• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Development and validation of simple sequence repeat markers from Arachis hypogaea transcript sequences

    2018-04-12 03:33:55HoumioWngYongLeiLiyingYnLiyunWnYnCiZefengYngJinweiLvXiojieZhngChenwuXuBoshouLio
    The Crop Journal 2018年2期

    Houmio Wng,Yong Lei,Liying Yn,Liyun Wn,Yn Ci,Zefeng Yng,Jinwei Lv,Xiojie Zhng,Chenwu Xu,*,Boshou Lio,*

    a Key Laboratory of Oil Crop Biology of the Ministry of Agriculture,CAAS-ICRISAT Joint Laboratory for Groundnut Aflatoxin Management,Oil Crops Research Institute of Chinese Academy of Agricultural Sciences,Wuhan 430062,Hubei,China

    b Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops,Key Laboratory of Plant Functional Genomics of the Ministry of Education,Yangzhou University,Yangzhou 225009,Zhejiang,China

    1.Introduction

    The cultivated peanut(Arachis hypogaea L.)is an important oilseed and cash crop in most tropical and subtropical areas of the world,and one of the primary sources of vegetable oil and protein for human consumption.The species is a self-pollinating allotetraploid(AABB)with two different genomes(A and B),and the genome size is estimated to be 2.8 Gb[1].The most likely wild diploid progenitors of A.hypogaea are A.duranensis(AA,2n=2x=20)and A.ipaensis(BB,2n=2x=20)[2].Reference genomes of A.duranensis(A genome)and A.ipaensis(B genome)have been released recently in a public database(http://peanutbase.org/).However,a reference genome of A.hypogaea is not yet available.

    Molecular markers are valuable tools for linkage map construction,quantitative trait locus(QTL)analyses,genomic selection,gene discovery,and marker-assisted selection for crop improvement[3].They are also useful for estimating diversity and discriminating among genotypes[4].Progress has been made in the development of molecular markers and genetic resources in A.hypogaea[3,5–7].However,the application of molecular markers is more advanced in the legume species Glycine max and Medicago truncatula than in A.hypogaea,primarily because of the genome complexity and the narrow genetic base of A.hypogaea.Simple sequence repeats(SSRs)and single-nucleotide polymorphisms(SNPs)are currently the standard DNA markers used for gene mapping and marker-assisted selection in many crops[8].SSR and SNP markers share similar advantages,as both are codominant,abundant throughout genomes,and highly polymorphic.However,SSRs are often multi-allelic,whereas most SNPs are biallelic.SSRs can be easily detected by polymerase chain reaction(PCR)and gel electrophoresis[9].SSRs have been widely applied in A.hypogaea for verification of cultivar identity,diversity studies[7,10–15],linkage map construction[16–18],and QTL analysis[19–23].SSRs are classified into genomic SSRs and expressed sequence tag-SSRs(EST-SSRs)depending on the origin of the sequences used for the initial identification of these markers.Genomic SSRs are not necessarily expected either to have genetic functions or to be closely linked to transcribed regions of the genome,whereas EST-SSRs are tightly linked with functional genes that may influence important agronomic characters.Because of these advantages,EST-SSRs have been developed and used in many plant species[3,8,24–31].Although a major disadvantage of EST-SSRs is sequence redundancy,resulting in multiple sets of markers at the same locus,the problem can be circumvented by assembling the ESTs and short reads of RNA transcripts into unigenes.With a large number of EST resources of A.hypogaea in public databases,it is advisable to fully exploit the EST-SSRs within these sequences.Since Arachis species SSRs were first reported in 1999,a total of 14,390 A.hypogaea SSRs have been deposited to date in the public database(Peanut Marker Database,http://marker.kazusa.or.jp/Peanut/).However,the number of SSR markers reported for A.hypogaea is still far fewer than that reported for Glycine max[32].

    The application of next-generation sequencing technologies has efficiently and cost-effectively generated a massive amount of genetics sequence data.Additionally,new techniques have enabled whole-transcriptome sequencing[i.e.,RNA sequencing(RNA-seq)]and analysis of crops[33].RNA-seq is an effective approach for detecting functional genes and characterizing gene expression patterns and associated regulatory networks.This technique has been used successfully to analyze the transcriptome of A.hypogaea under different conditions[34–39].RNA-seq has also allowed the rapid identification of SSR loci derived from ESTs in many crops[3,8,24–31].

    We previously reported the first study of the post-harvest A.hypogaea transcriptome using RNA-seq and de novo assembly via Illumina paired-end sequencing[40].The raw sequencing data from that study were deposited in the National Center for Biotechnology Information(NCBI)Sequence Read Archive database(SRP061959),and 128,725 unigenes of A.hypogaea were obtained[40].In this study,these 128,725 unigene sequences were used to detect SSRs for the large-scale development and characterization of SSR markers.

    2.Materials and methods

    2.1.Plant materials and DNA extraction

    Twenty-four A.hypogaea varieties from 14 provinces in China were used for analyzing the polymorphism of SSR markers(Table S1).All 24 varieties were planted in the experimental greenhouses of the Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences(CAAS-OCRI),Wuhan,China.Genomic DNA was extracted from fresh leaves of each variety following the hexadecyltrimethyl ammonium bromide(CTAB)method[41].The quality and integrity of the extracted DNA were evaluated by 1.0%agarose gel electrophoresis and the concentrations were determined with a Beckman DU-650 spectrophotometer(Beckman Coulter,Inc.,Brea,CA,USA).

    2.2.Expressed sequence tag simple sequence repeat detection and primer design

    SSRs present in the 128,725 unigenes were detected using the MIcroSAtellite program(MISA,http://pgrc.ipk-gatersleben.de/misa/misa.html)[31].The default criteria were based on the minimum number of repeats,which were set as follows:10 repeating units for mononucleotides,six repeating units for dinucleotides,and five repeating units for tri-,tetra-,pentaand hexanucleotides.The maximum distance between two SSRs was specified as 100 bases.Primer pairs specific for the flanking regions of potential SSRs were designed for each SSR locus using Primer3(http://primer3.sourceforge.net/releases.php)[25].Primers were designed based on the following criteria:1)GC content between 40%and 60%,2)primer length between 18 and 27 bp,3)melting temperature between 57°C and 63°C,and 4)expected PCR product sizes from 100 to 280 bp.

    2.3.Functional classification of simple sequence repeatcontaining unigenes

    All unigenes containing an SSR motif were classified into Clusters of Orthologous Groups(COG)categories according to the results of National Center for Biotechnology Information(NCBI)BLAST(version 2.2.28+)searches against amino acid sequences in the Eukaryotic Orthologous Groups(KOG)database with an E-value threshold of 10?3(http://www.ncbi.nlm.nih.gov/COG/)[42].To comprehensively characterize the biological functions and interactions of these SSR-containing unigenes,pathways were assigned based on the KEGG database[43]using BLASTX with an E-value threshold of 10?5.

    2.4.Validation of simple sequence repeats

    Two hundred and ten SSR markers(Table S2)were validated using 24 A.hypogaea varieties(Table S1).PCR reactions were performed as previously described[41].The PCR-amplified products were separated by nondenaturing 6.0%polyacrylamide gel electrophoresis and then visualized by silver staining as described by Ren et al.[7]and Zhou et al.[44].The fragment sizes of the PCR products were estimated by comparison with a 50-bp DNA ladder.

