• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Alternate phenotype–genotype selection for developing superior high-yielding irrigated rice lines

    2018-04-12 03:33:57YonnelleDeMoukoumbiRftElNmkyKoffiDjmnDoudMbodjBboucrrMnneh
    The Crop Journal 2018年2期

    Yonnelle De Moukoumbi*,Rft El-Nmky,Koffi Djmn,Doud Mbodj,Bboucrr Mnneh

    a Irrigated Rice Breeding Unit,Africa Rice Center(AfricaRice),Sahel Regional Station,BP 96 Saint Louis,Senegal

    b National Institute of Agricultural Research,Gros bouquet,PMB 16169,Libreville,Gabon

    c Rice Research&Training Center(RRTC),33717 Sakha Kafr Sheikh,Egypt

    1.Introduction

    Rice is the second most important cereal crop in the world after maize in terms of cultivated area,with 158.8 Mha under production in 2016[1].Global paddy rice production was 2.9 Mt.to a record of 749.7 Mt.(497.9 Mt.on a milled basis).In Africa,the expected 2016 production was 29.7 Mt.(19.4 Mt.,milled basis),implying a 4%year-on-year expansion and a new record[2].At the Yield Potential International Workshop held by the Global Rice Science Partnership(GRiSP)in 2011,it was asserted that worldwide demand for rice is expected to rise by>25%by 2035[3].Since the 1960s,many high-yielding rice varieties and breeding lines have been developed by the International Rice Research Institute,including Oryza sativa L.IR8,IR36,IR64,and IR72[4].During the 1990s,Africa Rice Center(AfricaRice)scientists developed high-yielding upland and lowland New Rice for Africa(NERICA)and irrigated Sahel varieties[5,6]which have been distributed to farmers and breeders worldwide.

    Yield potential is defined as the maximum achievable yield in the absence of biophysical,physiological,or economic constraints on production[7].Increasing rice yield potential is one of the most important contributions for any rice breeding program aimed at developing high-yielding varieties.High-yielding technologies that have been developed include “new plant type”, “hybrid rice”,and “super hybrid rice”adapted to specific cropping conditions[8–10].Rice research in Egypt during the past 15 years has increased the national average yield by>66%,from 5.71 to 9.84 t ha?1[11].This increase was achieved by growing modern inbred varieties,which cover almost 100%of the total rice area in the country.In West Africa,the current average yield potential of irrigated rice varieties such as the widely grown Sahel varieties developed by pedigree selection ranges from 10 to 12 t ha?1[12].Increasing yield potential requires continuous phenotypic selection of desirable lines from a large number of segregating populations until fixation of the desired trait[13,14].The numbers of plants to select at each generation may be modified according to the species,the breeding objective,and the genetics of the traits of interest.This method is labor-intensive and time-consuming and requires a large nursery or field space for screening.In the last decade,different approaches including the use of wide crosses and gene pyramiding through molecular approaches[15]have been used to improve rice yield potential.Physiological approaches using simulation models predicted that an increase in rice yield potential of 25%is possible by changing the traits of the current plant type[16].Molecular techniques are continuously being used to increase the number of genes discovered,with the aim of understanding the formation of grain yield.Eight quantitative trait loci(QTL)controlling spikelet number per panicle and 1000-GW were mapped by sequencing-based genotyping of 150 rice recombinant inbred lines[15].The effects of four QTL from Nipponbare using chromosome segment substitution lines were validated and the QTL were pyramided in rice popular varieties in Asia[15].Yield is a complex trait controlled by many genetic factors associated with yield-component traits[17].Favorable alleles have been “mined”from natural cultivars and wild rice.These rice lines are IR24,Kasalath,Koshihikari,Menghui 63,and Nipponbare,in which functional genes have been identified by association analysis of target traits such as grain weight(GW5)[18],grain size(GS3)[19],grain number(Gn1a)[20],and strong stems and heavy panicles(SCM2/APO1),[21,22].Reasonable combinations of favorable alleles are being used to increase rice yield potential,combining key traits such as excellent plant type,strong stems,and long and heavy panicles with well-filled kernels[16].Alternative pedigree selection methods and use of markers associated with major QTL to target traits can be used by scientists to select high-priority lines for each generation[14].

    The objectives of the present study were to(i)investigate the allelic diversity of loci associated with high-yielding parental lines in the varieties NERICA-L-20 and Giza178,with the aim of developing ARS 563 populations,(ii)phenotype and genotype F2,F2:3,F2:4,and F2:5populations using agro-morphological quantitative and qualitative descriptors,yield and yield component traits,and GRiSP polymorphic markers to select new,superior,high-yielding rice lines.

    2.Materials and methods

    2.1.Agro-morphological measurement and statistical analyses

    The experiments were conducted at the AfricaRice Regional Research Center in St Louis,Senegal,(16°14′N(xiāo),16°14′W,9 m a.s.l.).An allelic diversity survey was conducted with 30 high-yielding rice varieties(Fig.1)that were screened and selected from 300 high-yielding indica cultivars from West African countries during the 2012 dry and wet seasons in two locations.Markers polymorphic between NERICA-L-20(AfricaRice)and Giza178(Egypt Research Center)associated with grain weight(GW5,Marker_1 to Marker_3),grain size(GS3,Marker_4 to Marker 6),grain number(Gn1a,Marker_7 to Marker_10)and strong stems and heavy panicles(SCM2/APO1,Marker_11 to Marker_16)were used to show plant performance for yield component traits of each inbred line(Table 1).The F1(ARS 563)progeny derived from crosses between NERICA-L-20 and Giza178 were self-pollinated to generate large F2,F2:3,F2:4,and F2:5populations.Field experiments were conducted twice a year from 2012 to 2014 and F2populations totaling 1000 plants were evaluated during the 2013 dry season.An augmented experimental design laid out in 40 blocks was used to evaluate yield potential.Each block contained two rows of each parent,two checks(Sahel 108 and Sahel 201,released by ISRA Senegal)and 29 F2lines.The parents and checks were replicated in each block.In contrast,a randomized complete block design with three replications was used to evaluate selected F2:3,F2:4,and F2:5lines.The transplanting density was 20 cm between plants within rows and 20 cm between rows.Fertilizers were applied at the rate of 150 kg ha?1as follows:NPK15–15-15at vegetative stage and 60 kg ha?1urea as top dressing at tillering and panicle initiation.Weeds were controlled manually throughout the growing season.The descriptors for rice[23]were used to record total biomass(TB),harvest index(HI),panicle number per square meter(PN/m2),total grain number per panicle(GNP),1000-weight grain(1000-GW),spikelet fertility(SF),and grain yield(GY)for selected F2:3and F2:4.Tiller number at 60 days after planting(T60),plant height at 60 days after planting(H60),and days to heading at 50%flowering(DH50)were added as parameters for selected F2:5plants.Pedigree selection including the two parents and check varieties(Sahel 108 and Sahel 201)was conducted using a phenotypic acceptability parameter rate scaling that ranged from excellent(1)to unacceptable(9)with intermediate values of 3(good),5(fair),and 7(poor).

