• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    JULIA SETS AS JORDAN CURVES

    2018-04-02 06:52:31ZHUANGWei
    數(shù)學雜志 2018年2期
    關鍵詞:濱組同質性卡培

    ZHUANG Wei

    (Department of Mathematics and Physics,Beijing Institute of Petrochemical Technology,Beijing 102617,China)

    1 Introduction and Main Results

    Let f(z)be a rational map of degree d=degf≥2 on the complex sphere.The Julia set J(f)of a rational function f is defined to be the closure of all repelling periodic points of f,and its complement set is called Fatou set F(f).It is known that J(f)is a perfect set(so J(f)is uncountable,and no point of J(f)is isolated),and also that if J(f)is disconnected,then it has infinitely many components.

    for every x∈X and fnis topologically conjugate to a subshift of finite type.If only condition|(fn)′(x)|> 1 is satisfied,we call the map f|Xexpanding.

    We call a rational function f:J(f)→ J(f)hyperbolic if there exists n ≥ 1 such that

    Denote CV(f)the critical values of a rational function f.Let

    It follows from[1,Theorem 2.2]that a rational function f:J(f)→ J(f)is hyperbolic if and only if

    Denote by J(f)the Julia set of a rational function.A rational map f is expansive if the Julia set J(f)contains no critical points of f.It follows from[1]that each hyperbolic rational function is expansive and that a rational function is expansive but not hyperbolic if and only if the Julia set contains no critical points of f but intersect the ω-limit set of critical points.

    We call expansive but not hyperbolic rational functions parabolic.It follows from[1]that a rational function f:J(f)→ J(f)is expansive but not hyperbolic if and only if the Julia set J(f)contains no critical points of f but contains at least one parabolic point.

    We recall that if T:X→X is a continuous map of a topological space X,then for every point x ∈ X,the ω-limit set of x denoted by ω(x)is defined to be the set of all limit points of the sequence{Tn(x)}n≥0.We call a point x recurrent if x ∈ ω(x);otherwise x is called non-recurrent.

    The class of NCP maps obviously contains all expanding and parabolic maps.It also comprises the important class of so called subexpanding maps which are defined by the requirement that f|ω(Crit(f))∩J(f)is expanding and the class of geometrically finite maps defined by the property that the forward trajectory of each critical point contained in the Julia set is finite and disjoint from ω-limit set.

    Let f(z)be a map of degree≥2.A component D of the Fatou set F(f)is said to be completely invariant,if

    In this paper,we establish the following main theorem.

    Main TheoremLet f(z)be an NCP map of degree≥2,and suppose that F(f)is the union of exactly two completely invariant components.Then J(f)is their common boundary and is a Jordan curve.

    2 Preliminaries and the Construction of a Net

    Let f be an NCP map.Denote by Λ(f)the set of all parabolic periodic points of f(these points belong to the Julia set and have an essential influence on its fractal structure),and Crit(f)of all critical points of f.We put

    Set

    Definition 2.1We define the conical set Jc(f)of f as follow.First,say x belongs to Jc(f,r)if for any∈>0,there is a neighborhood U of x and n>0 such that diam(U)<ε and fn:U→B(fn(x),r)is a homeomorphism.Then setWe have x∈Jc(f)if and only if arbitrary small neighborhood of x can be blow up univalently by the dynamics to balls of definite size centered at fn(x).

    Lemma 2.1(see[2])If f:J(f)→J(f)is an NCP map,then

    Note that Curtis T.McMullen used the term radial Julia set Jrad(f)instead of conical set Jc(f)in analogy with Kleinian groups,see ref.[3].By paper[3],we have the set Sing(f)is countable.

    Let 0<λ<1.Then there exist an integer m≥1,C>0,an open topological disk U containing no critical values of f up to order m and analytic inverse branchesof fmn(i=1,···,kn≤ dnm,n ≥ 0),satisfying

    (3)for each fixed n ≥ 1,for all i=1,···,knthe setsare pairwise disjoint and

    Now we state as a lemma the following consequence of(1)–(3).

    Lemma 2.2For each n,letand letThen N is a net of Jc(f),i.e.,any two sets in N are either disjoint or one is a subset of the other.