    2.5.Genetic diversity analysis

    The number of alleles,genetic diversity(expected heterozygosity,He)and polymorphic information content(PIC)were estimated for each SSR using PowerMarker version 3.25[44,45].A genetic similarity matrix based on the proportion of shared alleles among the 24 A.hypogaea varieties was generated with PowerMarker.An unrooted neighbor-joining tree based on the shared allele distances was constructed using MEGA 6[44]to reveal the genetic relationships among the 24 varieties.

    3.Results

    3.1.Development and characterization of simple sequence repeats mined from the A.hypogaea transcriptome

    All 128,725 unigenes assembled de novo from the A.hypogaea transcriptome(NCBI Sequence Read Archive database,SRP061959)with a total length of 98.47 Mb were used to identify potential SSR loci using MISA.A total of 29,357 potential SSRs were identified in 22,806 unigenes,with 4883 unigenes containing more than one SSR locus(Table 1).The distribution density was one SSR locus per 3355 bp,and the number of repeat units ranged from one to six.The number of SSRs with each repeat motif varied widely.SSRs with mononucleotide repeat motifs were most abundant(19,065;64.94%),followed by tri-(5033;17.14%),di-(4927;16.78%),tetra-(303;1.03%),penta-(18;0.061%),and hexanucleotide(11;0.037%)repeat motifs(Table 1,Fig.S1).Additionally,1710 SSRs were present in compound forms(Table 1).The iteration number of repeat units in SSRs ranged from 4 to 22 and the occurrence frequencies of SSRs with different iteration numbers were unequal.The most common iteration number was 10(8467;28.84%),followed by 11(3959;13.49%),five(3634;12.38%)and six(3507;11.95%)(Table S3,Fig.S1).For the SSRs with>10 repeat units,mononucleotide repeat motifs were most abundant,accounting for 99.82%of the SSRs,whereas motifs with>16 repeats were rare(5.79%).The repetition of sequences also varied.Sixty-nine SSR motifs were identified,including two mono-,four di-,10 tri-,24 tetra-,18 penta-,and 11 hexanucleotide repeating units(Table S3).The dominant motif identified in the SSRs was A/T(18,358;62.54%),followed by AG/CT(2804;9.55%),AAG/CTT(1396;4.76%),AT/AT(1390;4.73%),AAT/ATT(1075;3.66%),ATC/ATG(725;2.47%)and AC/GT(720;2.45%).The remaining 62 motifs were relatively rare,accounting for only 9.84%of the total number of SSRs(Fig.1).

    Comparisons with known sequences in Kyoto Encyclopedia of Genes and Genomes(KEGG)and Eukaryotic Orthologous Groups(KOG)databases were used to categorize the SSR-containing unigenes based on functions.A search using the KEGG Orthology(KO)database revealed 1883(8.26%)SSR-containing unigenes with significant matches.These unigenes were assigned to five main categories,including 32 subcategories and 252 KEGG pathways(Fig.2,Table S4).The majority of the SSR-containing unigenes were assigned to“carbohydrate metabolism”(479;25.44%), “signal transduction”(385;20.45%),“overview”(314;16.68%)and “amino acid metabolism”(305;16.20%).Additionally,4103 SSR-containing unigenes were annotated using the KOG database and assigned to 26 KOG functional categories(Fig.3,Table S4).Among the 26 KOG categories,“general function prediction only”(693;16.89%)was the largest group,followed by“posttranslational modification,protein turnover,chaperones”(477;11.63%),“signal transduction mechanisms”(339;8.26%)and “transcription”(257;6.26%).The SSR-containing unigenes were functionally classified and characterized to enable molecular marker development for studying genetic diversity of A.hypogaea in the future.

    Table 1–Summary of EST-SSRs identified in transcriptome sequences.

    3.2.Primer design and identification of new simple sequence repeats

    A total of 56,451 PCR primer pairs specific for the unique sequences flanking 18,817 SSR loci in 15,739 unigenes were designed(Table S5).For each SSR locus,three alternative primer pairs were designed.The flanking sequences of the other 10,540 SSRs did not fulfill the primer design criteria,which permitted no suitable PCR primer pairs for them.The 11,785 mononucleotide SSRs(10,585 unigenes)were the most common ones for which primers were successfully designed,followed by 3076 trinucleotide SSRs(2868 unigenes),2786 dinucleotide SSRs(2690 unigenes),980 complex SSRs(962),173 tetranucleotide SSRs(173 unigenes),12 pentanucleotide SSRs(12 unigenes),and five hexanucleotide SSRs(five unigenes)(Table 2).In total,primers for 5514 SSRs with di-to hexanucleotide motifs were designed.

    In the Peanut Marker Database(http://marker.kazusa.or.jp/Peanut/,2016-01-27),14,390 primer pairs of the publicly available SSRs in A.hypogaea were searched(Table S6).Mononucleotide and complex SSRs were excluded during the identification of new SSRs.All 14,390 publicly available SSR primer pair sequences were aligned to the 22,806 unigenes as paired-end sequences,and 4340 new SSRs in 4064 unigenes were obtained for further analysis(Table S7).The proportions of new SSRs were not evenly distributed.The largest fraction of identified new SSRs consisted of di-and trinucleotide repeats,which accounted for 96.59%(4192)of all new SSRs.The other three types of new SSRs were rare(148,3.41%).

    The novel SSR motifs were grouped into classes I and II based on their length[15,46].Among the new SSRs,the length of 228(5.25%)SSR motifs were≥20 bp(class I),whereas the other 4112 consisted of<20 bp(class II)(Table 3,Table S5).Thus,the number of class II SSRs was much greater than that of class I,a result consistent with previous reports in A.hypogaea[15,46,47].The number of tetranucleotides(133)was greater than that of other repeat motifs in the class I SSRs,whereas the proportion of trinucleotide was higher than those of di-,hexa-,tetra-,and pentanucleotides in class II SSRs(Table 3).Interestingly,tetra-,penta-,and hexanucleotide repeat motifs were detected only in class I(Table 3).

    Fig.1–Frequency distribution of simple sequence repeats based on motif type.

    3.3.Validation of novel simple sequence repeat markers

    To validate the identified novel SSR markers,we attempted to amplify the predicted SSRs via PCR.A total of 210 primer pairs(Table S2)were randomly selected for validation using DNA from 24 A.hypogaea varieties(Table S1).The numbers of these selected SSRs with di-,tri-,and tetranucleotide repeats were 35,153,and 22,respectively.Among the 210 primer pairs,191(90.95%)were able to amplify genomic DNA and the containing SSRs with di-,tri-,and tetranucleotide repeats were 32(16.75%),140(73.30%),and 19(9.95%),respectively,whereas the remaining 19 primer pairs failed to generate PCR products at the same annealing temperatures(Table S2).Most of the selected markers appeared as single alleles in all 24 A.hypogaea genotypes,except for a few multilocus SSRs,suggesting that these novel SSR markers possess a specific amplification in A.hypogaea.

    Fig.2–Functional classification of simple sequence repeat-containing unigenes based on Kyoto Encyclopedia of Genes and Genomes Ortholog searches.

    Among the validated markers,37(17.62%)showed polymorphism between at least two A.hypogaea varieties,including new SSRs with di-(11;29.73%),tri-(25;67.57%),and tetranucleotide(1;2.70%)repeats(Table S2).Based on the polymorphism rate,about 765 polymorphic SSR markers were expected for the 4340 new SSRs.The 37 polymorphic SSR markers detected 146 alleles in total(N=24),with 2–10 alleles per locus(average,3.95 alleles per locus)(Table 4).Of the 37,25(67.57%)were observed in more than three A.hypogaea genotypes and four(10.81%)showed polymorphism among>10 A.hypogaea varieties.