    Fig.1–Allelic diversity survey of 30 high-yielding selected varieties and positive checks(IR24,Kasalath,Koshihikari,and Nipponbare)using weighted neighbor-joining clustering of genotype data from 11 polymorphic microsatellite markers associated with major yield-component traits.

    ANOVA mixed models were fitted for 10 quantitative traits using XLSTAT software[24].Broad-sense heritability(h2)was calculated using the Breeding Management SystemWorkbench 3.09 software[25]according to the procedure described by[26,27].

    with VG,genotype variance;VP,phenotypic variance;VE,environment variance.

    Yield advantage(Yadv)was estimated from grain yield over best parent(GYbp),midparent(GYmidp),and standard check variety(GYsdc)using the method described by[28]:

    with Yadv_midp(%),yield advantage over the mid-parent;Yadv_sdc(%),yield advantage over the standard check variety;Yadv_bp(%),yield advantage over the best parent;GY,promising line grain yield;GYbp,best-parent grain yield;GYmidp,midparent grain yield;GYsdc,standard check variety grain yield.

    2.2.DNA extraction and favorable-allele tracking of 16 SSR and InDel markers associated with major QTL for yield and yield component traits

    Genomic DNA was extracted from three-week-old leaves of all selected parental lines,F2,F2:3,and F2:4plants using the CTAB protocol[29]and genotyped with simple sequence repeat(SSR)and InDel GRiSP markers using PCR techniques.Sixteen primers associated with major QTL for yield component traits,as described in Table 1,were used according to the generation.Using the following program,10 μL of each SSR-PCR mixture was amplified:initial denaturation(1 cycle of 94°C for 4 min)followed by 35 amplification cycles including denaturation(94 °C for 1 min);hybridization of primers(55 °C for 1 min),elongation(72 °C for 2 min),and a final elongation(72 °C for 5 min).SSR/InDel-PCR products were separated on 8%polyacrylamide gel with 1x TBE buffer(40 mmol L?1Trizma base-HCl,40 mmol L?1boric acid,and 1 mmol L?1EDTA),stained with 1 μg mL?1bromophenol blue(3XSTR),and visualized with an ultraviolet transilluminator with the image captured by Syngen's G-Box gel imaging system.SSR/InDel(Table 1)profiles were scored and analyzed for allelic similarity(Fig.1)in comparison with Nipponbare,Koshihikari,and IR24 as yield-component positive checks using Darwin software version 6[30].

    ?

    3.Results

    3.1.Allelic polymorphic survey with 30 high-yielding varieties

    Previously,an allelic polymorphism survey was conducted using the 30 selected high-yielding varieties(Fig.1).Two varieties,NERICA-L-60 and WAB2066–6-FKR4-WAC1-TGR1-B-WATB12,combined three desirable alleles(Gn1a,GS3,and GW5)in their genetic backgrounds,whereas the remaining varieties carried only two favorable alleles,in several allele combinations(Table 2).NERICA-L-20(GS3 and GW5)and Giza178(Gn1a and SCM2/APO1)were used as parental lines to develop ARS 563 populations.A polymorphism survey between the two parental lines was conducted using Nipponbare(GW5),IR24(GS3),and Koshihikari(Gn1a and SCM2/APO1)as positive-allele check varieties to confirm the yield-component trait donor allele coming from each parent.

    3.2.Forward breeding in the F2,F2:3,and F2:4 generations

    Marked segregation in the F2population was observed for all agronomic traits.A total of 1000 F2plants were phenotyped under field condition and 100 F2:3plants were selected based on their phenotypic acceptability,ranging from 1(excellent)to 3(good)under irrigated growth conditions.These F2:3plants were genotyped using highly polymorphic SSR/InDel markers.

    Various numbers of introgressed QTL associated with yield-component traits were found.Forty-four F2:3plants showed two to three introgressions of favorable alleles such as GW5-GS3-SCM2/APO1,GW5-Gn1a-SCM2/APO1,GW5-GS3-Gn1a,Gn1a-GS3-SCM2/APO1,and GW5-GS3-Gn1a-SCM2/APO1 for three favorable allele combinations.However,52 F2:3plants did not show any allele combinations.Four F2:3plants(ARS 563–14,ARS 563–62,ARS 563–286,and ARS 563–41)showed four segments found in chromosomes 1(Gn1a),3(GS3),5(GW5),and 6(SCM2/APO1)and were used for the next marker screening and advance(Fig.2).Usually,the number of selected lines in the next screening could be increased.The stepwise screening method recommended by Sreewongchai et al.[14]was used to select superior,high-yielding new plant types.A total of three F2:5individual plants derived from F2ARS 563–14 and ARS 563–286 families were selected as ideotypes and identified as promising superior high-yielding lines.The alternate phenotype–genotype selection method used to advance progenies from F2to F2:5is described in Fig.3.

