精品1| 欧美激情国产日韩精品一区| av又黄又爽大尺度在线免费看| 久久久久国产精品人妻一区二区| 人人妻人人澡人人爽人人夜夜| 亚洲精品乱久久久久久| 成人二区视频| 人妻夜夜爽99麻豆av| av天堂久久9| 久久久久久人妻| 寂寞人妻少妇视频99o| 亚洲欧洲精品一区二区精品久久久 | 一级毛片aaaaaa免费看小| 日韩三级伦理在线观看| 如何舔出高潮| 精品人妻偷拍中文字幕| 精品久久久久久久久av| 内地一区二区视频在线| 国产永久视频网站| 久久韩国三级中文字幕| 另类亚洲欧美激情| 少妇被粗大猛烈的视频| 最近的中文字幕免费完整| 亚洲欧美一区二区三区黑人 | 久久久久视频综合| 如何舔出高潮| 久久免费观看电影| videossex国产| 一级毛片aaaaaa免费看小| 亚洲美女黄色视频免费看| videossex国产| 国产av一区二区精品久久| 五月伊人婷婷丁香| 黄色视频在线播放观看不卡| 亚洲成人av在线免费| 夫妻午夜视频| 亚洲人成网站在线播| 国产高清三级在线| 一级毛片黄色毛片免费观看视频| 99久久人妻综合| 啦啦啦在线观看免费高清www| 18禁在线无遮挡免费观看视频| 女的被弄到高潮叫床怎么办| 99久久人妻综合| 99久久人妻综合| 久久久久久久久久久免费av| 观看av在线不卡| xxxhd国产人妻xxx| 少妇熟女欧美另类| 乱码一卡2卡4卡精品| 男女免费视频国产| 啦啦啦视频在线资源免费观看| 久久国产精品男人的天堂亚洲 | 亚洲av男天堂| 欧美 日韩 精品 国产| 日本黄大片高清| 最近中文字幕高清免费大全6| 天天影视国产精品| 亚洲熟女精品中文字幕| 国产精品一区www在线观看| 国产在线免费精品| 亚洲av电影在线观看一区二区三区| 十八禁高潮呻吟视频| 一级,二级,三级黄色视频| 亚洲成人手机| 欧美人与善性xxx| 亚洲av福利一区| 如何舔出高潮| 久久99精品国语久久久| a级毛片黄视频| 黄色配什么色好看| 欧美性感艳星| 精品一区二区三卡| 色吧在线观看| 18禁观看日本| 成人手机av| av不卡在线播放| 亚洲精品一区蜜桃| av在线观看视频网站免费| 插阴视频在线观看视频| 成人免费观看视频高清| 人人澡人人妻人| 国产日韩欧美在线精品| 精品久久久久久电影网| 日本黄色片子视频| 国产亚洲午夜精品一区二区久久| 日本91视频免费播放| 亚洲天堂av无毛| 欧美精品亚洲一区二区| 九九在线视频观看精品| 亚洲,一卡二卡三卡| 精品人妻在线不人妻| 秋霞在线观看毛片| 中文天堂在线官网| 高清欧美精品videossex| 国产成人freesex在线| 麻豆乱淫一区二区| 边亲边吃奶的免费视频| 一级毛片aaaaaa免费看小| 搡女人真爽免费视频火全软件| 午夜激情福利司机影院| 色婷婷av一区二区三区视频| 亚洲精品成人av观看孕妇| 人体艺术视频欧美日本| 建设人人有责人人尽责人人享有的| 免费观看av网站的网址| av卡一久久| 欧美激情 高清一区二区三区| 日韩三级伦理在线观看| 国产日韩欧美亚洲二区| 18禁在线无遮挡免费观看视频| 久久亚洲国产成人精品v| 五月玫瑰六月丁香| 精品亚洲成国产av| 亚洲伊人久久精品综合| 黄色欧美视频在线观看| 菩萨蛮人人尽说江南好唐韦庄| 国产亚洲一区二区精品| 亚洲av中文av极速乱| 