    3 Conformal Iterated Function System

    In paper[4],Urbanski and Zdunik provided the framework to study infinite conformal iterated function systems.Now we recall this notion and some of its basic properties.Let I be a countable index set with at least two elements and let S={φi:X → X:i∈ I}be a collection of injective contractions from a compact metric space X(equipped with a metric ρ)into X for which there exists 0 < s < 1 such that ρ(φi(x),φi(y)) ≤ sρ(x,y)for every i∈I and for every pair of points x,y∈X.Thus system S is uniformly contractive.Any such collection S of contractions is called an iterated function system.We are particularly interested in the properties of the limit set defined by such a system.We can define this set as the image of the coding space under a coding map as follows.Letthe space of finite words,and for τ∈ I?,n ≥ 1,let φτ= φτ1? φτ2? ···? φτn.Letbe the set of all infinite sequences of elements of I.If τ∈ I?∪I∞and n ≥ 1 does not exceed the length of τ,we denote by τ|nthe word τ1τ2···τn.Since given τ∈ I∞,the diameters of the compact sets φτ|n(X),n ≥ 1,converge to zero and since they form a descending family,the set

    is a singleton therefor,denoting its only element by π(τ),defines the coding map

    有 8 篇研究[2,4-8,11]報道了Ⅲ度及以上腹瀉,合計樣本量504例:替吉奧組252例,卡培他濱組252例。各研究間具有同質性(P=0.92,I2=0%),采用固定效應模型。結果顯示,替吉奧組Ⅲ度及以上腹瀉少于卡培他濱組,具有統(tǒng)計學意義[RR=0.42,95%CI:(0.18,0.99),P=0.05],見圖 3。

    The main object in the theory of iterated function systems is the limit set defined as follows.

    Observe that J satisfied the natural invariance equality

    Notice(1)If I is finite,then J is compact and this property fails for infinite systems by paper[4].

    (2)In Lemma 3.3,we shall build recursively our iterated function systemand n(=I)is finite.

    Let X(∞)be the set of limit points of all sequences xi∈ φi(X),i∈ I′,where I′ranges over all infinite subsets of I,see ref.[4].

    Lemma 3.1(see[4])If

    An iterated function system S={φi:X → X:i∈ I}is said to satisfy the open set condition if there exists a nonempty open set U?X(in the topology of X)such that φi(U)? U for every i∈ I and φi(U)∩φj(U)= ? for every pair i,j∈ I,i/=j(we do not exclude clφi(U)∩ clφj(U)/= ?).

    An iterated function system S={φi:X →X:i∈I}is said to be conformal if X ?Rdfor some d≥1 and the following conditions are satisfied.

    (c)There exists an open connected set V such that X?V?Rdsuch that all maps φi,i ∈ I,extend to C1conformal diffeomorphisms of V into V(note that for d=1 this just means that all the maps φi,i ∈ I,are monotone diffeomorphism,for d=2 the words conformal mean holomorphic and antiholomorphic,and for d=3,the maps φi,i ∈ I are M?bius transformations).

    (d)(Cone condition)There exist α,l> 0 such that for every x ∈ ?X and there exists an open cone Con(x,u,α)? Int(V)with vertex x,the symmetry axis determined by vector u of length l and a central angle of Lebesgue measure α,here Con(x,u,α)={y:0 < (y?x,u)≤cosα||y?x||≤ l}.

    (e)Bounded distortion property(BDP).There exists K≥1 such that

    for every ω ∈ I?and every pair of points x,y ∈ V,wheremeans the norm of the derivative,see ref.[9,10].

    Definition 3.1A bounded subset X of a Euclidean space(or Reimann sphere)is said to be porous if there exists a positive constant c>0 such that each open ball B centered at a point of X and of an arbitrary radius 0<r≤1 contains an open ball of radius cr disjoint from X.If only balls B centered at a fi xed point x∈X are discussed above,X is called porous at x,see ref.[5].

    Lemma 3.2(see[5])The Julia set of each NCP map,if diあerent fromis porous.

    Lemma 3.3If f is an NCP map,then Jc(f)admits a conformal iterated function system satisfying conditions(a)–(e).

    ProofLet f be an NCP map.By Lemma 2.2,Jc(f)admits a net such that Bi∩Bj= ?,i/=j.Moreover,we may require the existence of an integer q≥ 1 and σ > 0 such that the following holds:

    If x∈Jc(f),say x∈Bi,and fqn(x)∈Bt,then there exists a unique holomorphic inverse branch:sending fqn(x)to x.Moreoverand taking q suきciently large,we have

    for suきciently small σ,then

    Let n > 1 be fi nite.For every t=1,2,···,n,we now build recursively our iterated function system Stas a disjoint union of the familiesj≥1,as follows.consists of all the maps,where x,fq(x)∈ Jc(f)∩ Bt.consists of all the mapswhere x,f2q(x)∈Jc(f)∩Btand fq(x)/∈Bt.Suppose that the familieshave been already constructed.Thenis composed of all the mapssuch that y,fqn(y)∈Jc(f)∩Btand fqj(y)∈/Btfor every 1≤j≤n?1.