    3.3.Agro-morphological characterization of selected F2:3 and F2:4 pedigree selection

    A total of 53 selected F2:3plants from ARS 563–14,ARS 563–62,ARS 563–286,and ARS 563–41 families were phenotyped and evaluated for high yield potential under field conditions(Table 3).The TB of the F2:3was lowest(1776 g m?2),contrasting with those of the checks Sahel 108(1950 g m?2)and Sahel 201(2106 g m?2),and the two parents.HI was high(0.60)for the F2:3lines and ranged from 0.44 to 0.48 for the two parents.The PN/m2for the F2:3population was 566,exceeding those of both parents,NERICA-L-20(427)and Giza178(515).Moderate(P<0.01)to high phenotypic variation(P<0.0001)was observed for PN/m2,GNP,and HI.GY showed significant(P<0.05)differences,while TB,1000-GW,and SF showed nonsignificant differences.F2:31000-GW was 25.70 g,in contrast to those of the two parents,23.67 and 26.67 g;SF was higher than 75%for the F2:3population and their parents with an average of 76.47%.The average GY of F2:3population was 999 g m?2while the parents showed GY values as follows:NERICA-L-20(921 g m?2)and Giza178(1002 g m?2).Broad-sense heritability(h2)values were high for HI(0.6),PN/m2(0.78),and GNP(0.73)and ranged from moderate to low for other traits.A total of 31 F2:4plants were selected from the 53 selected F2:3plants showing superior high-yielding characteristics,using pedigree selection.The 31 F2:5plants derived from ARS563–14 and ARS563–286 families were used for preliminary yield performance trials.

    3.4.Evaluation of selected F2:5 ARS 563–14 and ARS 563–286 lines and preliminary yield performance estimation

    The 31 selected plants of the two families ARS 563–14(Table 4)and ARS 563–286(Table 5)including the two parents and two checks were evaluated.Results from 14 F2:5(ARS 563–14)and 17 F2:5(ARS 563–286)showed high phenotypic variation(P<0.0001)for DH50,total grain number per square meter(TGN/m2),panicle length,GY,and SF.However,there were no significant differences for T60,H60,HI,PN/m2,1000-GW,and TB.The mean DH50 was<90 days for the F2:5lines,Sahel 108 and Giza178.The mean values of GNP ranged from 96(ARS 563–286–12–1-4)to 151(ARS 563–14–1-1-1).However,for TGN/m2the values were between 145(ARS 563–14–1-1-1)and 503(ARS 563–286–18-1-1).For 1000-GW,the values obtained were 23.07 g(ARS 563–286–16-1-1)and 28.73 g(ARS 563–286–14–1-1).In addition,the h2values obtained from ten quantitative traits ranged from low (h2<0.2),to moderate(0.20.4).GY ranged from 729.86(ARS 563–14–7-7-1)to 1099.33 g m?2(ARS 563–286–16-1-1).Yield values obtained with the two check varieties,Sahel 108 and Sahel 201,ranged from 700 to 870 g m?2,while for the two parents the grain yield recorded was between 600 and 850 g m?2.

    The three top lines,ARS 563–286–16-1-1,ARS 563–286–5-1-1,and ARS 563–14–10-1-1,showed over 10%yield increase over the values obtained with the best parent,midparent,and standard check variety Sahel 108(Table 6).The 11 best F2:6lines may be inferred to be homozygous for the QTL linked with the yield-component traits.

    4.Discussion

    ?

    The ARS563 populations developed from a cross between NERICA-L20 and Giza178 via alternate phenotype–genotype selection combined with pedigree selection could contribute to identifying superior high-yielding rice lines compared with the parents and the standard check.As reported by Khush[8]and Sreewongchai et al.[14],this high yield was due to heterosis resulting from the use of different sources or different genetic backgrounds of the parents.The pedigree selection method is used for selection from segregating populations of crosses in self-pollinated crops and for combination or transgressive breeding.In fact,molecular characterization enabled the identification at an early stage of interesting recombinant lines with common region“introgressed”segments on chromosomes 1(Gn1a),3(GS3),5(GW5),and 6(SMC2/APO1).It also showed that the same segregating line is capable of accumulating varying combinations governing the expression of these different yield component traits[31].The most important way,as reported by Fujita et al.[32],is to understand the enhancement of source size and translocation capacity as well as sink size regarding the phenotypic characteristics of the population.That study showed that near-isogenic lines achieved 13%–36%yield increases with no negative effect on grain appearance.Expression analysis revealed that the gene was expressed in panicles,leaves,roots,and culms supporting the pleiotropic effects on plant architecture.Spikelet number(SPIKE)increased grain yield by 18%in the released indica cultivar Oryza sativa L.and increased the number of spikelets in the genetic background of other popular indica cultivars[32].However,a negative correlation(?0.23)between grain weight and grain number,two major yield component traits,was reported by Venkateswarlu and Visperas[33],depending on lineage source.

    Fig.2–Forward breeding for grain size of selected F2:4lines using RGS1-SSR1(Marker_5).1:Giza178(parent 1);2:NERICA-L-20(parent 2)=IR24=positive check for yield component grain size(GS3);3,4,5,6:F2:4lines genotyped using Marker_5 for grain size(GS3);7:ladder(100 pb).

    Fig.3–Procedural scheme for advancing selected lines through F2:6generation.

    Phenotypic variation was observed in F2:3and F2:5populations with good tillering ability and the semidwarf to intermediate plant height required in irrigated and rainfed lowland growth conditions.On the other hand,F2:5showed strong stems capable of supporting the heavy panicle weight conferred by Giza178(Gn1a and SMC2/APO1).Plant height is one of the main descriptors often used to explain plantarchitecture that supports heavy panicles[34].The selected F2:5lines showed moderate to high heritability for all traits,revealing good to excellent performance of these lines.

    Table 3–Average values of seven traits of the selected lines F2,F2:3 compared with parents and check variegties.

    Table 4–Average values of 10 traits of 14 selected F2:5 lines derived from ARS 563–14 compared with parents and check varieties.

    The three top selected F2:5lines,ARS 563–286–16-1-1,ARS 563–286–5-1-1,and ARS 563–14–10-1-1,showed an increase of more than 10%grain yield following standard heterosis in comparison with the best check,Sahel 108.

    Marker identification of QTL associated with target traits in different crops has contributed to developing methods that combine conventional and molecular breeding to makeprogress in marker-assisted breeding[35].Selection may be applied at any plant growth stage and in small populations.In that case,phenotyping and genotyping by the so-called alternate phenotype–genotype selection method and marker-assisted selection may be used to reduce field trial size by excluding unfavorable genotypes before planting the population in the field[14].Genotype and phenotype are still used to refer to the individual's DNA and traits.The use of markers linked to QTL associated with target traits is contributing to improving the efficiency and precision of conventional plant breeding via marker-assisted selection[36].