    Fig.3–Functional classification of simple sequence repeat-containing unigenes based on the Eukaryotic Orthologous Groups of proteins database.A,RNA processing and modification;B,chromatin structure and dynamics;C,energy production and conversion;D,cell cycle control,cell division,chromosome partitioning;E,amino acid transport and metabolism;F,nucleotide transport and metabolism;G,carbohydrate transport and metabolism;H,coenzyme transport and metabolism;I,lipid transport and metabolism;J,translation,ribosomal structure and biogenesis;K,transcription;L,replication,recombination and repair;M,cell wall/membrane/envelope biogenesis;N,cell motility;O,posttranslational modification,protein turnover,chaperones;P,inorganic ion transport and metabolism;Q,secondary metabolite biosynthesis,transport and catabolism;R,general function prediction only;S,function unknown;T,signal transduction mechanisms;U,intracellular trafficking,secretion,and vesicular transport;V,defense mechanisms;W,extracellular structures;X,unnamed protein;Y,nuclear structure;Z,cytoskeleton.

    Table 2–Summary statistics of the simple sequence repeat(SSR)motifs designed with primers and distribution of new SSRs.

    3.4.Evaluation of genetic diversity among 24 A.hypogaea varieties

    The 37 polymorphic SSRs developed in this study were used to assess the genetic diversity and relationships among 24 A.hypogaea varieties cultivated across the A.hypogaea growing region in China (Table S1).The expectedheterozygosity(He)was 0.449(0.0799 to 0.8370)(Table 4),and the average polymorphic information content(PIC)value was 0.403(0.077 to 0.819)(Table 4).

    Table 3–Classification of novel simple sequence repeats based on their motif lengths.

    An unrooted neighbor-joining tree based on shared allele distance grouped the 24 A.hypogaea varieties into four main clusters(Fig.S2).The largest cluster included 13 genotypes,with eight(61.54%)from var.vulgaris(Table S1,Fig.S2).A few discrepancies were observed during the neighbor-joining tree analysis because of the relatively small number of validated polymorphic SSRs.Nevertheless,our results might suggest an association between genetic relationships of A.hypogaea varieties and their botanical species.

    Table 4–Characteristics of 37 polymorphic simple sequence repeat markers in 24 peanut genotypes.

    4.Discussion

    The development of polymorphic genetic markers is an important task in studying the genetic basis of agronomic traits and population genetic structures, molecular marker-assisted selection,and QTL analysis.SSR markers are among the most useful molecular markers and have been applied for evaluating A.hypogaea genetic diversity and constructing several A.hypogaea genetic maps[3,7,41].Expressed sequence tags(ESTs)have become an important resource for developing SSR markers that are associated with biological function[3,8,24–31].In this study,we identified 29,357 potential SSRs based on the previously assembled A.hypogaea unigenes from our transcriptome sequencing study[40].Additionally,we detected 4340 new SSRs and designed corresponding primer pairs.Of the unigenes,17.7%contained SSRs,a proportion slightly higher than those reported in previous studies involving Arachis species(6.80%–16.95%)[3,15,36,48,49].Our observed proportion is also consistent with that reported for 49 dicotyledonous species(2.65%–10.62%)[50].The detection of SSRs is affected by several factors,including genome structure[50],dataset size for unigene assembly,and the criteria used for SSR mining[9].

    The relative frequencies of di-,tri-,tetra-,penta-,and hexanucleotide motifs should decrease according to the relative probabilities of replication slippage events[51].The mononucleotide repeat motif was the most common among the analyzed A.hypogaea unigenes in this study.However,most studies have excluded mononucleotide repeat motifs because they may result from sequencing errors[52],and their polymorphism rate is very low.We observed similar proportions of di-and trinucleotide motifs in A.hypogaea transcript sequences,and these motifs were much more abundant than the tetra-,penta-,or hexanucleotide repeats.As previously reported[9,52],di-and trinucleotide motifs are generally most common in the SSRs of both dicotyledons and monocotyledons.The abundance of trinucleotide motifs observed in our study was consistent with the results of previous studies involving A.hypogaea[15,36,49,53]and other legumes[18,51,54,55].Trinucleotide repeat motifs are common for SSRs,as insertions or deletions within translated regions do not disturb open reading frames,whereas frameshift mutation may limit the expansion of other motif types[8,56].

    In addition to the mononucleotide repeat motifs(19,065),>57.83%of the other 10,292 identified SSRs were matched with sequences in the Peanut Marker Database.These results suggest that our method is highly reliable for SSR development.Correspondingly,we identified 4340 new SSRs,which might be useful for constructing high-density genetic linkage maps,mapping QTL and using in crop breeding along with previously discovered molecular markers.The 91%validation rate observed in this study is consistent with the 85%–94%amplification rates of previous reports[3,15,44,46],indicating that the SSRs from the A.hypogaea transcriptomic data from high-throughput RNA-seq were suitable for SSR primer design.

    Of the new SSRs,18(37)revealed polymorphism among the 24 A.hypogaea cultivars.These 37 polymorphic SSRs generated 146 alleles,and their PIC values varied from 0.077 to 0.819 with an average of 0.403(Table 4).The PIC value is used mainly to assess the utility of a marker for linkage analysis.The average PIC value(0.403)of the 37 polymorphic SSRs in our study was higher than those in two previous reports in A.hypogaea [15,44],suggesting that these informative markers may play vital roles in accelerating molecular genetics,marker-assisted selection breeding,germplasm polymorphism assessment,and functional genetics studies in A.hypogaea.

    5.Conclusions

    A total of 4030 novel SSR markers were identified and characterized in genomic data of A.hypogaea using high-throughput transcriptome sequencing.A set of 210 novel markers were validated in 24 A.hypogaea varieties.Of these,191(90.95%)yielded PCR products,and 37 polymorphic markers were identified among the 24 varieties.These new SSRs developed in this study will expand the current marker resources of A.hypogaea and may also be useful for functional genomics research and molecular breeding in A.hypogaea.

    Supplementary data for this article can be found online at https://doi.org/10.1016/j.cj.2017.09.007.

    This research was funded by the National Basic Research Program of China(2013CB127803,2011CB109304),National High Technology Research and Development Program of China(2013AA102602),National Natural Science Foundation of China (31371662,31461143022),China Agriculture Research System(CARS-14),and Shandong Agricultural Industrialization Project for New Variety Development(2014–2016).

    [1]S.Feng,X.Wang,X.Zhang,P.M.Dang,C.C.Holbrook,A.K.Culbreath,Y.Wu,B.Guo,Peanut(Arachis hypogaea)expressed sequence tag project:progress and application,Comp.Funct.Genomics 2012(2012)373768.

    [2]G.Kochert,H.T.Stalker,M.Gimenes,L.Galgaro,C.R.Lopes,K.Moore,RFLP and cytogenetic evidence on the origin and evolution of allotetraploid domesticated peanut,Arachis hypogaea(Leguminosae),Am.J.Bot.83(1996)1282–1291.

    [3]Z.Peng,M.Gallo,B.L.Tillman,D.Rowland,J.Wang,Molecular marker development from transcript sequences and germplasm evaluation for cultivated peanut(Arachis hypogaea L.),Mol.Gen.Genomics.291(2016)363–381.

    [4]M.Kirst,C.M.Cordeiro,G.Rezende,D.Grattapaglia,Power of microsatellite markers for fingerprinting and parentage analysis in Eucalyptus grandis breeding populations,J.Hered.96(2005)161–166.

    [5]T.Iwashina,Flavonoid function and activity to plants and other organisms,Biol.Sci.Space 17(2003)24–44.

