• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of Pressure on Cesium Iodide Band Gap

    2018-03-29 03:12:19CEDILLOAndrés,CORTONAPietro
    物理化學(xué)學(xué)報(bào) 2018年2期

    1 Introduction

    Cesium iodide is an ionic solid with simple cubic crystal structure (B2 or CsCl-type) at room pressure and temperature;under these conditions, it is an insulator. This material attracted attention in the last decades when it was found that the isoelectronic solid xenon presents conducting features at high pressures1,2.

    Earlier experimental studies on cesium iodide showed that the B2 structure suffers a distortion under pressure and the band gap lowers3–14. The structural phase transition from the B2 structure to a non-cubic one does not have a significant change in the volume and the order of the phase transition was under controversy. The high-pressure phase was initially assumed to be a tetragonal body-centered cell. The first theoretical studies showed that a tetragonal distortion on the B2 structure became stable at high pressures15–18,12,19–21. A more precise X-ray diffraction study apparently finished with the controversy. Mao et al.22proposed a pressure-induced continuous transformation from the B2 structure to a hexagonal close pack one (hcp) by an orthorhombic Pmm2 cell. Later, the symmetry of the unit cell was corrected to Pmma by Winkler et al.23. By the use of evolutionary codes, it was shown that the Pmm2 structure is stable in a very small range of pressures (from 39 to 42 GPa)and it subsequently transforms into another orthorhombic cell with symmetry Pnma24. The second phase transition is first order, however the change in the volume is minimal.Additionally, electric resistivity measurements at high pressures were also performed and they showed that the resistivity decreases as pressure grows up, with a small discontinuity around 45 GPa25,26. The variation of the CsI electronic properties with the pressure influences the use of this material as a photoelectrode27,28.

    Density functional theory (DFT) accurately predicts structural and energetic properties of molecular species and periodic solids. However, when the calculations are performed by the local density approximation (LDA) or using functionals belonging to the generalized-gradient approximation (GGA)class, the band gap of solids is usually underestimated. The accuracy of DFT in the prediction of the fundamental and the band gap has been analyzed in the literature29–31. The electronic band gap is an important property of periodic solids since it determines the electric conductivity. Traditionally,materials are classified as conductors, semiconductors and insulators by the size of the band gap. Besides the accuracy of the DFT estimated band gap, this estimation provides an insight about the electric properties of a crystalline solid.

    In this work we use DFT-based electronic structure methods to analyze the phase stability of cesium iodide and the evolution of the band gap in the range of pressures from 0 to 60 GPa, at zero temperature. Static cell estimations are reported and the zero point energy is not included in this study. The corresponding results are compared with the evolution of the resistivity along the compression.

    2 Methodology

    All the electronic structure computations have been done with the ABINIT code32,33within the PAW formalism34,35and using an energy cutoff of 30 hartree. The Brillouin zones were sampled by Monkhorst-Pack grids, which were shifted using the default shift option in the ABINIT code for all the phase stability analysis. For the B1 structure, the four shifts suggested on the ABINIT website were used. A 6 × 6 × 6 grid was used for B1 and B2 structures, where the primitive cell contains one unit formula; for the Pmma cell we used the 4 × 6 × 4 grid with two formula units; the Pnma cell contains four formula units and the grid 4 × 4 × 4 was selected. The structure optimization was completed when the forces on all the atoms became smaller than 5 × 10?6hartree·bohr?1. For the evaluation of the band gap, once the convergence was achieved and the structures were optimized, one more calculation was performed. It was done using 12 × 12 × 12, 8 × 12 × 8, and 10 × 10 × 10 grids, for the B2, Pmma, and Pnma, respectively. These grids were not shifted, in order to include the Γ point in the sampling.

    The PBE exchange and correlation energy functional approximation was mainly used along this work36. Some comparisons also involve the LDA and PBEsol37functionals.PAW atomic datasets for all the functionals were generated by the ATOMPAW code using the input files provided on the ABINIT website.

    The Pmma and Pnma cells are shown in Figs.1 and 2,respectively, while the internal sites occupied by the ions are described in Table 1.

    As we discussed above, several theoretical computations on CsI have been reported in the literature. However, the evolution of the experimental measurements mainly guided the direction of the electronic structure simulations in the early years. In this work, we compute the relative stability of all the relevant crystal phases and the pressure-effect on the band gap using DFT-based electronic structure methods under similar quality criteria. The selected k-point sampling meshes and plane-wave kinetic-energy cutoffs lead to convergence in the total energy and lattice parameters.

    Table 1 Internal coordinates within the unit cell for the CsI orthorhombic structures.

    Fig.1 CsI in the orthorhombic Pmma structure.

    Fig.2 CsI in the orthorhombic Pnma structure.