    Table 5–Average values of 10 traits of 14 selected F2:5 lines derived from ARS 563–286 compared with parents and check varieties.

    Table 6 –Preliminary yield performance from best selected F2:6 lines derived from ARS 563–286 and ARS 563–14 families.

    In conclusion,alternate phenotype-genotype selection may prove useful for accelerating rice breeding programs.

    We acknowledge funding to the GRiSP New Frontiers Project(DRPC2012-025).We also thank the irrigated breeding unit and the Biotechnology Laboratory at Africa Rice Saint Louis for assistance provided by the technicians.

    [1]Statista,Statistics on “Rice”:world rice acreage from 2008/2009 to 2015/2016(in million hectares),https://www.statista.com/statistics/271969/world-rice-acreage-since-2008/2017.

    [2]FAO,Rice Market Monitor(RMM),volume XIX,Issue No.3,October 2016(Rome,Italy,2016).

    [3]N.Palmer,Rice roadmap provides an alternative to the quest for “mega-varieties”CIAT Blog http://www.ciatnews.cgiar.org/2011/09/08/rice-roadmap-provides-an-alternative-tothe-quest-for-mega-varieties/2011.

    [4]IRRI,Annual Report of the Director General,2005–2006,Volume 16,IRRI,Makati City,Philippines,2006(www.irri.org).

    [5]Africa Rice Center(WARDA),Africa Rice Trends:Overview of Recent Developments in the Sub-Saharan Africa Rice Sector,Africa Rice Center Brief,Cotonou,Benin,2007.

    [6]Africa Rice Center(AfricaRice),New Breeding Directions at AfricaRice:Beyond NERICA,Africa Rice Center,Cotonou,Benin,2010.

    [7]V.O.Sadras,K.G.Cassman,P.Grassini,A.J.Hall,W.G.M.Bastiaanssen,A.G.Laborte,A.E.Milne,G.Sileshi,P.Steduto,Yield Gap Analysis of Field Crops:Methods and Case Studies,FAO Water Reports No.41,Food and Agriculture Organization of the United Nations(FAO)and the Robert B,Daugherty Water for Food Institute at the University of Nebraska(DWFI),Rome,Italy,2015.

    [8]G.S.Khush,Breaking the yield frontier of rice,Georgetown Dent.J.35(1995)329–332.

    [9]S.B.Peng,G.S.Khush,P.Virk,Q.Y.Tang,Y.B.Zou,Progress in ideotype breeding to increase rice yield potential,Field Crop Res.108(2008)32–38.

    [10]P.S.Virk,G.S.Khush,S.B.Peng,Breeding to enhance yield potential of rice at IRRI:the ideotype approach,Int.Rice Res.Notes 29(2004)5–9.

    [11]F.M.Xie,B.Hardy,Accelerating Hybrid Rice Development,IRRI,Los Ba?os,The Philippines,2009.

    [12]K.Traore,V.B.Bado,M.K.N'Diaye,Manuel Pratique sur les Normes de Production et de Certification de Semences de Riz,AfricaRice Sahel Station,Saint Louis,Senegal,2012(in French).

    [13]T.R.Hargrove,V.L.Cabanilla,W.R.Coffman,Twenty years of rice breeding,Biomed.Sci.38(1988)675–681.

    [14]T.Sreewongchai,P.Rattanapol,V.Vichukit,Alternate phenotype-genotype selection method for developing photoperiod intensive,good cooking quality and potential high-yielding rice lines,Kasetsart,J.(Nat.Sci.)48(2014)851–859.

    [15]G.Zong,A.H.Wang,L.Wang,G.H.Liang,M.H.Gu,T.Sang,B.Han,A pyramid breeding of eight grain-yield related quantitative trait loci based on marker-assistant and phenotype selection in Rice(Oryza sativa L.),J.Genet.Genomics 39(2012)335–350.

    [16]M.Dingkuhn,M.P.Jones,D.E.Johnson,A.Sow,Growth and yield potential of Oryza sativa and O.glaberrima upland rice cultivars and their interspecific progenies,Field Crop Res.57(1998)57–69.

    [17]J.Demol,J.P.Baudoin,P.B.Louant,R.Maréchal,G.Mergeai,E.Otoul,L'amélioration des plantes.Application aux principales espèces cultivées en régions tropicales,Les Presses Agronomiques de Gembloux,Gembloux,Belgique,2002(in French).

    [18]K.Miura,M.Ikeda,A.Matsubara,X.J.Song,M.Ito,K.Asano,M.Matsuoka,H.Kitano,M.Ashikari,OsSPL14 promotes panicle branching and higher grain productivity in rice,Nat.Genet.42(2010)545–549.

    [19]D.W.Xue,Q.Qian,S.Teng,Identification and Utilization of Elite Genes from Elite Germplasms for Yield Improvement,in:W.G.Yan,J.S.Bao(Eds.),Rice-Germplasm,Genetics and Improvement,InTechOpen,Rijeka,Croatia 2014,pp.1–5.

    [20]M.Ashikari,H.Sakakibara,S.Y.Lin,T.Yamamoto,T.Takashi,A.Nishimura,E.R.Angeles,Q.Qian,H.Kitano,M.Matsuoka,Cytokinin oxidase regulates rice grain production,Science 309(2005)741–745.

    [21]T.Ookawa,H.T.Yano,M.Murata,K.Ando,T.Miura,H.Asano,K.Ochiai,Y.Ikeda,M.Nishitani,R.Ebitani,T.Ozaki,H.Angeles,E.R.Hirasawa,T.M.Matsuoka,New approach for rice improvement using a pleiotropic QTL gene for lodging resistance and yield,Nat.Commun.1(2010)132.

    [22]J.F.A.Griffiths,J.H.Miller,D.T.Suzuki,R.C.Lewontin,W.M.Gelbart,à Introduction,L'analyse Génétique,4th edition de Boeck,Bruxelle,Belgium,2006(in French).