    Let V?Jc(f)be an open set constructed by the net such that it disjoints from the parabolic and critical points and their inverse orbits of f.For any x∈V and fi nite n<∞,we have

    then

    where x,y∈V and 1≤K<∞is a constant.So condition(e)bounded distortion property(BDP)holds.It is evident that fnis holomorphic and antiholomorphic of V into V for all n≥1,then condition(c)holds.Since J(f)is porous,and condition(d)is satis fi ed.Condition(b)follows immediately from(3.1).In order to prove condition(a),take two distinct mapsandbelong to St.Without loss of generality we may assume that m≤n.Suppose on the contrary that

    Then

    4 Proof of Main Result

    Given x∈C,θ,r> 0,we put

    where η is a representative of θ.We recall that a set Y has a tangent in the direction θ at a point x∈Y if for every r>0,

    where H1denotes the 1-dimensional Hausdorff measure(see refs.[6,7]).Following[6],we say that a set Y has a strong tangent in the direction θ at a point x provided for each 0< β ≤ 1,there is a some r> 0 such that Y ∩B(x,r)? Con(x,θ,β).

    Lemma 4.1(see[7])If Y is locally arcwise connected at a point x and Y has a tangent θ at x,then Y has strong tangent θ at x.

    We call a point τ∈ I∞transitive if ω(τ)=I∞,where ω(τ)is the ω-limit set of τ under the shift transformation σ :I∞→ I∞.We denote the set of these points byand putWe call the Γtthe set of transitive points of ΓStand notice that for everythe setis dense in

    Lemma 4.2(see[7])has a strong tangent at a point x= π(τ),τ∈ I∞,then ΓSt has a strong tangent at every point

    Remark 4.1If f is an NCP map,by Lemma 3.3,Jc(f)admits a conformal iterated function system St.It is obvious that the Julia set J(f)coincides with the limit setby Lemma 3.1.By Lemma 3.1,3.3 and 4.2 we have

    Lemma 4.3If f is an NCP map,then J(f)has a strong tangent at every point of J(f).

    Proof of Main TheoremLet f be an NCP map and denoted by F∞the unbounded component of the Fatou set F(f).As F∞is completely invariant,applying Riemann-Hurwitz formula(see§5.4 in[8])to f:F∞→ F∞,we find that F∞has exactly d?1 critical points of f,and all of these lie at∞.Now take any disk D centered at∞,which is such that

    For each n,let Dn=f?n(D):then Dnis open and connected,

    and as

    where χ(Dn+1)and χ(Dn)denote the Euler characteristics of domains Dn+1and Dnas above,we see that each Dnis simply connected.Let γnbe the boundary of Dn;then γnis a Jordan curve and fnis a dn-fold map of γnonto γ0.SetRoughly speaking,we shall show that γnconverges to

    If ξ∈ Γ then there are points ξnon γnwhich converge to ξ,so,in particular,ξ is in the closure of F∞.However,ξ cannot lie in F∞else it has a compact neighbourhood K lying in some Dn(for the Djare an open cover of K),and hence not meeting γn,γn+1,···for sufficiently large n.We deduce that Γ ? J(f).

    J(f)is porous,then Jc(f)admits a conformal iterated function system s}for finite s satisfying conditions(a)–(e)by Lemma 3.3.

    To prove that J(f)?Γ,let w∈J(f)be a repelling fixed point(or an image of a repelling fixed point)and l be the straight line determined by the strongly tangent direction of J(f)at w as in Lemma 4.3.Then w is an attracting fixed point of f?1.Moreover,

    is a conformal map,where U(w)is a disk centered at w.Now suppose that J(f)is not contained in Γ.Consider x ∈ J(f)Γ such that x ∈ U(w),thenand for every n ≥ 0,we have f?n(x)∈ J(f).Since the map f?1:U(w)→ U(w)is conformal,we get

    It follows that w and f?n(x)(n ≥ 0)are contained in the same lineand this implies thatis the strongly tangent straight line of J(f)at w.Therefore,we conclude that l is not a strongly tangent straight line of J(f)at w.This contradiction proves that J(f)? Γ.

    RemarkIf Main Theorem only with the hypothesis:the Fatou set F(f)has a completely invariant component,J(f)need not be a Jordan curve;for example,the map z→ z2?1 is expanding on its Julia set(certainly NCP map),see Theorem 9.7.5 and Figure 1.5.1 in[8].

    [1]Urba′nski M.Measures and dimensions in conformal dynamics[J].Bull.Amer.Math.Soc,2003,40:281–321.

    [2]Urba′nski M.Rational functions with no recurrent critical points[J].Ergod.Th.Dynam.Sys.,1994,14:391–414.