    [6]R.K.Varshney,S.M.Mohan,P.M.Gaur,N.V.P.R.Gangarao,M.K.Pandey,A.Bohra,S.L.Sawargaonkar,A.Chitikineni,P.K.Kimurto,P.Janila,K.B.Saxena,A.Fikre,M.Sharma,A.Rathore,A.Pratap,S.Tripathi,S.Datta,S.K.Chaturvedi,N.Mallikarjuna,G.Anuradha,A.Babbar,A.K.Choudhary,M.B.Mhase,C.Bharadwaj,D.M.Mannur,P.N.Harer,B.Z.Guo,X.Q.Liang,N.Nadarajan,C.L.L.Gowda,Achievements and prospects of genomics-assisted breeding in three legume crops of the semi-arid tropics,Biotechnol.Adv.31(2013)1120–1134.

    [7]X.P.Ren,H.F.Jiang,Z.Y.Yan,Y.N.Chen,X.J.Zhou,L.Huang,Y.Lei,J.Q.Huang,L.Y.Yan,Y.Qi,W.H.Wei,B.S.Liao,Genetic diversity and population structure of the major peanut(Arachis hypogaea L.)cultivars grown in China by SSR markers,PLoS One 9(2014)e0088091.

    [8]H.Chen,L.Liu,L.Wang,S.Wang,P.Somta,X.Cheng,Development and validation of EST-SSR markers from the transcriptome of adzuki bean(Vigna angularis),PLoS One 10(2015),e0131939..

    [9]R.K.Varshney,A.Graner,M.E.Sorrells,Genic microsatellite markers in plants:features and applications,Trends Biotechnol.23(2005)48–55.

    [10]M.E.Ferguson,M.D.Burow,S.R.Schulze,P.J.Bramel,A.H.Paterson,S.Kresovich,S.Mitchell,Microsatellite identification and characterization in peanut(A-hypogaea L.),Theor.Appl.Genet.108(2004)1064–1070.

    [11]M.S.Hopkins,A.M.Casa,T.Wang,S.E.Mitchell,R.E.Dean,G.D.Kochert,S.Kresovich,Discovery and characterization of polymorphic simple sequence repeats(SSRs)in peanut,Crop Sci.39(1999)1243–1247.

    [12]Md.C.Moretzsohn,M.S.Hopkins,S.E.Mitchell,S.Kresovich,J.F.M.Valls,M.E.Ferreira,Genetic diversity of peanut(Arachis hypogaea L.)and its wild relatives based on the analysis of hypervariable regions of the genome,BMC Plant Biol.4(2004)11.

    [13]G.H.He,R.H.Meng,H.Gao,B.Z.Guo,G.Q.Gao,M.Newman,R.N.Pittman,C.S.Prakash,Simple sequence repeat markers for botanical varieties of cultivated peanut(Arachis hypogaea L.),Euphytica 142(2005)131–136.

    [14]R.Tang,G.Gao,L.He,Z.Han,S.Shan,R.Zhong,C.Zhou,J.Jiang,Y.Li,W.Zhuang,Genetic diversity in cultivated groundnut based on SSR markers,J.Genet.Genomics 34(2007)449–459.

    [15]T.C.Bosamia,G.P.Mishra,R.Thankappan,J.R.Dobaria,Novel and stress relevant EST derived SSR markers developed and validated in peanut,PLoS One 10(2015),e0129127..

    [16]Y.Hong,X.Chen,X.Liang,H.Liu,G.Zhou,S.Li,S.Wen,C.C.Holbrook,B.Z.Guo,A SSR-based composite genetic linkage map for the cultivated peanut(Arachis hypogaea L.)genome,BMC Plant Biol.10(2010)17.

    [17]H.Qin,S.Feng,C.Chen,Y.Guo,S.Knapp,A.Culbreath,G.H.He,M.L.Wang,X.Y.Zhang,C.C.Holbrook,P.Ozias-Akins,B.Z.Guo,An integrated genetic linkage map of cultivated peanut(Arachis hypogaea L.)constructed from two RIL populations,Theor.Appl.Genet.124(2012)653–664.

    [18]K.Shirasawa,P.Koilkonda,K.Aoki,H.Hirakawa,S.Tabata,M.Watanabe,M.Hasegawa,H.Kiyoshima,S.Suzuki,C.Kuwata,Y.Naito,T.Kuboyama,A.Nakaya,S.Sasamoto,A.Watanabe,M.Kato,K.Kawashima,Y.Kishida,M.Kohara,A.Kurabayashi,C.Takahashi,H.Tsuruoka,T.Wada,S.Isobe,In silico polymorphism analysis for the development of simple sequence repeat and transposon markers and construction of linkage map in cultivated peanut,BMC Plant Biol.12(2012)80.

    [19]Y.P.Khedikar,M.V.C.Gowda,C.Sarvamangala,K.V.Patgar,H.D.Upadhyaya,R.K.Varshney,A QTL study on late leaf spot and rust revealed one major QTL for molecular breeding for rust resistance in groundnut(Arachis hypogaea L.),Theor.Appl.Genet.121(2010)971–984.

    [20]K.Ravi,V.Vadez,S.Isobe,R.R.Mir,Y.Guo,S.N.Nigam,M.V.C.Gowda,T.Radhakrishnan,D.J.Bertioli,S.J.Knapp,R.K.Varshney,Identification of several small main-effect QTLs and a large number of epistatic QTLs for drought tolerance related traits in groundnut(Arachis hypogaea L.),Theor.Appl.Genet.122(2011)1119–1132.

    [21]I.Faye,M.K.Pandey,F.Hamidou,A.Rathore,O.Ndoye,V.Vadez,R.K.Varshney,Identification of quantitative trait loci for yield and yield related traits in groundnut(Arachis hypogaea L.)under different water regimes in Niger and Senegal,Euphytica 206(2015)631–647.

    [22]L.Huang,H.Y.He,W.G.Chen,X.P.Ren,Y.N.Chen,X.J.Zhou,Y.L.Xia,X.L.Wang,X.G.Jiang,B.S.Liao,H.F.Jiang,Quantitative trait locus analysis of agronomic and quality-related traits in cultivated peanut(Arachis hypogaea L.),Theor.Appl.Genet.128(2015)1103–1115.

    [23]M.L.Wang,P.Khera,M.K.Pandey,H.Wang,L.Qiao,S.Feng,B.Tonnis,N.A.Barkley,D.Pinnow,C.C.Holbrook,A.K.Culbreath,R.K.Varshney,B.Z.Guo,Genetic mapping of QTLs controlling fatty acids provided insights into the genetic control of fatty acid synthesis pathway in peanut(Arachis hypogaea L.),PLoS One 10(2015)e0119454.

    [24]T.Liu,S.Zhu,L.Fu,Q.Tang,Y.Yu,P.Chen,M.Luan,C.Wang,S.Tang,Development and characterization of 1,827 expressed sequence tag-derived simple sequence repeat markers for ramie(Boehmeria nivea L.Gaud),PLoS One 8(2013)e60346.

    [25]W.Chen,Y.X.Liu,G.F.Jiang,De novo assembly and characterization of the testis transcriptome and development of EST-SSR markers in the cockroach Periplaneta americana,Sci.Rep.5(2015)11144.

    [26]Q.Ding,J.Li,F.Wang,Y.Zhang,H.Li,J.Zhang,J.Gao,Characterization and development of EST-SSRs by deep transcriptome sequencing in Chinese cabbage(Brassica rapa L.ssp.pekinensis),Int.J.Genomics 473028(2015).