    [23]Bioversity International,IRRI and WARDA,Descriptors for Wild and Cultivated Rice(Oryza Spp.),Bioversity International,Rome,Italy,2007(International Rice Research Institute,Los Ba?os,Philippines;WARDA,Africa Rice Center,Cotonou,Benin).

    [24]Addinsoft,XLStat,Version 2015.6,New York,USA,https://www.xlstat.com/en/news/version-2015-6 2015.

    [25]Integrated Breeding Platform(IBP),Breeding Management System(BMS),Version,3.0.9,2015,Mexico,D.F.,Mexico,https://www.integratedbreeding.net/.

    [26]D.L.Zhao,G.N.Atlin,L.Bastiaans,H.J.Spiertz,Cultivar weed-competitiveness in aerobic rice:heritability,correlated traits,and the potential for indirect selection in weed-free environments,Crop Sci.1(2006)372–380.

    [27]H.F.Robinson,R.E.Comstock,P.H.Harvey,Estimates heritability and the degree of dominance in corn,Agron.J.41(1949)353–359.

    [28]K.Mather,Biometrical Genetics,the Study of Continuous Variation,2nd ed.Methuen,London,UK,1949.

    [29]M.A.Saghai-Maroof,K.M.Soliman,R.A.Jorgensen,R.W.Allard,Ribosomal DNA spacer-length polymorphisms in barley:Mendelian inheritance,chromosomal location,and population dynamics(ribosomal DNA spacer-length variation/restriction fragment-length polymorphisms/Rrnl/Rrn2),Proc.Natl.Acad.Sci.U.S.A.81(1984)8014–8018.

    [30]X.Perrier,J.P.Jacquemoud-Collet,DARwin Software,Version 6,http://darwin.cirad.fr/2006.

    [31]D.S.Brar,G.S.Khush,Alien introgression in rice,Plant Mol.Biol.35(1997)35–47.

    [32]D.Fujita,K.R.Trijatmikoa,A.G.Taglea,M.V.Sapasapa,Y.Koidea,K.Sasakia,N.Tsakirpalogloua,R.B.Gannabana,T.Nishimurad,S.Yanagiharab,Y.Fukutab,T.Koshibad,I.H.Slamet-Loedina,T.Ishimarua,N.Kobayashia,NAL1 allele from a rice landrace greatly increases yield in modern indica cultivars,Proc.Natl.Acad.Sci.U.S.A.110(2013)20431–20436.

    [33]B.Venkateswarlu,R.M.Visperas,Source-Sink Relationships in Crop Plants,IRRI,Los Ba?os,Philippines,1987.

    [34]B.P.Caton,A.E.Cope,M.Mortimer,Growth traits of diverse rice cultivars under competition:implications for screening for competitiveness,Field Crop Res.80(2003)157–172.

    [35]C.Bertrand,Y.Collard,J.D.Mackill,Marker-assisted selection:an approach for precision plant breeding in the twenty-first century,Philos.Trans.R.Soc.B-Biol.Sci.(2008)557–572.

    [36]P.Taylor,R.Lewontin,The Genotype/Phenotype Distinction,in:E.N.Zalta(Ed.),The Stanford Encyclopedia of Philosophy,2017.