    [3]Curtis T McMullen.Huasdorff dimension and conformal dynamics II:Geometrically finite rational maps[J].Comment Math.Helv.,2000,75:535–593.

    [4]Urba′nski M,Zdunik A.Hausdorff dimension of harmonic maesure for self-conformal set[J].Adv.Math.,2002,171:1–58.

    [5]Przytycki F,Urba′nski M.Porosity of Julia sets of non-recurrent and parabolic Collet-Eckmann rational functions[J].Ann.Acad.Fenn.,2001,26:125–154.

    [6]Mauldin R D,Urba′nski M.Jordan curvers as repellors[J].Pac.J.Math.,1994,166:85–97.

    [7]Mauldin R D,Mayer V,Urba′nski M.Rigidity of connected limit sets of conformal IFS[J].Michigan Math.J.,2001,49:451–458.

    [8]Beardon A F.Iteration of rational functions[M].No.132 in GTM,New York:Springer-Verlag,1991.

    [9]Zhuang Wei.On the continuity of Julia sets and the Hausdorff dimension of Yang-Lee zeros[J].J.Math.,2013,33(4):571–583.

    [10]Zhuang Wei.The property of the Julia set of rational functions with conformal iterated function system[J].J.Math.,2007,27(2):177–180.

    猜你喜歡
    濱組同質性卡培
    二甲雙胍增強膽管癌細胞對吉西他濱敏感性機制的研究
    奈達鉑聯(lián)合吉西他濱阻滯非霍奇金淋巴瘤細胞周期促進細胞凋亡的作用研究
    卡培他濱對復發(fā)轉移三陰性乳腺癌的療效分析
    阿帕替尼聯(lián)合吉西他濱對Lewis肺癌的實驗研究
    TLR9對胰腺癌裸鼠增殖生長及化療耐藥性的研究
    基于同質性審視的高職應用型本科工程教育研究
    職教論壇(2017年4期)2017-03-13 16:43:19
    血清CEA和CA-199對卡培他濱治療復發(fā)轉移乳腺癌預后的臨床預測
    理性程度的異質性:基于理論與實踐的考察
    長春瑞濱聯(lián)合卡培他濱對乳腺癌患者復發(fā)轉移和無病生存的影響
    高等工程教育與高等職業(yè)教育的同質性
    一级毛片高清免费大全| 久久人人精品亚洲av| 一级黄色大片毛片| 一区二区三区激情视频| 黄色 视频免费看| 国内少妇人妻偷人精品xxx网站 | 久热爱精品视频在线9| 亚洲va日本ⅴa欧美va伊人久久| 久热爱精品视频在线9| 小说图片视频综合网站| 18禁黄网站禁片免费观看直播| 成在线人永久免费视频| 欧美3d第一页| 国产免费男女视频| 午夜福利在线在线| 少妇裸体淫交视频免费看高清 | 夜夜看夜夜爽夜夜摸| 国产av一区二区精品久久| 亚洲一码二码三码区别大吗| 欧洲精品卡2卡3卡4卡5卡区| 久久香蕉精品热| 久久亚洲精品不卡| 中国美女看黄片| 成熟少妇高潮喷水视频| 亚洲精品一卡2卡三卡4卡5卡| 国产三级中文精品| 久久人妻福利社区极品人妻图片| 色视频www国产| 人人妻人人看人人澡| 国产精品一区二区性色av| 菩萨蛮人人尽说江南好唐韦庄 | 1024手机看黄色片| 国产精品麻豆人妻色哟哟久久 | 人妻制服诱惑在线中文字幕| 中文欧美无线码| 一边亲一边摸免费视频| 精品无人区乱码1区二区| 可以在线观看毛片的网站| 国产精品一区二区性色av| 免费不卡的大黄色大毛片视频在线观看 | 草草在线视频免费看| 国产一区亚洲一区在线观看| 国产精品美女特级片免费视频播放器| 麻豆一二三区av精品| 成人毛片a级毛片在线播放| 国产成人精品婷婷| 美女 人体艺术 gogo| 午夜免费男女啪啪视频观看| 日本与韩国留学比较| 国产精品日韩av在线免费观看| 简卡轻食公司| 精品久久久久久久人妻蜜臀av| 国产乱人视频| 国产精品爽爽va在线观看网站| 好男人在线观看高清免费视频| 最近最新中文字幕大全电影3| 在线观看66精品国产| 天堂中文最新版在线下载 | 国产精品久久久久久av不卡| 晚上一个人看的免费电影| 亚洲无线观看免费| 国产极品天堂在线| 日韩欧美 国产精品| 成年免费大片在线观看| 最后的刺客免费高清国语| 美女cb高潮喷水在线观看| 狂野欧美白嫩少妇大欣赏| 久久99热6这里只有精品| 免费看日本二区| 如何舔出高潮| 久久久精品大字幕| 在线播放无遮挡| 欧美最新免费一区二区三区| 永久网站在线| 人人妻人人澡欧美一区二区| 97人妻精品一区二区三区麻豆| 国产精品三级大全| 免费看日本二区| 国产伦一二天堂av在线观看| 国产精品av视频在线免费观看| 夜夜爽天天搞| 国产色爽女视频免费观看| 免费观看在线日韩| 长腿黑丝高跟| 久久99热6这里只有精品| 麻豆成人av视频| av免费观看日本| 日日干狠狠操夜夜爽| 一级av片app| 内射极品少妇av片p| 欧美日韩精品成人综合77777| 一区二区三区四区激情视频 | 免费看日本二区| 麻豆av噜噜一区二区三区| 女人被狂操c到高潮| 99久久成人亚洲精品观看| 免费一级毛片在线播放高清视频| 亚洲国产精品合色在线| 亚洲一区二区三区色噜噜| 2021天堂中文幕一二区在线观| 久久久成人免费电影| 久久久久久大精品| 欧美zozozo另类| 国产真实乱freesex| 成熟少妇高潮喷水视频| 日本一本二区三区精品| 国产精品蜜桃在线观看 | 最好的美女福利视频网| 男人舔奶头视频| 草草在线视频免费看| 97在线视频观看| av卡一久久| 熟女人妻精品中文字幕| 精品久久久久久成人av| 赤兔流量卡办理| 在线天堂最新版资源| 欧美日韩在线观看h| 亚洲国产欧洲综合997久久,| 综合色丁香网| 男人和女人高潮做爰伦理| 日日摸夜夜添夜夜爱| 亚洲精品久久久久久婷婷小说 | 国产精品麻豆人妻色哟哟久久 | 国产老妇伦熟女老妇高清| 91精品国产九色| 大又大粗又爽又黄少妇毛片口| 久久久久久久久久久免费av| 国产女主播在线喷水免费视频网站 | 99riav亚洲国产免费| 一卡2卡三卡四卡精品乱码亚洲| 亚洲精华国产精华液的使用体验 | 亚洲欧洲日产国产| 黄色视频,在线免费观看| 日韩av在线大香蕉| 成人av在线播放网站| 直男gayav资源| 中国美白少妇内射xxxbb| 欧美日韩综合久久久久久| 日韩一本色道免费dvd| 91麻豆精品激情在线观看国产| 观看美女的网站| 在现免费观看毛片| 成人亚洲精品av一区二区| kizo精华| 成人永久免费在线观看视频| 亚洲欧美成人精品一区二区| 欧美最新免费一区二区三区| 22中文网久久字幕| 国产精品免费一区二区三区在线| 69人妻影院| 51国产日韩欧美| 真实男女啪啪啪动态图| 人妻制服诱惑在线中文字幕| 在线观看av片永久免费下载| 九九久久精品国产亚洲av麻豆| 日韩成人av中文字幕在线观看| 国产黄色视频一区二区在线观看 | 成人毛片60女人毛片免费| 久久精品国产亚洲av香蕉五月| 日韩欧美一区二区三区在线观看| 国产精品一区二区三区四区久久| 听说在线观看完整版免费高清| 国产精华一区二区三区| 99久国产av精品| 亚洲在线观看片| 婷婷精品国产亚洲av| 欧美日本亚洲视频在线播放| 有码 亚洲区| 日韩高清综合在线| 国产v大片淫在线免费观看| 成人欧美大片| 精品熟女少妇av免费看| 色综合站精品国产| 国内久久婷婷六月综合欲色啪| 亚洲成人久久性| 一级毛片久久久久久久久女| 日韩视频在线欧美| 