    3 Results and discussion

    The phase stability is analyzed by free energy, G = E + PV ?TS = H ? TS, of the different cell types, namely, NaCl-type (B1),CsCl-type (B2), and the orthorhombic cells Pmma (space group 51) and Pnma (space group 62). At zero temperature, the free energy becomes equal to the enthalpy (H). Then, for each pressure and for each cell type, the cell parameters and the internal coordinates are optimized. At zero pressure, the PBE functional approximation predicts that the B1 structure is the most stable; the B1 cell is lower in energy than the B2 cell by 2.3 mHa·formula?1. Earlier reports also find a similar result38.Different exchange and correlation energy functional approximations can overestimate the stability of some cells, see for example refs.39,40. The PBEsol approximation correctly predicts that the B2 cell is the most stable at low pressures and,at zero pressure, the B2 cell energy is lower that the corresponding one for the B1 structure by 0.3 mHa·formula?1.This energy difference is within the thrust margin of predictability for an exchange and correlation energy functional approximation. As Mao et al. suggested22, the Pmma structure reduces to the B2 structure at low pressures. The two cell types become equivalent when a = c and a = 2b. Using PBE one finds that the orthorhombic cell Pmma reduces to the cubic B2 below 38 GPa and this result is consistent with previous reports41,23,24. Additionally, at low pressures, the orthorhombic Pnma cell becomes equal to the cubic B1 cell. PBE finds this symmetrization at 3 GPa.

    As pressure increases, the enthalpy of the different phases changes and the stability is altered, see Fig.3. The B2 phase becomes more stable than the B1 at 0.6 GPa (PBE result). The PBE optimized lattice parameters for the different CsI phases are reported on Table 2. Note that PBEsol provides better estimation of the lattice parameter at zero pressure. The B2 phase is stable up to 38 GPa and it is equivalent to the Pmma cell. The Pmma cell becomes orthorhombic and more stable at moderate pressures. PBE predicts this transition at 38 GPa,where the lattice parameter ratios suddenly mismatched the cubic conditions, see Fig.4. The phase transition seems to be first order, but the relative change in the volume is marginal,around 0.2%. The stability of the Pmma cell remains for a very limited range of pressures. The Pnma cell becomes the stable phase at higher pressures. Xu et al. predict the stability of this phase up to 300 GPa24. PBE estimates that the orthorhombic Pnma phase becomes stable at 42.8 GPa and the phase transition is first order with a very small relative change in the volume,1.4%. Even when two phase transitions are found between 38 and 43 GPa, the volume of the involved phases are so similar that the P?V curve seems to be almost continuous, Fig.5. The apparent continuous behavior of the isotherm is the main issue in the earlier controversy on the structural phase transition around 40 GPa. Some details on the crystal structures at the transition pressures are given in Table 3.

    Fig.3 Relative enthalpy for the different CsI phases,PBE results in hartree·formula?1.

    Table 2 PBE lattice parameters for the different CsI structures.

    Fig.4 Deviation from the cubic symmetry in the CsI Pmma structure.

    Fig.5 Volume per formula for the different CsI phases.

    In addition to the crystallographic and structural studies,electronic properties were also measured at high pressures. The pressure dependence of the optical gap3,4,10,12,14,42and the electric resistivity25,26were determined. Asaumi and Kondo3originally observed that the threshold energy in CsI lowers as the pressure increases. Many efforts focused on the insulator-conductor transition and the band gap was estimated in different pressure ranges. Most of the studies report a decrease in the band gap with the pressure. Fig.6 shows the evolution of the electronic band gap, computed from the PBE functional approximation, with the pressure. At low pressures, the PBE method underestimates the band gap as it has been documented in the literature; however, the trend is correctly reproduced. In particular, a maximum value of the band gap is found around 2 GPa, V/V0= 0.87. The position of the maximum is in very good agreement with the results from Asaumi4. Other exchange-correlation energy functionals do not display necessarily the same behavior: PBEsol predicts a maximum at a similar pressure, while a monotonic decrease is obtained with LDA15. The discontinuity in the plot, around 43 GPa, is a consequence of the Pmma-Pnma phase transition. The Pnma structure presents a larger band gap, about 40 percent. The subsequent increase in the pressure leads a decrease in the band gap. This discontinuity can be mapped into the electric resistivity. Babushkin25found a sharp increase in the CsI resistivity around 45 GPa. At higher pressures, the electric resistivity monotonically vanishes, at least up to 220 GPa26.These observations are consistent with our results for the estimated band gap. Our results also match previous theoretical reports15,17,23,24. In fact, Xu et al.24predict that the gap vanishesat 103 GPa from PBE computations, in excellent agreement with the experimental estimation of the band gap closure, around 100 GPa14.

    Table 3 PBE internal coordinates for the different CsI orthorhombic structures.

    Fig.6 Effect of the pressure in the CsI band gap.

    4 Conclusions

    DFT-based electronic structure methods provide a correct description of the structure, stability and pressure-induced phase transitions in CsI. The precision of these methods,especially at high pressures, is still under study for molecular and solid state systems. The PBE exchange and correlation energy functional approximation provides a good description of the relative stability of the different cell structures of CsI;however, it overestimates the stability of the B1 phase at zero pressure. The modified functional approximation for solids, PBEsol, corrects the phase stability problem, but it is not as accurate as PBE at high pressures. The authors previously observed this behavior in another crystalline system40. A more extensive study of the performance of the different kinds of exchange and correlation energy approximations over a wide range of pressures could provide a more general conclusion.