亚洲综合精品二区| 成年人免费黄色播放视频| 一级毛片电影观看| 久久这里有精品视频免费| 亚洲无线观看免费| 97在线视频观看| 久久久a久久爽久久v久久| 26uuu在线亚洲综合色| 在线免费观看不下载黄p国产| 你懂的网址亚洲精品在线观看| av国产精品久久久久影院| 久久久精品免费免费高清| 爱豆传媒免费全集在线观看| 日本91视频免费播放| 日韩伦理黄色片| 韩国av在线不卡| 午夜福利网站1000一区二区三区| 久久午夜福利片| 日本免费在线观看一区| 王馨瑶露胸无遮挡在线观看| 久久精品人人爽人人爽视色| 日日摸夜夜添夜夜爱| 国产精品不卡视频一区二区| 中文字幕最新亚洲高清| 国产午夜精品一二区理论片| 国国产精品蜜臀av免费| 国产淫语在线视频| 精品国产一区二区久久| 中文字幕制服av| 一区二区三区精品91| 亚洲欧美中文字幕日韩二区| 高清黄色对白视频在线免费看| 18禁在线无遮挡免费观看视频| 国产探花极品一区二区| 亚洲精品久久午夜乱码| 不卡视频在线观看欧美| 最近中文字幕高清免费大全6| 日韩在线高清观看一区二区三区| 久久ye,这里只有精品| 中文字幕久久专区| 亚洲精品乱久久久久久| 国产成人精品一,二区| 日本vs欧美在线观看视频| 午夜精品国产一区二区电影| 最黄视频免费看| 性色av一级| 80岁老熟妇乱子伦牲交| 一级a做视频免费观看| 国产成人精品一,二区| 交换朋友夫妻互换小说| 久久ye,这里只有精品| 欧美日韩av久久| 黄色毛片三级朝国网站| 三上悠亚av全集在线观看| 国产午夜精品一二区理论片| 少妇精品久久久久久久| 男女边摸边吃奶| 亚洲国产精品一区二区三区在线| av卡一久久| 国产色爽女视频免费观看| 国产极品粉嫩免费观看在线 | 国产成人精品福利久久| 中文字幕av电影在线播放| 伦精品一区二区三区| 狂野欧美激情性xxxx在线观看| 成年女人在线观看亚洲视频| 又粗又硬又长又爽又黄的视频| 又黄又爽又刺激的免费视频.| 精品一区二区免费观看| 乱码一卡2卡4卡精品| 国产成人91sexporn| 精品99又大又爽又粗少妇毛片| 亚洲美女黄色视频免费看| 一区在线观看完整版| a级毛色黄片| 国产探花极品一区二区| 国产亚洲一区二区精品| 18在线观看网站| 日韩 亚洲 欧美在线| 纵有疾风起免费观看全集完整版| 国产精品久久久久久精品电影小说| 国产精品久久久久久久电影| 春色校园在线视频观看| 美女脱内裤让男人舔精品视频| 午夜91福利影院| videosex国产| 一级毛片我不卡| 久久国产精品大桥未久av| 国产精品久久久久久av不卡| 国产男女超爽视频在线观看| 天天影视国产精品| 国产精品免费大片| 80岁老熟妇乱子伦牲交| 中国国产av一级| 亚洲精品一二三| 激情五月婷婷亚洲| 尾随美女入室| 国产高清有码在线观看视频| 国产在线免费精品| 国产免费一区二区三区四区乱码| 精品国产露脸久久av麻豆| 日韩欧美精品免费久久| 肉色欧美久久久久久久蜜桃| 国产精品嫩草影院av在线观看| 永久网站在线| 九色亚洲精品在线播放| 超色免费av| 伦理电影大哥的女人| 久久韩国三级中文字幕| 亚洲经典国产精华液单| 最后的刺客免费高清国语| 大陆偷拍与自拍| 少妇人妻久久综合中文| 久久毛片免费看一区二区三区| 欧美日韩精品成人综合77777| 黄色怎么调成土黄色| 