久久亚洲精品不卡| 简卡轻食公司| 国产黄片美女视频| 国产成人福利小说| 亚洲国产精品国产精品| av天堂在线播放| 嫩草影院入口| 久久亚洲国产成人精品v| 亚洲欧美成人综合另类久久久 | 天堂网av新在线| 欧美日本亚洲视频在线播放| 老司机影院成人| 麻豆成人av视频| 我的女老师完整版在线观看| 一级av片app| 日本黄色视频三级网站网址| 乱人视频在线观看| 亚洲欧美日韩高清在线视频| 亚洲欧洲国产日韩| 久久精品国产亚洲网站| 婷婷精品国产亚洲av| 国产一区二区在线av高清观看| 极品教师在线视频| 国产午夜福利久久久久久| or卡值多少钱| 十八禁国产超污无遮挡网站| 人人妻人人澡欧美一区二区| 性色avwww在线观看| 日韩欧美在线乱码| 亚州av有码| 国产中年淑女户外野战色| 白带黄色成豆腐渣| 欧美一区二区亚洲| 精品久久久久久久久久免费视频| 国产一区二区在线观看日韩| 韩国av在线不卡| 成人亚洲欧美一区二区av| 91久久精品国产一区二区三区| 亚洲不卡免费看| 国产免费一级a男人的天堂| 亚洲国产欧洲综合997久久,| 亚洲欧美日韩高清专用| 国产三级中文精品| 国产极品精品免费视频能看的| 久久热精品热| 26uuu在线亚洲综合色| 搡老妇女老女人老熟妇| 国内精品宾馆在线| 久久精品国产亚洲网站| 国产精品久久久久久久久免| 久久综合国产亚洲精品| 久久午夜亚洲精品久久| 精品久久久久久久久久久久久| 日韩欧美在线乱码| 亚洲真实伦在线观看| 国产成人福利小说| 国产精品美女特级片免费视频播放器| 18+在线观看网站| 国产精品久久久久久亚洲av鲁大| 国产精品日韩av在线免费观看| 最近2019中文字幕mv第一页| 成人美女网站在线观看视频| 亚洲一区二区三区色噜噜| 日韩三级伦理在线观看| 国产成人影院久久av| 国产综合懂色| 国产精品一区二区性色av| 久久久久久国产a免费观看| 九九爱精品视频在线观看| 欧美又色又爽又黄视频| 99久久精品国产国产毛片| 国产成人freesex在线| 亚洲国产欧美人成| 亚洲三级黄色毛片| 亚洲av免费在线观看| 亚洲av电影不卡..在线观看| 精品人妻视频免费看| 国产人妻一区二区三区在| 老熟妇乱子伦视频在线观看| 国产黄片视频在线免费观看| 欧美日韩国产亚洲二区| 噜噜噜噜噜久久久久久91| 亚洲人成网站高清观看| 91麻豆精品激情在线观看国产| 亚洲精品456在线播放app| 精品人妻偷拍中文字幕| 99在线视频只有这里精品首页| 亚洲av二区三区四区| 18禁在线播放成人免费| 97超碰精品成人国产| 亚洲国产欧洲综合997久久,| 国产色爽女视频免费观看| 国产不卡一卡二| 国产中年淑女户外野战色| 永久网站在线| 美女cb高潮喷水在线观看| 国产精品国产高清国产av| 舔av片在线| 欧美最黄视频在线播放免费| 亚洲18禁久久av| 久久精品国产亚洲av天美| 日韩精品青青久久久久久| 插阴视频在线观看视频| 看免费成人av毛片| 乱人视频在线观看| 国产大屁股一区二区在线视频| 国产三级在线视频| 久久九九热精品免费| 国产亚洲精品av在线| 久久久久性生活片| 国产老妇女一区| 欧美日韩乱码在线| 99精品在免费线老司机午夜| 久久久成人免费电影| 欧美成人精品欧美一级黄| 99久久久亚洲精品蜜臀av| 18禁裸乳无遮挡免费网站照片| 国产伦一二天堂av在线观看| 欧美一区二区亚洲| 中国美白少妇内射xxxbb| 亚洲精品色激情综合| 日本在线视频免费播放| 亚洲精品日韩av片在线观看| 免费看日本二区| 1000部很黄的大片| 国产片特级美女逼逼视频| 日韩在线高清观看一区二区三区| 波多野结衣高清作品| 级片在线观看| 婷婷六月久久综合丁香| 99热这里只有精品一区| 黄片无遮挡物在线观看| 成人鲁丝片一二三区免费| 国产日韩欧美在线精品| 3wmmmm亚洲av在线观看| 如何舔出高潮| 此物有八面人人有两片| 国产中年淑女户外野战色| 白带黄色成豆腐渣| 国产黄色小视频在线观看| 少妇的逼水好多| 久久精品夜夜夜夜夜久久蜜豆| 亚洲最大成人手机在线| 高清在线视频一区二区三区 | 性插视频无遮挡在线免费观看| 国产一级毛片在线| 天天一区二区日本电影三级| 亚洲综合色惰| 国产亚洲精品久久久com| 联通29元200g的流量卡| 一进一出抽搐gif免费好疼| 噜噜噜噜噜久久久久久91| 亚洲成a人片在线一区二区| 黄色一级大片看看| www.