    国产成人免费观看mmmm| 国产在线一区二区三区精| 午夜免费观看网址| 又大又爽又粗| 国产精品欧美亚洲77777| 久久精品亚洲精品国产色婷小说| 国产在线一区二区三区精| 欧美激情极品国产一区二区三区| 一区在线观看完整版| 国产高清videossex| 国产精品乱码一区二三区的特点 | xxxhd国产人妻xxx| 国产成人欧美| 五月开心婷婷网| cao死你这个sao货| 午夜老司机福利片| 在线观看舔阴道视频| 好男人电影高清在线观看| 亚洲成av片中文字幕在线观看| 老鸭窝网址在线观看| 热99re8久久精品国产| 久久午夜综合久久蜜桃| 一级毛片精品| 国产成人免费无遮挡视频| www.精华液| 欧美国产精品一级二级三级| 热99re8久久精品国产| 在线观看日韩欧美| 欧美精品人与动牲交sv欧美| 久久中文字幕人妻熟女| 欧美黄色片欧美黄色片| 亚洲成人免费av在线播放| 激情视频va一区二区三区| 久久人人爽av亚洲精品天堂| 成人国语在线视频| 在线观看免费午夜福利视频| 在线观看午夜福利视频| 日本a在线网址| 19禁男女啪啪无遮挡网站| 五月开心婷婷网| 老汉色av国产亚洲站长工具| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲五月色婷婷综合| 亚洲欧美激情在线| 两个人免费观看高清视频| 久久精品国产亚洲av高清一级| 亚洲成国产人片在线观看| 好看av亚洲va欧美ⅴa在| 精品人妻1区二区| 国产亚洲欧美在线一区二区| 欧美丝袜亚洲另类 | 夜夜躁狠狠躁天天躁| 动漫黄色视频在线观看| 亚洲av成人av| 一进一出抽搐动态| 亚洲成人手机| 国产精品久久久av美女十八| 国产精品久久视频播放| 91老司机精品| 国产欧美日韩一区二区三区在线| 亚洲av电影在线进入| 精品无人区乱码1区二区| 一级毛片高清免费大全| 在线视频色国产色| 香蕉丝袜av| 女人被狂操c到高潮| 高清欧美精品videossex| 日韩成人在线观看一区二区三区| 精品免费久久久久久久清纯 | 欧美老熟妇乱子伦牲交| 国产熟女午夜一区二区三区| 男男h啪啪无遮挡| 久久人人97超碰香蕉20202| 美女高潮到喷水免费观看| 国产国语露脸激情在线看| 午夜日韩欧美国产| 国产真人三级小视频在线观看| а√天堂www在线а√下载 | 久久久久久久午夜电影 | 欧美日韩国产mv在线观看视频| av中文乱码字幕在线| 国内毛片毛片毛片毛片毛片| 可以免费在线观看a视频的电影网站| 亚洲va日本ⅴa欧美va伊人久久| 天天影视国产精品| 亚洲一区二区三区欧美精品| 欧美精品av麻豆av| 天堂俺去俺来也www色官网| 亚洲男人天堂网一区| 亚洲熟女精品中文字幕| 99久久99久久久精品蜜桃| 99国产极品粉嫩在线观看| 俄罗斯特黄特色一大片| 自拍欧美九色日韩亚洲蝌蚪91| 欧美激情久久久久久爽电影 | 欧美在线黄色| 国产精品 国内视频| 久久影院123| 妹子高潮喷水视频| 欧美日韩亚洲综合一区二区三区_| 欧美黄色淫秽网站| 又紧又爽又黄一区二区| 国产欧美日韩精品亚洲av| 国产欧美日韩综合在线一区二区| 9191精品国产免费久久| 成年动漫av网址| 国产黄色免费在线视频| 黄色毛片三级朝国网站| 精品国产一区二区三区四区第35| 在线观看免费日韩欧美大片| 咕卡用的链子| 国产淫语在线视频| 久久九九热精品免费| 亚洲精品久久午夜乱码| tube8黄色片| 国产精品久久久久久人妻精品电影| 日韩欧美在线二视频 | 精品一区二区三区四区五区乱码| 岛国在线观看网站| 人妻一区二区av| 精品熟女少妇八av免费久了| 老司机亚洲免费影院| 国产精品久久久av美女十八| 国产精品偷伦视频观看了| 99精品在免费线老司机午夜| 国产男靠女视频免费网站| 亚洲精品中文字幕一二三四区| 夫妻午夜视频| 三上悠亚av全集在线观看| 国产一区二区激情短视频| 女人被狂操c到高潮| 九色亚洲精品在线播放| av视频免费观看在线观看| 一级,二级,三级黄色视频| 国产高清videossex| 一区二区三区激情视频| 露出奶头的视频| 少妇的丰满在线观看| 欧美日韩精品网址| 高清视频免费观看一区二区| 日本vs欧美在线观看视频| 不卡av一区二区三区| 国产精品久久久人人做人人爽| 男人的好看免费观看在线视频 | 国产深夜福利视频在线观看| av网站免费在线观看视频| 欧美久久黑人一区二区| 国产日韩欧美亚洲二区| 交换朋友夫妻互换小说| 黄色丝袜av网址大全| 水蜜桃什么品种好| 午夜免费观看网址| 免费不卡黄色视频| 久久国产精品影院| 国产一区二区三区在线臀色熟女 | 9热在线视频观看99| 在线免费观看的www视频| 18禁黄网站禁片午夜丰满| 亚洲va日本ⅴa欧美va伊人久久| 一进一出好大好爽视频| 国产精品美女特级片免费视频播放器 | 三级毛片av免费| 久久精品亚洲熟妇少妇任你| 国产一卡二卡三卡精品| e午夜精品久久久久久久| 黄色成人免费大全| 天天添夜夜摸| 成人18禁高潮啪啪吃奶动态图| 中文字幕制服av| 51午夜福利影视在线观看| 久久久久精品国产欧美久久久| 亚洲三区欧美一区| 精品国产乱码久久久久久男人| av一本久久久久| 欧美日韩亚洲高清精品| 免费人成视频x8x8入口观看| 怎么达到女性高潮| 精品国产一区二区三区四区第35| 免费在线观看黄色视频的| 老司机深夜福利视频在线观看| 国产av一区二区精品久久| 欧美日韩一级在线毛片| 午夜激情av网站| 99在线人妻在线中文字幕 | 国产精品久久久人人做人人爽| 日韩有码中文字幕| 侵犯人妻中文字幕一二三四区| 在线天堂中文资源库| 可以免费在线观看a视频的电影网站| 国产视频一区二区在线看| videosex国产| svipshipincom国产片| 日韩免费av在线播放| 51午夜福利影视在线观看| 熟女少妇亚洲综合色aaa.