    [27]Y.F.Guo,K.E.Wiegert-Rininger,V.A.Vallejo,C.S.Barry,R.M.Warner,Transcriptome-enabled marker discovery and mapping of plastochron-related genes in Petunia spp.BMC Genomics 16(2015)726.

    [28]Y.Liu,P.Zhang,M.Song,J.Hou,M.Qing,W.Wang,C.Liu,Transcriptome analysis and development of SSR molecular markers in Glycyrrhiza uralensis fisch,PLoS One 10(2015),e0143017.

    [29]C.Luo,H.X.Wu,Q.S.Yao,S.B.Wang,W.T.Xu,Development of EST-SSR and TRAP markers from transcriptome sequencing data of the mango,Genet.Mol.Res.14(2015)7914–7919.

    [30]S.Y.Zhang,C.Feng,C.J.Xu,C.Q.Zhu,K.S.Chen,Polymorphisms in different EST-SSR types derived from the Chinese bayberry(Myrica rubra,Myricaceae)transcriptome,Genet.Mol.Res.14(2015)6037–6041.

    [31]X.J.Zhou,Y.Y.Wang,Y.N.Xu,R.S.Yan,P.Zhao,W.Z.Liu,De novo characterization of flower bud transcriptomes and the development of EST-SSR markers for the endangered tree Tapiscia sinensis,Int.J.Mol.Sci.16(2015)12855–12870.

    [32]D.Xin,J.Sun,J.Wang,H.Jiang,G.Hu,C.Liu,Q.Chen,Identification and characterization of SSRs from soybean(Glycine max)ESTs,Mol.Biol.Rep.39(2012)9047–9057.

    [33]S.Li,S.W.Tighe,C.M.Nicolet,D.Grove,S.Levy,W.Farmerie,A.Viale,C.Wright,P.A.Schweitzer,Y.Gao,D.Kim,J.Boland,B.Hicks,R.Kim,S.Chhangawala,N.Jafari,N.Raghavachari,J.Gandara,N.Garcia-Reyero,C.Hendrickson,D.Roberson,J.Rosenfeldr,T.Smith,J.G.Underwood,M.Wang,P.Zumbo,D.A.Baldwin,G.S.Grills,C.E.Mason,Multi-platform assessment of transcriptome profiling using RNA-seq in the ABRF next-generation sequencing study,Nat.Biotechnol.32(2014)915–925.

    [34]Y.N.Chen,X.P.Ren,X.J.Zhou,L.Huang,L.Y.Yan,Y.Lei,B.S.Liao,H.F.Jiang,Dynamics in the resistant and susceptible peanut(Arachis hypogaea L.)root transcriptome on infection with the Ralstonia solanacearum,BMC Genomics 15(2014)1078.

    [35]L.Geng,X.Duan,C.Liang,C.Shu,F.Song,J.Zhang,Mining tissue-specific contigs from peanut(Arachis hypogaea L.)for promoter cloning by deep transcriptome sequencing,Plant Cell Physiol.55(2014)1793–1801.

    [36]P.M.Guimaraes,A.C.M.Brasileiro,C.V.Morgante,A.C.Q.Martins,G.Pappas,O.B.Silva Jr.,R.Togawa,S.C.M.Leal-Bertioli,A.C.G.Araujo,M.C.Moretzsohn,D.J.Bertioli,Global transcriptome analysis of two wild relatives of peanut under drought and fungi infection,BMC Genomics 13(2012)387.

    [37]X.Li,J.Lu,S.Liu,X.Liu,Y.Lin,L.Li,Identification of rapidly induced genes in the response of peanut(Arachis hypogaea)to water deficit and abscisic acid,BMC Biotechnol.14(2014)58.

    [38]D.Yin,Y.Wang,X.Zhang,H.Li,X.Lu,J.Zhang,W.Zhang,S.Chen,De novo assembly of the peanut(Arachis hypogaea L.)seed transcriptome revealed candidate unigenes for oil accumulation pathways,PLoS One 8(2013)e73767.

    [39]W.Zhu,X.P.Chen,H.Li,F.Zhu,Y.B.Hong,R.K.Varshney,X.Q.Liang,Comparative transcriptome analysis of aerial and subterranean pods development provides insights into seed abortion in peanut,Plant Mol.Biol.85(2014)395–409.

    [40]H.M.Wang,Y.Lei,L.Y.Wan,L.Y.Yan,J.W.Lv,X.F.Dai,X.P.Ren,W.Guo,H.F.Jiang,B.S.Liao,Comparative transcript profiling of resistant and susceptible peanut post-harvest seeds in response to aflatoxin production by Aspergillus flavus,BMC Plant Biol.16(2016)54.

    [41]L.M.Cuc,E.S.Mace,J.H.Crouch,V.D.Quang,T.D.Long,R.K.Varshney,Isolation and characterization of novel microsatellite markers and their application for diversity assessment in cultivated groundnut(Arachis hypogaea),BMC Plant Biol.8(2008)55.

    [42]R.L.Tatusov,N.D.Fedorova,J.D.Jackson,A.R.Jacobs,B.Kiryutin,E.V.Koonin,D.M.Krylov,R.Mazumder,S.L.Mekhedov,A.N.Nikolskaya,B.S.Rao,S.Smirnov,A.V.Sverdlov,S.Vasudevan,Y.I.Wolf,J.J.Yin,D.A.Natale,The COG database:an updated version includes eukaryotes,BMC Bioinf.4(2003)41.

    [43]M.Kanehisa,S.Goto,KEGG:Kyoto encyclopedia of genes and genomes,Nucleic Acids Res.28(2000)27–30.

    [44]I.Ahuja,R.Kissen,A.M.Bones,Phytoalexins in defense against pathogens,Trends Plant Sci.17(2012)73–90.

    [45]K.J.Liu,S.V.Muse,PowerMarker:an integrated analysis environment for genetic marker analysis,Bioinformatics 21(2005)2128–2129.

    [46]V.Arbona,A.Gomez-Cadenas,Metabolomics of disease resistance in crops,Curr.Issues Mol.Biol.19(2016)13–29.

    [47]S.S.Arya,A.R.Salve,S.Chauhan,Peanuts as functional food:a review,J.Food Sci.Technol.-Mysore 53(2016)31–41.

    [48]X.Q.Liang,X.P.Chen,Y.B.Hong,H.Y.Liu,G.Y.Zhou,S.X.Li,B.Z.Guo,Utility of EST-derived SSR in cultivated peanut(Arachis hypogaea L.)and Arachis wild species,BMC Plant Biol.9(2009)35.

    [49]P.Koilkonda,S.Sato,S.Tabata,K.Shirasawa,H.Hirakawa,H.Sakai,S.Sasamoto,A.Watanabe,T.Wada,Y.Kishida,H.Tsuruoka,T.Fujishiro,M.Yamada,M.Kohara,S.Suzuki,M.Hasegawa,H.Kiyoshima,S.Isobe,Large-scale development of expressed sequence tag-derived simple sequence repeat markers and diversity analysis in Arachis spp.Mol.Breed.30(2012)125–138.

    [50]S.P.Kumpatla,S.Mukhopadhyay,Mining and survey of simple sequence repeats in expressed sequence tags of dicotyledonous species,Genome 48(2005)985–998.

    [51]S.Kaur,L.W.Pembleton,N.O.Cogan,K.W.Savin,T.Leonforte,J.Paull,M.Materne,J.W.Forster,Transcriptome sequencing of field pea and faba bean for discovery and validation of SSR genetic markers,BMC Genomics 13(2012)104.