色视频.com| 国产精华一区二区三区| 亚洲在线观看片| 男人舔奶头视频| 男插女下体视频免费在线播放| av福利片在线观看| 欧美激情在线99| 日本欧美国产在线视频| 国产精品嫩草影院av在线观看| 乱人视频在线观看| a级毛色黄片| 特级一级黄色大片| 国产私拍福利视频在线观看| 岛国在线免费视频观看| 欧美另类亚洲清纯唯美| av在线亚洲专区| 深夜a级毛片| 嫩草影院新地址| 国产视频内射| 欧美不卡视频在线免费观看| 国产一区二区在线观看日韩| 欧美在线一区亚洲| 观看免费一级毛片| 日日啪夜夜撸| 搡老妇女老女人老熟妇| 中文在线观看免费www的网站| 国产精品久久久久久久电影| 国产黄a三级三级三级人| 少妇人妻精品综合一区二区 | 黄色配什么色好看| 中文字幕av在线有码专区| 在线播放无遮挡| 精品一区二区免费观看| 1024手机看黄色片| www.av在线官网国产| 亚洲一级一片aⅴ在线观看| 免费搜索国产男女视频| 如何舔出高潮| 亚洲成人av在线免费| 久久久久久久久大av| 欧美激情在线99| 中文字幕人妻熟人妻熟丝袜美| 变态另类成人亚洲欧美熟女| 91久久精品电影网| 搡女人真爽免费视频火全软件| 91久久精品国产一区二区成人| 成人亚洲精品av一区二区| 欧美三级亚洲精品| 久久久久久久午夜电影| 欧美成人免费av一区二区三区| 人人妻人人澡人人爽人人夜夜 | 午夜亚洲福利在线播放| 久久久久久久久中文| 国产精品国产三级国产av玫瑰| 亚洲精品乱码久久久v下载方式| 婷婷六月久久综合丁香| 国产日本99.免费观看| 国产女主播在线喷水免费视频网站 | 国产伦精品一区二区三区四那| 国产精品免费一区二区三区在线| 亚洲欧美日韩高清在线视频| 精品午夜福利在线看| 大又大粗又爽又黄少妇毛片口| 麻豆国产97在线/欧美| 国产成人精品一,二区 | 欧美潮喷喷水| 嫩草影院精品99| 国产成人一区二区在线| 免费大片18禁| 黄色配什么色好看| 在线观看午夜福利视频| 三级男女做爰猛烈吃奶摸视频| 久久中文看片网| 亚洲在线观看片| 国产黄a三级三级三级人| 久久久精品大字幕| 久久久久久大精品| 色5月婷婷丁香| 最近视频中文字幕2019在线8| 亚洲,欧美,日韩| 狂野欧美激情性xxxx在线观看| 久久久久免费精品人妻一区二区| 日韩成人av中文字幕在线观看| 色5月婷婷丁香| 亚洲七黄色美女视频| 国产av一区在线观看免费| 在线观看一区二区三区| av黄色大香蕉| 久久中文看片网| 联通29元200g的流量卡| 97在线视频观看| 成人午夜精彩视频在线观看| 青青草视频在线视频观看| 国产精品不卡视频一区二区| 69av精品久久久久久| 小说图片视频综合网站| 久久久久九九精品影院| 精品一区二区三区人妻视频| 欧美成人一区二区免费高清观看| 国产熟女欧美一区二区| 久久国内精品自在自线图片| 男人舔奶头视频| 日韩国内少妇激情av| av视频在线观看入口| 伦精品一区二区三区| 色播亚洲综合网| 全区人妻精品视频| 美女cb高潮喷水在线观看| 国产高潮美女av| 人妻系列 视频| 神马国产精品三级电影在线观看| 亚洲av不卡在线观看| 99热网站在线观看| 观看免费一级毛片| 一级毛片电影观看 | 国产成人一区二区在线| 国产黄色小视频在线观看| 人人妻人人澡人人爽人人夜夜 | 亚洲精品久久久久久婷婷小说 | 成人无遮挡网站| 精品一区二区三区人妻视频| 在线免费十八禁| 自拍偷自拍亚洲精品老妇| 国产精品蜜桃在线观看 | 韩国av在线不卡| 国产精品久久久久久亚洲av鲁大| 麻豆精品久久久久久蜜桃| 日本免费一区二区三区高清不卡| 免费看日本二区| 丰满的人妻完整版| 国产成人a区在线观看| 欧美性猛交黑人性爽| 精品少妇黑人巨大在线播放 | 欧美在线一区亚洲| 亚洲色图av天堂| videossex国产| 国产亚洲精品久久久久久毛片| 人妻少妇偷人精品九色| 91aial.com中文字幕在线观看| 男人狂女人下面高潮的视频| 