| 婷婷成人精品国产| 男女之事视频高清在线观看| 黄色a级毛片大全视频| 免费看a级黄色片| 最新的欧美精品一区二区| 成人精品一区二区免费| 欧美午夜高清在线| 国产成人免费观看mmmm| 亚洲精品在线美女| 精品福利永久在线观看| 国产成人免费无遮挡视频| avwww免费| av福利片在线| 麻豆成人av在线观看| 日韩熟女老妇一区二区性免费视频| 欧美另类亚洲清纯唯美| 老熟妇仑乱视频hdxx| 狠狠狠狠99中文字幕| 久久青草综合色| 国产真人三级小视频在线观看| 久久久国产成人免费| 久久精品亚洲熟妇少妇任你| 女人久久www免费人成看片| 国产成人啪精品午夜网站| 纯流量卡能插随身wifi吗| 久久久久久久精品吃奶| 亚洲av成人一区二区三| 十八禁高潮呻吟视频| 欧美日韩亚洲综合一区二区三区_| 国内久久婷婷六月综合欲色啪| 精品福利观看| 五月开心婷婷网| 欧美国产精品一级二级三级| 波多野结衣av一区二区av| 两性夫妻黄色片| 又黄又粗又硬又大视频| 久久久久久久午夜电影 | 亚洲中文字幕日韩| 大型av网站在线播放| 久久 成人 亚洲| 黄色女人牲交| 99久久综合精品五月天人人| 亚洲专区中文字幕在线| 久久九九热精品免费| 岛国在线观看网站| 国内毛片毛片毛片毛片毛片| 美女福利国产在线| 日韩欧美三级三区| 午夜成年电影在线免费观看| 免费黄频网站在线观看国产| 三级毛片av免费| 亚洲欧美激情在线| 久久久久久久久久久久大奶| 久久精品亚洲熟妇少妇任你| 叶爱在线成人免费视频播放| 色播在线永久视频| 成年人免费黄色播放视频| 免费久久久久久久精品成人欧美视频| 午夜福利视频在线观看免费| 久久久精品国产亚洲av高清涩受| 成人av一区二区三区在线看| 99riav亚洲国产免费| 欧美性长视频在线观看| 大陆偷拍与自拍| xxxhd国产人妻xxx| 深夜精品福利| 国产精品 欧美亚洲| videos熟女内射| 一区在线观看完整版| 国产精品一区二区精品视频观看| 一夜夜www| 91精品国产国语对白视频| 18禁国产床啪视频网站| 午夜成年电影在线免费观看| av在线播放免费不卡| 免费在线观看亚洲国产| 久久久久久久国产电影| 欧美成狂野欧美在线观看| 老熟妇乱子伦视频在线观看| 亚洲精品中文字幕一二三四区| 一区二区三区国产精品乱码| 久久久水蜜桃国产精品网| 欧洲精品卡2卡3卡4卡5卡区| 搡老岳熟女国产| 亚洲人成伊人成综合网2020| 18禁观看日本| tocl精华| 97人妻天天添夜夜摸| 国内毛片毛片毛片毛片毛片| 欧美乱码精品一区二区三区| 久久精品成人免费网站| 激情在线观看视频在线高清 | 水蜜桃什么品种好| 亚洲一码二码三码区别大吗| 在线国产一区二区在线| 美女高潮到喷水免费观看| 两个人看的免费小视频| 久久精品熟女亚洲av麻豆精品| 夜夜夜夜夜久久久久| 成人av一区二区三区在线看| 免费观看a级毛片全部| 国产精品98久久久久久宅男小说| 久久中文字幕一级| 99久久99久久久精品蜜桃| 成年人免费黄色播放视频| 制服人妻中文乱码| 一区二区日韩欧美中文字幕| 欧美中文综合在线视频| 国产不卡一卡二| 欧美黄色淫秽网站| 波多野结衣av一区二区av| 热99re8久久精品国产| 美女视频免费永久观看网站| 亚洲一区二区三区欧美精品| 成年版毛片免费区| 老鸭窝网址在线观看| 99国产精品99久久久久| 亚洲精品在线观看二区| 国产欧美日韩综合在线一区二区| 精品国产亚洲在线| 久久久久久久午夜电影 | 日本黄色视频三级网站网址 | 亚洲全国av大片| 91国产中文字幕| 侵犯人妻中文字幕一二三四区| 亚洲aⅴ乱码一区二区在线播放 | 他把我摸到了高潮在线观看| 色尼玛亚洲综合影院| 国产真人三级小视频在线观看| 久久久久久亚洲精品国产蜜桃av| 免费黄频网站在线观看国产| 久久久国产成人精品二区 | 中文字幕另类日韩欧美亚洲嫩草| 午夜91福利影院| 色94色欧美一区二区| 欧美最黄视频在线播放免费 | 日韩欧美免费精品| 欧美 亚洲 国产 日韩一| 精品久久久久久久毛片微露脸| 国产激情欧美一区二区| 国产一区二区激情短视频| 免费观看精品视频网站| 成年人免费黄色播放视频| 夜夜躁狠狠躁天天躁| 午夜福利,免费看| 亚洲欧洲精品一区二区精品久久久| 久久狼人影院| 成人18禁在线播放| 18禁国产床啪视频网站| 国产成人av激情在线播放| 黄片小视频在线播放| 国内久久婷婷六月综合欲色啪| 在线观看免费视频网站a站| 欧美成人免费av一区二区三区 | 一进一出抽搐动态| 日韩欧美国产一区二区入口| 国产亚洲欧美98| 久久精品国产a三级三级三级| 日本一区二区免费在线视频| 亚洲av成人不卡在线观看播放网| 99热网站在线观看| 国产一区有黄有色的免费视频| 免费不卡黄色视频| 亚洲国产毛片av蜜桃av| 精品久久蜜臀av无| 国产淫语在线视频| 黄色丝袜av网址大全| 在线永久观看黄色视频| 国产精品一区二区在线不卡| 亚洲男人天堂网一区| 精品久久久久久久久久免费视频 | 国产有黄有色有爽视频| 免费日韩欧美在线观看| 亚洲av熟女| 757午夜福利合集在线观看| 亚洲国产精品一区二区三区在线| 老熟妇乱子伦视频在线观看| 一边摸一边抽搐一进一小说 | 免费在线观看亚洲国产| tube8黄色片| 中文字幕色久视频| 啦啦啦免费观看视频1| 精品欧美一区二区三区在线| 国产主播在线观看一区二区| 日韩欧美在线二视频 | 91精品国产国语对白视频| 国产精品.