久久热精品热| 精品少妇久久久久久888优播| 日韩欧美一区视频在线观看| 精品久久久久久电影网| 日本黄色片子视频| 亚洲综合色惰| 国产精品麻豆人妻色哟哟久久| 一本色道久久久久久精品综合| 丝袜喷水一区| 少妇的逼好多水| 亚洲av成人精品一区久久| 国产一区亚洲一区在线观看| 日韩一区二区视频免费看| 丰满乱子伦码专区| 亚洲性久久影院| xxxhd国产人妻xxx| 欧美最新免费一区二区三区| 国产深夜福利视频在线观看| 日韩大片免费观看网站| 男女无遮挡免费网站观看| 色哟哟·www| 欧美一级a爱片免费观看看| 黑丝袜美女国产一区| 亚洲精品456在线播放app| 大香蕉久久网| 日本猛色少妇xxxxx猛交久久| 久久精品国产亚洲av天美| 免费人妻精品一区二区三区视频| 大香蕉97超碰在线| 伦理电影大哥的女人| 久久久久人妻精品一区果冻| 男人添女人高潮全过程视频| 国产精品秋霞免费鲁丝片| 欧美3d第一页| 欧美精品人与动牲交sv欧美| 亚洲国产最新在线播放| 日本黄色日本黄色录像| 欧美另类一区| 午夜影院在线不卡| 九九久久精品国产亚洲av麻豆| 国产无遮挡羞羞视频在线观看| 久久热精品热| 国内精品宾馆在线| 国产免费现黄频在线看| 天堂8中文在线网| 久久久精品免费免费高清| 一级毛片 在线播放| 香蕉精品网在线| 国产一区二区在线观看日韩| 国产亚洲av片在线观看秒播厂| 中文精品一卡2卡3卡4更新| 久久久精品免费免费高清| 久久韩国三级中文字幕| 亚洲色图综合在线观看| 久久狼人影院| 日日撸夜夜添| 晚上一个人看的免费电影| 亚州av有码| 中文天堂在线官网| 春色校园在线视频观看| 久久久久久久久久成人| 亚洲美女视频黄频| 一边摸一边做爽爽视频免费| 老司机影院毛片| 亚洲av综合色区一区| 久久99一区二区三区| 欧美日韩国产mv在线观看视频| 国产一区二区三区综合在线观看 | 亚洲国产av影院在线观看| videos熟女内射| 国产男女内射视频| 国产伦理片在线播放av一区| 啦啦啦视频在线资源免费观看| 国产熟女欧美一区二区| av女优亚洲男人天堂| 边亲边吃奶的免费视频| 欧美xxxx性猛交bbbb| 男人操女人黄网站| 精品亚洲乱码少妇综合久久| 亚洲内射少妇av| 国产成人一区二区在线| 欧美日韩国产mv在线观看视频| 纵有疾风起免费观看全集完整版| 国产无遮挡羞羞视频在线观看| 国产精品秋霞免费鲁丝片| 久久国产精品男人的天堂亚洲 | 日本黄色片子视频| 亚洲伊人久久精品综合| 日韩欧美一区视频在线观看| av在线播放精品| 欧美日韩一区二区视频在线观看视频在线| 久久久久国产精品人妻一区二区| 久久精品国产自在天天线| 老女人水多毛片| 精品一区在线观看国产| 免费大片黄手机在线观看| 一区二区三区乱码不卡18| 伊人亚洲综合成人网| 亚洲av综合色区一区| 亚洲av男天堂| kizo精华| 一区二区三区免费毛片| 久久免费观看电影| 纯流量卡能插随身wifi吗| 国产欧美另类精品又又久久亚洲欧美| 熟女av电影| 日本爱情动作片www.