国产私拍福利视频在线观看| 看片在线看免费视频| 激情 狠狠 欧美| 伦理电影大哥的女人| 国产一区二区亚洲精品在线观看| 熟妇人妻久久中文字幕3abv| 一本久久精品| 一进一出抽搐gif免费好疼| 色视频www国产| 久久99热这里只有精品18| 国产 一区 欧美 日韩| 九九热线精品视视频播放| 亚洲国产精品合色在线| 欧美成人一区二区免费高清观看| 中文字幕av成人在线电影| 中出人妻视频一区二区| 丰满的人妻完整版| 中文字幕av在线有码专区| 国产高清视频在线观看网站| 国产精品野战在线观看| 欧美zozozo另类| 大香蕉久久网| 在线免费十八禁| 少妇人妻一区二区三区视频| 亚洲不卡免费看| 亚洲内射少妇av| 国产成人freesex在线| av卡一久久| 成人毛片a级毛片在线播放| 国产一级毛片在线| www.色视频.com| 欧美变态另类bdsm刘玥| 卡戴珊不雅视频在线播放| 亚洲中文字幕日韩| 日本黄色片子视频| 在线免费观看的www视频| 欧美潮喷喷水| 色播亚洲综合网| 成人毛片60女人毛片免费| 国产中年淑女户外野战色| 亚洲美女视频黄频| 国产高清三级在线| 欧美一区二区国产精品久久精品| 国产伦在线观看视频一区| av在线播放精品| 人妻夜夜爽99麻豆av| 中出人妻视频一区二区| 免费av毛片视频| kizo精华| 高清毛片免费观看视频网站| 一进一出抽搐gif免费好疼| 夜夜夜夜夜久久久久| 男人舔女人下体高潮全视频| 日韩欧美国产在线观看| 青春草亚洲视频在线观看| 小说图片视频综合网站| 国产人妻一区二区三区在| 国产不卡一卡二| 99精品在免费线老司机午夜| 久久综合国产亚洲精品| 国产午夜福利久久久久久| 免费看av在线观看网站| 国产蜜桃级精品一区二区三区| 少妇的逼水好多| 好男人视频免费观看在线| 我的老师免费观看完整版| 精品日产1卡2卡| 床上黄色一级片| 国产伦一二天堂av在线观看| 亚洲四区av| 哪个播放器可以免费观看大片| 中文字幕人妻熟人妻熟丝袜美| 舔av片在线| 夜夜看夜夜爽夜夜摸| 51国产日韩欧美| 日韩一本色道免费dvd| 麻豆精品久久久久久蜜桃| 国产探花极品一区二区| 深爱激情五月婷婷| 国产精品人妻久久久久久| 国产亚洲91精品色在线| 国产精品电影一区二区三区| 国产真实伦视频高清在线观看| 性欧美人与动物交配| av免费观看日本| 国产单亲对白刺激| 黄片wwwwww| 一区二区三区免费毛片| 免费无遮挡裸体视频| 国产一区二区亚洲精品在线观看| 精品久久久久久久久久免费视频| 亚洲国产欧美在线一区| 久久久久久久亚洲中文字幕| 床上黄色一级片| 老师上课跳d突然被开到最大视频| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 卡戴珊不雅视频在线播放| 看免费成人av毛片| 美女内射精品一级片tv| h日本视频在线播放| 午夜福利视频1000在线观看| 两个人的视频大全免费| 非洲黑人性xxxx精品又粗又长| 国产精品一及| 伊人久久精品亚洲午夜| 国产亚洲精品久久久com| 日韩中字成人| 久久人妻av系列| 丰满人妻一区二区三区视频av| 免费在线观看成人毛片| 天堂网av新在线| 日韩欧美三级三区| 天堂网av新在线| 国产精品精品国产色婷婷| 亚洲色图av天堂| 日本一二三区视频观看| 免费看a级黄色片| 国产av一区在线观看免费| 深夜精品福利| 久久久久久久久久成人| 高清毛片免费观看视频网站| 日产精品乱码卡一卡2卡三| 男人狂女人下面高潮的视频| 免费不卡的大黄色大毛片视频在线观看 | 黄色视频,在线免费观看| 国产黄片美女视频| 最近手机中文字幕大全| 国产亚洲5aaaaa淫片| 午夜免费激情av| 91久久精品电影网| 女的被弄到高潮叫床怎么办| 国产私拍福利视频在线观看| 又黄又爽又刺激的免费视频.| 国产一区二区激情短视频| 日韩欧美在线乱码| 午夜福利在线观看吧| 亚洲精品亚洲一区二区| 桃色一区二区三区在线观看| 黄片wwwwww| 国产精品一区www在线观看| 村上凉子中文字幕在线| 非洲黑人性xxxx精品又粗又长| 2021天堂中文幕一二区在线观| 亚洲人成网站在线播|