    [52]Y.M.Zhao,T.Zhou,Z.H.Li,G.F.Zhao,Characterization of global transcriptome using Illumina paired-end sequencing and development of EST-SSR markers in two species of gynostemma(Cucurbitaceae),Molecules 20(2015)21214–21231.

    [53]G.Q.Song,M.J.Li,H.Xiao,X.J.Wang,R.H.Tang,H.Xia,C.Z.Zhao,Y.P.Bi,EST sequencing and SSR marker development from cultivated peanut(Arachis hypogaea L.),Electron.J.Biotechnol.13(2010)1010.

    [54]G.Agarwal,S.Jhanwar,P.Priya,V.K.Singh,M.S.Saxena,S.K.Parida,R.Garg,A.K.Tyagi,M.Jain,Comparative analysis of Kabuli chickpea transcriptome with desi and wild chickpea provides a rich resource for development of functional markers,PLoS One 7(2012),e52443.

    [55]Z.Wang,G.Yu,B.Shi,X.Wang,H.Qiang,H.Gao,Development and characterization of simple sequence repeat(SSR)markers based on RNA-sequencing of Medicago sativa and in silico mapping onto the M.truncatula genome,PLoS One 9(2014)e92029.

    [56]D.Metzgar,J.Bytof,C.Wills,Selection against frameshift mutations limits microsatellite expansion in coding DNA,Genome Res.10(2000)72–80.