在线观看| 久久久久久久国产电影| 日韩中文字幕视频在线看片| 日韩成人伦理影院| 精品久久久精品久久久| 午夜日本视频在线| av线在线观看网站| 丰满乱子伦码专区| 人人妻人人澡人人爽人人夜夜| av女优亚洲男人天堂| 亚洲熟女精品中文字幕| 一级爰片在线观看| 色视频在线一区二区三区| 成人亚洲欧美一区二区av| 国产成人aa在线观看| av福利片在线| 免费人成在线观看视频色| 人人澡人人妻人| 一级毛片黄色毛片免费观看视频| 青春草国产在线视频| 国产成人91sexporn| 亚洲人成网站在线观看播放| 99久久综合免费| 欧美精品一区二区大全| 中文字幕免费在线视频6| 久久久国产一区二区| 伊人久久精品亚洲午夜| 色婷婷久久久亚洲欧美| 五月伊人婷婷丁香| 热re99久久精品国产66热6| 99热网站在线观看| 久久亚洲国产成人精品v| 午夜91福利影院| 亚洲精品日韩在线中文字幕| 国产乱人偷精品视频| 97在线视频观看| 久久久国产精品麻豆| 丝袜脚勾引网站| 国产极品粉嫩免费观看在线 | 国产精品国产三级国产av玫瑰| 91精品一卡2卡3卡4卡| 丝袜美足系列| 美女大奶头黄色视频| 久久人人爽人人片av| 亚洲精品,欧美精品| 国产成人免费无遮挡视频| 丰满饥渴人妻一区二区三| 日韩av不卡免费在线播放| 亚洲欧美日韩另类电影网站| 汤姆久久久久久久影院中文字幕| 少妇熟女欧美另类| 观看av在线不卡| 亚洲国产精品国产精品| 大片电影免费在线观看免费| 欧美变态另类bdsm刘玥| 国产男女超爽视频在线观看| 中文字幕av电影在线播放| 久久鲁丝午夜福利片| 久久韩国三级中文字幕| 亚洲精品aⅴ在线观看| 亚洲人成网站在线播| 欧美国产精品一级二级三级| 黑丝袜美女国产一区| 建设人人有责人人尽责人人享有的| 中国三级夫妇交换| 伊人久久精品亚洲午夜| 国产精品一区www在线观看| 草草在线视频免费看| 97超碰精品成人国产| 一区二区三区乱码不卡18| 亚洲av欧美aⅴ国产| 99热6这里只有精品| 欧美xxⅹ黑人| 欧美精品一区二区免费开放| 亚洲av综合色区一区| 国产欧美日韩综合在线一区二区| 中文字幕av电影在线播放| 女人久久www免费人成看片| 人妻人人澡人人爽人人| 满18在线观看网站| 亚洲欧美日韩另类电影网站| 欧美日韩视频精品一区| 熟妇人妻不卡中文字幕| 亚洲精品乱久久久久久| 秋霞伦理黄片| 久久人人爽av亚洲精品天堂| 人妻制服诱惑在线中文字幕| videossex国产| 国产精品一国产av| 日日啪夜夜爽| 大片电影免费在线观看免费| 国产精品人妻久久久久久| 一区二区三区四区激情视频| 伦理电影大哥的女人| 丝袜脚勾引网站| 亚洲综合色惰| 视频在线观看一区二区三区| 免费黄频网站在线观看国产| 亚洲色图综合在线观看| 亚洲精品亚洲一区二区| 又黄又爽又刺激的免费视频.| 亚洲欧美日韩卡通动漫| 亚洲精品亚洲一区二区| 少妇精品久久久久久久| 久久 成人 亚洲| 欧美亚洲 丝袜 人妻 在线| 国产色爽女视频免费观看| 亚洲欧美日韩卡通动漫| 这个男人来自地球电影免费观看 | 国产成人免费观看mmmm| 一个人看视频在线观看www免费| a 毛片基地| 一级毛片 在线播放| 成年人免费黄色播放视频| 99热6这里只有精品| 久久久久久久久久成人| 99re6热这里在线精品视频| 五月天丁香电影| 菩萨蛮人人尽说江南好唐韦庄| 国产精品99久久久久久久久| 精品一区二区三区视频在线| 国产精品成人在线| 亚洲图色成人| 男女边吃奶边做爰视频| 十八禁网站网址无遮挡| 亚洲国产精品一区三区|