久久久| 热re99久久国产66热| 视频区欧美日本亚洲| 亚洲中文日韩欧美视频| 天天添夜夜摸| 欧美精品啪啪一区二区三区| 久久天躁狠狠躁夜夜2o2o| www日本在线高清视频| 人成视频在线观看免费观看| 欧美成人午夜精品| 波多野结衣一区麻豆| 欧美日韩亚洲高清精品| 性少妇av在线| 日韩 欧美 亚洲 中文字幕| 亚洲国产中文字幕在线视频| 欧美老熟妇乱子伦牲交| 国产激情欧美一区二区| 99精国产麻豆久久婷婷| 久久久久国产精品人妻aⅴ院 | 飞空精品影院首页| 久久这里只有精品19| videos熟女内射| 老司机午夜福利在线观看视频| 99re在线观看精品视频| 搡老乐熟女国产| 人人妻人人爽人人添夜夜欢视频| 91精品国产国语对白视频| 国产男女超爽视频在线观看| 欧美精品啪啪一区二区三区| 免费看十八禁软件| 老司机靠b影院| 99热国产这里只有精品6| 乱人伦中国视频| 18禁裸乳无遮挡动漫免费视频| 美女午夜性视频免费| 国产激情久久老熟女| 极品少妇高潮喷水抽搐| 69精品国产乱码久久久| 女性被躁到高潮视频| 免费高清在线观看日韩| 午夜久久久在线观看| 91在线观看av| 亚洲人成77777在线视频| 国产激情欧美一区二区| 日本黄色日本黄色录像| 9色porny在线观看| 久久天堂一区二区三区四区| 亚洲综合色网址| 美女视频免费永久观看网站| 亚洲人成电影观看| 欧美日韩av久久| 亚洲精品中文字幕一二三四区| 91九色精品人成在线观看| 国产成人精品在线电影| 一级毛片精品| 国产精品免费一区二区三区在线 | 热re99久久国产66热| 人人妻人人爽人人添夜夜欢视频| 欧美中文综合在线视频| 久久国产精品男人的天堂亚洲| 国产欧美日韩综合在线一区二区| 国产成人欧美| 国产精品偷伦视频观看了| 亚洲一区二区三区不卡视频| 国产午夜精品久久久久久| 99精品在免费线老司机午夜| 亚洲av美国av| 黑人猛操日本美女一级片| 在线视频色国产色| 国产极品粉嫩免费观看在线| 欧美亚洲日本最大视频资源| 亚洲精品自拍成人| 高清欧美精品videossex| 亚洲精品中文字幕一二三四区| 中文字幕人妻熟女乱码| 黑人巨大精品欧美一区二区mp4| 亚洲精品中文字幕一二三四区| 天天躁日日躁夜夜躁夜夜| 99在线人妻在线中文字幕 | 国产在线观看jvid| 欧美日韩福利视频一区二区| 欧美日韩精品网址| 一个人免费在线观看的高清视频| 中文字幕最新亚洲高清| 亚洲av成人不卡在线观看播放网| 桃红色精品国产亚洲av| 欧美人与性动交α欧美软件| 男女床上黄色一级片免费看| 国产精品永久免费网站| 乱人伦中国视频| 中亚洲国语对白在线视频| 午夜日韩欧美国产| 丰满的人妻完整版| 99热网站在线观看| 在线观看www视频免费| 亚洲七黄色美女视频| 久久国产亚洲av麻豆专区| 亚洲成av片中文字幕在线观看| 欧美中文综合在线视频| 国产成人系列免费观看| 两性夫妻黄色片| 757午夜福利合集在线观看| 国产亚洲欧美在线一区二区| 亚洲精品国产一区二区精华液| 老熟女久久久| 久久久国产成人免费| 变态另类成人亚洲欧美熟女 | 男男h啪啪无遮挡| 亚洲精品一二三| 亚洲一区高清亚洲精品| 少妇粗大呻吟视频| 电影成人av| 一本综合久久免费| av有码第一页| 91大片在线观看| 在线视频色国产色| 一进一出抽搐动态| 国产亚洲av高清不卡| 国产伦人伦偷精品视频| 国精品久久久久久国模美| 美女高潮喷水抽搐中文字幕| 777米奇影视久久| 丰满饥渴人妻一区二区三| 国产伦人伦偷精品视频| 91精品国产国语对白视频| 18禁国产床啪视频网站| 国产成人啪精品午夜网站| 欧美av亚洲av综合av国产av| 午夜老司机福利片| 妹子高潮喷水视频| 久久久久久久精品吃奶| 美国免费a级毛片| 在线天堂中文资源库| 久久国产精品人妻蜜桃| 国产又色又爽无遮挡免费看| 亚洲成a人片在线一区二区| 久久久久久人人人人人| 午夜精品在线福利| 黄色成人免费大全| 男女之事视频高清在线观看| 真人做人爱边吃奶动态| 久久狼人影院| 在线av久久热| 嫩草影视91久久| 国产av又大| 麻豆成人av在线观看| 亚洲aⅴ乱码一区二区在线播放 | а√天堂www在线а√下载 | 日本精品一区二区三区蜜桃| 国产成人啪精品午夜网站| 国产在线观看jvid| 人妻久久中文字幕网| 亚洲成人免费av在线播放| 亚洲人成电影免费在线| 亚洲三区欧美一区| 久久久久久久久久久久大奶| 欧美 亚洲 国产 日韩一| 国产一区二区三区在线臀色熟女 | 高潮久久久久久久久久久不卡| 18禁国产床啪视频网站| 国产aⅴ精品一区二区三区波| 精品视频人人做人人爽| 成人国语在线视频| 精品人妻1区二区| 欧美日韩福利视频一区二区| 美女视频免费永久观看网站| 欧美色视频一区免费| 丰满饥渴人妻一区二区三| 成人黄色视频免费在线看| av免费在线观看网站| 国产成人精品久久二区二区91| 成人永久免费在线观看视频| 精品久久久久久久毛片微露脸| 国产精品电影一区二区三区 | 久久ye,这里只有精品| 国产蜜桃级精品一区二区三区 | videos熟女内射| 国产成人一区二区三区免费视频网站| 天天躁夜夜躁狠狠躁躁| 男人操女人黄网站| 黄网站色视频无遮挡免费观看| 欧美乱妇无乱码| 精品电影一区二区在线| 一进一出抽搐动态| 村上凉子中文字幕在线| 成年女人毛片免费观看观看9 | 18在线观看网站| 在线观看www视频免费| 在线观看日韩欧美| av天堂在线播放| 一级片'在线观看视频| 亚洲视频免费观看视频| 50天的宝宝边吃奶边哭怎么回事| 国产精品九九99| 啦啦啦视频在线资源免费观看| 久久久国产精品麻豆| 免费在线观看视频国产中文字幕亚洲| 亚洲一码二码三码区别大吗| 亚洲欧美精品综合一区二区三区| 欧美乱妇无乱码| 99re在线观看精品视频| 一区二区三区国产精品乱码| a在线观看视频网站| 国产成人系列免费观看| 日日爽夜夜爽网站| 麻豆av在线久日| 无遮挡黄片免费观看| 日日夜夜操网爽| 久久精品成人免费网站| tube8黄色片| 中文字幕av电影在线播放| 久久精品91无色码中文字幕| 国产日韩欧美亚洲二区| 精品少妇久久久久久888优播| 老鸭窝网址在线观看| 丰满迷人的少妇在线观看| 久久香蕉国产精品| 国产精品亚洲一级av第二区| 国产单亲对白刺激| 美女高潮到喷水免费观看| 一边摸一边做爽爽视频免费| 亚洲第一欧美日韩一区二区三区| 国产精品九九99| 亚洲成人免费电影在线观看| 色综合欧美亚洲国产小说| 一个人免费在线观看的高清视频| 久久久久久免费高清国产稀缺| 午夜久久久在线观看| 99国产综合亚洲精品| 免费在线观看影片大全网站| 在线播放国产精品三级| 午夜亚洲福利在线播放| 天天躁夜夜躁狠狠躁躁| 久久热在线av|