    中国美女看黄片| 亚洲专区国产一区二区| 美女免费视频网站| 亚洲九九香蕉| 国内精品久久久久久久电影| 黑人欧美特级aaaaaa片| 国产精品一区二区精品视频观看| 国产一区在线观看成人免费| 露出奶头的视频| 国产精华一区二区三区| 国产日韩一区二区三区精品不卡| 亚洲欧美激情在线| 宅男免费午夜| 午夜福利在线观看吧| 性欧美人与动物交配| 国产99久久九九免费精品| 中文亚洲av片在线观看爽| 中文字幕人成人乱码亚洲影| 人成视频在线观看免费观看| 校园春色视频在线观看| 搞女人的毛片| 99re在线观看精品视频| 日韩av在线大香蕉| 国产精品 欧美亚洲| 欧美激情久久久久久爽电影 | 成人手机av| 丰满人妻熟妇乱又伦精品不卡| 在线十欧美十亚洲十日本专区| 国产成人欧美| 亚洲 国产 在线| 成熟少妇高潮喷水视频| 亚洲第一欧美日韩一区二区三区| 老司机午夜福利在线观看视频| 91国产中文字幕| 如日韩欧美国产精品一区二区三区| or卡值多少钱| 免费搜索国产男女视频| 成人手机av| 操美女的视频在线观看| 午夜成年电影在线免费观看| 夜夜躁狠狠躁天天躁| 国产亚洲精品一区二区www| 午夜激情av网站| 老熟妇仑乱视频hdxx| 又黄又爽又免费观看的视频| 91国产中文字幕| 这个男人来自地球电影免费观看| 国产精品 国内视频| 中文字幕另类日韩欧美亚洲嫩草| 午夜福利在线观看吧| 非洲黑人性xxxx精品又粗又长| 欧美成人免费av一区二区三区| 两个人看的免费小视频| 亚洲av成人一区二区三| 免费无遮挡裸体视频| 成人av一区二区三区在线看| 亚洲国产精品999在线| 美女高潮喷水抽搐中文字幕| 琪琪午夜伦伦电影理论片6080| 国产熟女午夜一区二区三区| 亚洲av片天天在线观看| 一级a爱片免费观看的视频| 制服丝袜大香蕉在线| 十分钟在线观看高清视频www| 女人爽到高潮嗷嗷叫在线视频| 婷婷精品国产亚洲av在线| 成人亚洲精品一区在线观看| 国产免费av片在线观看野外av| 嫩草影院精品99| 夜夜夜夜夜久久久久| 亚洲国产日韩欧美精品在线观看 | 久久精品国产亚洲av香蕉五月| 免费搜索国产男女视频| 亚洲在线自拍视频| 99国产极品粉嫩在线观看| 国产成人精品在线电影| 自拍欧美九色日韩亚洲蝌蚪91| 岛国在线观看网站| 美女高潮喷水抽搐中文字幕| 精品国产一区二区久久| www日本在线高清视频| 国产又色又爽无遮挡免费看| 黄片大片在线免费观看| 一级毛片高清免费大全| 欧美av亚洲av综合av国产av| 最近最新中文字幕大全免费视频| 伦理电影免费视频| 亚洲国产欧美日韩在线播放| 亚洲性夜色夜夜综合| 夜夜夜夜夜久久久久| 久久精品亚洲熟妇少妇任你| 国产一卡二卡三卡精品| 国产欧美日韩综合在线一区二区| 欧美绝顶高潮抽搐喷水| avwww免费| а√天堂www在线а√下载| 久久久久久亚洲精品国产蜜桃av| 欧美精品啪啪一区二区三区| 免费在线观看完整版高清| 青草久久国产| 亚洲国产日韩欧美精品在线观看 | 亚洲精品中文字幕一二三四区| 可以免费在线观看a视频的电影网站| 熟妇人妻久久中文字幕3abv| 国产欧美日韩一区二区三| www.www免费av| 欧美久久黑人一区二区| 自线自在国产av| 嫩草影院精品99| 久久草成人影院| 免费无遮挡裸体视频| 久久精品国产清高在天天线| 女警被强在线播放| 757午夜福利合集在线观看| 一区福利在线观看| 99香蕉大伊视频| 亚洲国产欧美网| 美女免费视频网站| 后天国语完整版免费观看| 真人做人爱边吃奶动态| 亚洲精品久久成人aⅴ小说| 日韩高清综合在线| 国产精品电影一区二区三区| 国产精品久久久av美女十八| 大香蕉久久成人网| 国产成人精品久久二区二区免费| 一a级毛片在线观看| 中国美女看黄片| 一级毛片女人18水好多| 亚洲自拍偷在线| 久久久久久久精品吃奶| 国产精品电影一区二区三区| av在线播放免费不卡| a级毛片在线看网站| 亚洲在线自拍视频| 亚洲国产精品sss在线观看| 满18在线观看网站| 中文字幕久久专区| 午夜影院日韩av| 99国产精品一区二区蜜桃av| 免费在线观看日本一区| 午夜福利18| 国产成人精品无人区| 色av中文字幕| 亚洲精品中文字幕在线视频| 视频区欧美日本亚洲| 免费不卡黄色视频| 欧美最黄视频在线播放免费| 在线av久久热| 久久久久九九精品影院| cao死你这个sao货| 麻豆国产av国片精品| 十八禁人妻一区二区| 1024视频免费在线观看| 无人区码免费观看不卡| 天堂影院成人在线观看| 老司机深夜福利视频在线观看| 999久久久国产精品视频| 亚洲视频免费观看视频| 满18在线观看网站| 女人精品久久久久毛片| 99精品在免费线老司机午夜| 亚洲五月色婷婷综合| 国产男靠女视频免费网站| 精品人妻在线不人妻| 日韩欧美一区二区三区在线观看| 国产午夜精品久久久久久| 亚洲精品国产精品久久久不卡| 久久久久久国产a免费观看| 亚洲av第一区精品v没综合| 91av网站免费观看| 十八禁人妻一区二区| 国产亚洲欧美98| 啦啦啦观看免费观看视频高清 | 国产精品,欧美在线| 丝袜美腿诱惑在线| 久9热在线精品视频| 在线播放国产精品三级| 欧美 亚洲 国产 日韩一| 乱人伦中国视频| 国产亚洲欧美在线一区二区| 欧美乱妇无乱码| 少妇的丰满在线观看| 人妻久久中文字幕网| 啦啦啦观看免费观看视频高清 | 国产精品精品国产色婷婷| 别揉我奶头~嗯~啊~动态视频| 亚洲欧洲精品一区二区精品久久久| 又黄又爽又免费观看的视频| 女人高潮潮喷娇喘18禁视频| 99精品欧美一区二区三区四区| 中亚洲国语对白在线视频| 亚洲成国产人片在线观看| 9191精品国产免费久久| 一本久久中文字幕| 夜夜夜夜夜久久久久| 看片在线看免费视频| 久久精品亚洲熟妇少妇任你| 免费在线观看影片大全网站| 国产一区在线观看成人免费| 黄色视频,在线免费观看| 三级毛片av免费| 久久人妻av系列| 亚洲电影在线观看av| 国产一区在线观看成人免费| 老汉色av国产亚洲站长工具| 最近最新中文字幕大全免费视频| 大码成人一级视频| 欧美乱码精品一区二区三区| 国产精品影院久久| 久久久久久久午夜电影| 欧美日韩一级在线毛片| 天堂影院成人在线观看| 麻豆成人av在线观看| 日本 av在线| av视频在线观看入口| 自拍欧美九色日韩亚洲蝌蚪91| 不卡av一区二区三区| 一区福利在线观看| 一级,二级,三级黄色视频| 久久久精品国产亚洲av高清涩受| 色在线成人网| 人成视频在线观看免费观看| 亚洲一区高清亚洲精品| 欧美乱码精品一区二区三区| 日韩成人在线观看一区二区三区| 狠狠狠狠99中文字幕| 久久精品国产99精品国产亚洲性色 | 最近最新中文字幕大全电影3 | 国产精品乱码一区二三区的特点 | 亚洲第一欧美日韩一区二区三区| 国产熟女xx| 欧美日韩黄片免| 欧美在线黄色| а√天堂www在线а√下载| 欧美另类亚洲清纯唯美| 在线十欧美十亚洲十日本专区| 涩涩av久久男人的天堂| 99国产综合亚洲精品| 可以免费在线观看a视频的电影网站| 99国产精品一区二区三区| 男女下面进入的视频免费午夜 | 99在线人妻在线中文字幕| 午夜精品在线福利| 欧美激情久久久久久爽电影 | 欧美性长视频在线观看| 露出奶头的视频| 成人18禁在线播放| 欧美日本亚洲视频在线播放| 久久久国产成人免费| 曰老女人黄片| 搡老妇女老女人老熟妇| 99精品在免费线老司机午夜| 亚洲男人天堂网一区| 亚洲av电影不卡..在线观看| 在线视频色国产色| e午夜精品久久久久久久| 亚洲精品中文字幕在线视频| 高清毛片免费观看视频网站| 国产精品免费视频内射| 久久精品国产亚洲av高清一级| 亚洲色图综合在线观看| 一a级毛片在线观看| av福利片在线| 国产成人欧美| 欧美成狂野欧美在线观看| 手机成人av网站| 国产成人精品在线电影| 日日夜夜操网爽| 99re在线观看精品视频| 亚洲免费av在线视频| 亚洲国产欧美日韩在线播放| 国产精品 国内视频| 搡老熟女国产l中国老女人| 欧美黑人欧美精品刺激| 午夜成年电影在线免费观看| 久久狼人影院| 97超级碰碰碰精品色视频在线观看| 动漫黄色视频在线观看| 日韩大码丰满熟妇| 欧美不卡视频在线免费观看 | 十八禁网站免费在线| 亚洲欧美精品综合久久99| 999久久久精品免费观看国产| 免费搜索国产男女视频| 国产成+人综合+亚洲专区| 亚洲第一av免费看| 亚洲一卡2卡3卡4卡5卡精品中文| 一边摸一边抽搐一进一出视频| 在线观看一区二区三区| 亚洲欧美激情综合另类| 日韩欧美国产一区二区入口| 后天国语完整版免费观看| 女性被躁到高潮视频| 欧美日韩中文字幕国产精品一区二区三区 | 女性被躁到高潮视频| 久久精品人人爽人人爽视色| 可以在线观看毛片的网站| 久久精品aⅴ一区二区三区四区| 精品一区二区三区四区五区乱码| 成人av一区二区三区在线看| 91国产中文字幕| av免费在线观看网站| 免费观看人在逋| 窝窝影院91人妻| 国产私拍福利视频在线观看| 亚洲精品国产色婷婷电影| 一a级毛片在线观看| 性欧美人与动物交配| 国产高清视频在线播放一区| 亚洲人成电影观看| 侵犯人妻中文字幕一二三四区| 久久人妻熟女aⅴ| 日日摸夜夜添夜夜添小说| 99精品欧美一区二区三区四区| 日本三级黄在线观看| 国产亚洲精品第一综合不卡| 免费在线观看亚洲国产| 日韩欧美国产一区二区入口| 很黄的视频免费| 悠悠久久av| 两性夫妻黄色片| 国产精品一区二区精品视频观看| 久久久久久久精品吃奶| 成人国产综合亚洲| 国产成人精品无人区| 国产免费男女视频| 精品国产乱码久久久久久男人| 久久 成人 亚洲| 欧美黑人欧美精品刺激| 久久人人爽av亚洲精品天堂| 宅男免费午夜| 国产在线精品亚洲第一网站| 国产精品免费一区二区三区在线| 亚洲国产精品久久男人天堂| 国产蜜桃级精品一区二区三区| 精品日产1卡2卡| 男女午夜视频在线观看| 女人被狂操c到高潮| 国产精品久久久久久亚洲av鲁大| 久99久视频精品免费| 国产精品综合久久久久久久免费 | 欧美日韩瑟瑟在线播放| 一夜夜www| 国产亚洲精品综合一区在线观看 | 岛国视频午夜一区免费看| 亚洲第一电影网av| 丰满的人妻完整版| 久久影院123| 国产蜜桃级精品一区二区三区| 老司机福利观看| 女人被躁到高潮嗷嗷叫费观| 女警被强在线播放| 黄色 视频免费看| 久久久久国内视频| 在线观看66精品国产| а√天堂www在线а√下载| 在线国产一区二区在线| 女生性感内裤真人,穿戴方法视频| 欧美最黄视频在线播放免费| 免费高清视频大片| 精品国内亚洲2022精品成人| 精品一品国产午夜福利视频| 国产极品粉嫩免费观看在线| 99国产精品一区二区蜜桃av| 亚洲人成伊人成综合网2020| 精品国产乱子伦一区二区三区| 999久久久精品免费观看国产| 男女之事视频高清在线观看| 丰满人妻熟妇乱又伦精品不卡| 又紧又爽又黄一区二区| 欧美激情 高清一区二区三区| 午夜精品久久久久久毛片777| 久久精品国产综合久久久| 在线观看一区二区三区| 给我免费播放毛片高清在线观看| 99国产精品99久久久久| 神马国产精品三级电影在线观看 | 99久久99久久久精品蜜桃| 99re在线观看精品视频| 国产色视频综合| 亚洲一区二区三区不卡视频| 国产av一区二区精品久久| 久久香蕉激情| 欧美国产精品va在线观看不卡| 亚洲无线在线观看| 亚洲精品av麻豆狂野| 国产精品二区激情视频| 日韩大尺度精品在线看网址 | 美国免费a级毛片| 国产一区二区三区在线臀色熟女| 欧美绝顶高潮抽搐喷水| 满18在线观看网站| 日韩精品中文字幕看吧| 免费搜索国产男女视频| 黄网站色视频无遮挡免费观看| 午夜福利在线观看吧| 欧美精品亚洲一区二区| 欧美成人一区二区免费高清观看 | 操出白浆在线播放| 亚洲全国av大片| 精品无人区乱码1区二区| 午夜视频精品福利| 99香蕉大伊视频| 亚洲成人久久性| 好男人在线观看高清免费视频 | 久久久国产精品麻豆| 免费一级毛片在线播放高清视频 | 99国产精品一区二区三区| 午夜亚洲福利在线播放| 亚洲最大成人中文| 一夜夜www| 99国产精品一区二区三区| 18禁美女被吸乳视频| 老熟妇乱子伦视频在线观看| 午夜福利在线观看吧| 在线观看免费视频日本深夜| 香蕉国产在线看| 亚洲国产欧美日韩在线播放| 免费不卡黄色视频| 国产不卡一卡二| 91麻豆av在线| 日本 av在线| www.熟女人妻精品国产| 国产成年人精品一区二区| 精品久久久久久久久久免费视频| 亚洲av成人av| 亚洲中文日韩欧美视频| 狠狠狠狠99中文字幕| 国产精品1区2区在线观看.| 一区二区三区精品91| 精品国产超薄肉色丝袜足j| 一区在线观看完整版| 国产欧美日韩一区二区三区在线| 国产精品亚洲av一区麻豆| 丁香欧美五月| 久久草成人影院| 久久亚洲精品不卡| 在线播放国产精品三级| 欧美激情 高清一区二区三区| 国产在线精品亚洲第一网站| 国产高清激情床上av| 亚洲成a人片在线一区二区| 动漫黄色视频在线观看| 天天添夜夜摸| 久久久久国产一级毛片高清牌| 久久精品91蜜桃| av在线天堂中文字幕| 多毛熟女@视频| 午夜福利高清视频| av网站免费在线观看视频| 在线观看舔阴道视频| 十八禁网站免费在线| www.精华液| 久久欧美精品欧美久久欧美| 欧美成人一区二区免费高清观看 | 午夜福利影视在线免费观看| 女性生殖器流出的白浆| 九色国产91popny在线| 99re在线观看精品视频| 两人在一起打扑克的视频| 精品一区二区三区视频在线观看免费| 亚洲精华国产精华精| 一本综合久久免费| 免费高清在线观看日韩| 91老司机精品| av视频免费观看在线观看| 精品久久蜜臀av无| www.自偷自拍.com| 亚洲五月婷婷丁香| 亚洲va日本ⅴa欧美va伊人久久| 成在线人永久免费视频| 成人精品一区二区免费| 国产精品一区二区三区四区久久 | 日日爽夜夜爽网站| 叶爱在线成人免费视频播放| 欧美激情久久久久久爽电影 | 日韩中文字幕欧美一区二区| 如日韩欧美国产精品一区二区三区| 色哟哟哟哟哟哟| 欧美日韩福利视频一区二区| 亚洲欧美日韩无卡精品| 国产片内射在线| 亚洲精品国产精品久久久不卡| 国产免费男女视频| 在线观看免费日韩欧美大片| 波多野结衣高清无吗| 99精品久久久久人妻精品| 亚洲精品中文字幕在线视频| 中国美女看黄片| 又黄又爽又免费观看的视频| 国产精品精品国产色婷婷| 午夜日韩欧美国产| 91麻豆精品激情在线观看国产| 亚洲免费av在线视频| 亚洲成人久久性| 好男人在线观看高清免费视频 | 欧美日韩黄片免| 18美女黄网站色大片免费观看| 欧美日韩精品网址| а√天堂www在线а√下载| 欧美绝顶高潮抽搐喷水| 日本免费a在线| 一本大道久久a久久精品| 免费观看人在逋| 日韩国内少妇激情av| 性色av乱码一区二区三区2| 欧美 亚洲 国产 日韩一| 午夜亚洲福利在线播放| 欧美乱色亚洲激情| 日韩欧美免费精品| 亚洲专区字幕在线| 国产av精品麻豆| 可以在线观看毛片的网站| 久久久久久久午夜电影| 免费无遮挡裸体视频| 制服诱惑二区| 此物有八面人人有两片| 欧美国产日韩亚洲一区| 午夜福利免费观看在线| 亚洲专区国产一区二区| x7x7x7水蜜桃| 国产蜜桃级精品一区二区三区| 看片在线看免费视频| 免费人成视频x8x8入口观看| 999久久久国产精品视频| 校园春色视频在线观看| 99在线人妻在线中文字幕| 在线十欧美十亚洲十日本专区| 成年人黄色毛片网站| 最好的美女福利视频网| 高清在线国产一区| 亚洲狠狠婷婷综合久久图片| 亚洲精品一卡2卡三卡4卡5卡| 欧美日韩一级在线毛片| 精品一品国产午夜福利视频| 欧美最黄视频在线播放免费| 亚洲七黄色美女视频| 老汉色∧v一级毛片| 女人被狂操c到高潮| 色综合亚洲欧美另类图片| 久久久久久久久中文| 电影成人av| 午夜精品国产一区二区电影| 精品久久久久久成人av| 亚洲av日韩精品久久久久久密| 曰老女人黄片| 国产麻豆成人av免费视频| 午夜福利一区二区在线看| 真人做人爱边吃奶动态| 麻豆av在线久日| 此物有八面人人有两片| 国产av一区在线观看免费| 淫秽高清视频在线观看| 97人妻天天添夜夜摸| 日本一区二区免费在线视频| av视频免费观看在线观看| 亚洲av成人一区二区三| 桃红色精品国产亚洲av| 国产精品久久久av美女十八| 欧美最黄视频在线播放免费| 久久久久久久精品吃奶| 亚洲 国产 在线| 免费久久久久久久精品成人欧美视频| 国产一区二区激情短视频| 国产精品1区2区在线观看.| 很黄的视频免费| 精品乱码久久久久久99久播| 亚洲va日本ⅴa欧美va伊人久久| 男人的好看免费观看在线视频 | 两个人看的免费小视频| 欧美黑人精品巨大| 日本在线视频免费播放| 中文字幕人成人乱码亚洲影| 欧美一级毛片孕妇| 美女大奶头视频| 中文字幕色久视频| 亚洲自拍偷在线| 亚洲avbb在线观看| 国产免费av片在线观看野外av| 精品久久久久久久久久免费视频| 日韩三级视频一区二区三区| 色播在线永久视频| 狠狠狠狠99中文字幕| 国产乱人伦免费视频| 中国美女看黄片| 老汉色∧v一级毛片| 极品人妻少妇av视频| 啦啦啦免费观看视频1| 亚洲天堂国产精品一区在线| 99热只有精品国产| 亚洲精品av麻豆狂野| 香蕉丝袜av| 免费无遮挡裸体视频| 成年人黄色毛片网站| 乱人伦中国视频| 91麻豆av在线| 色综合亚洲欧美另类图片| 精品国内亚洲2022精品成人| 99国产综合亚洲精品| 女性被躁到高潮视频| 久久久久久久久久久久大奶| 亚洲精品中文字幕在线视频| 黄色片一级片一级黄色片| 亚洲精品久久成人aⅴ小说| 在线国产一区二区在线| 18美女黄网站色大片免费观看| 亚洲欧美日韩无卡精品| 亚洲欧美日韩高清在线视频| av超薄肉色丝袜交足视频| 国产av在哪里看| 两个人看的免费小视频| 日日干狠狠操夜夜爽| 亚洲 国产 在线| 91老司机精品|