    The band gap prediction from DFT has also been under discussion for a long time. On a qualitative basis and assuming that the only relevant conduction mechanism comes from the band structure, it is interesting to notice that the band gap predictions from the PBE approximation favorably compare with the experimental measurements of the optical threshold energy and resistivity of CsI for the pressure range of this work. A quantitative estimation of the resistivity and the inclusion of thermal effects are beyond the scope of this study.

    Acknowledgement: This work is dedicated to the memory of Robert G. Parr, a great scientist, humanist, and friend.

    (1) Nelson, D. A., Jr.; Ruoff, A. L. Phys. Rev. Lett. 1979, 42, 383.doi: 10.1103/PhysRevLett.42.383

    (2) Besson, J. M.; Itie, J. P.; Weill, G.; Makarenko, I. J. Phys. Lett. 1982,43, 401. doi: 10.1051/jphyslet:019820043011040100

    (3) Asaumi, K.; Kondo, Y. Solid State Comm. 1981, 40, 715.doi: 10.1016/0038-1098(81)90813-9

    (5) Huang, T. L.; Ruoff, A. L. Phys. Rev. B 1984, 29, 1112.doi: 10.1103/PhysRevB.29.1112

    (6) Itie, J.; Polian, A.; Besson, J. J. Phys. Coll. 1984, 45, 47.doi: 10.1051/jphyscol:1984809

    (7) Knittle, E.; Jeanloz, R. Science 1984, 223, 53.doi: 10.1126/science.223.4631.53

    (8) Huang, T. L.; Brister, K. E.; Ruoff, A. L. Phys. Rev. B 1985, 30,2968. doi: 10.1103/PhysRevB.30.2968

    (9) Brister, K. E.; Vohra, Y. K.; Ruoff, A. L. Phys. Rev. B 1985, 31,4657. doi: 10.1103/PhysRevB.31.4657

    (10) Knittle, E.; Jeanloz, R. J. Phys. Chem. Solids 1985, 46, 1179.doi: 10.1016/0022-3697(85)90147-7

    (11) Knittle, E.; Rudy, A.; Jeanloz, R. Phys. Rev. B 1985, 31, 588.doi: 10.1103/PhysRevB.31.588

    (12) Reichlin, R.; Ross, M.; Martin, S.; Goettel, K. A. Phys. Rev.Lett. 1986, 56, 2858. doi: 10.1103/PhysRevLett.56.2858

    (13) Vohra, Y. K.; Brister, K. E.; Weir, S. T.; Duclos, S. J.; Ruoff,A. L. Science 1986, 231, 1136.doi: 10.1126/science.231.4742.1136

    (14) Williams, Q.; Jeanloz, R. Phys. Rev. Lett. 1986, 56, 163.doi: 10.1103/PhysRevLett.56.163

    (15) Aidun, J.; Bukowinski, M. S. T.; Ross, M. Phys. Rev. B 1984,29, 2611. doi: 10.1103/PhysRevB.29.2611

    (16) Christensen, N. E.; Satpathy, S. Phys. Rev. Lett. 1985, 55, 600.doi: 10.1103/PhysRevLett.55.600

    (17) Satpathy, S.; Christensen, N. E.; Jepsen, O. Phys. Rev. B 1985,32, 6793. doi: 10.1103/PhysRevB.32.6793

    (18) Vohra, Y. K.; Duclos, S. J.; Ruoff, A. L. Phys. Rev. Lett. 1985,54, 570. doi: 10.1103/PhysRevLett.54.570

    (19) Satpathy, S. Phys. Rev. B 1986, 33, 8706.doi: 10.1103/PhysRevB.33.8706

    (20) Baroni, S.; Giannozzi, P. Phys. Rev. B 1987, 35, 765.doi: 10.1103/PhysRevB.35.765

    (21) Cedillo, A.; Vela, A.; Gázquez, J. L. Structural Phase Transitions in Cesium Halides. In Density Functional Methods in Chemistry; Labanowski, J. K., Andzelm, J. W.Eds.; Springer: New York, NY, USA, 1991; pp. 293–306.doi: 10.1007/978-1-4612-3136-3_19

    (22) Mao, H. K.; Wu, Y.; Hemley, R. J.; Chen, L. C.; Shu, J. F.;Finger, L. W.; Cox D. E. Phys. Rev. Lett. 1990, 64, 1749.doi: 10.1103/PhysRevLett.64.1749

    (23) Winkler, B.; Milman, V. J. Phys. Condens. Matter 1997, 9,9811. doi: 10.1088/0953-8984/9/45/009

    (24) Xu, Y.; Tse, J. S.; Oganov. A.R.; Cui, T.; Wang, H.; Ma, Y.;Zou, G. Phys. Rev. B 2009, 79, 144110.doi: 10.1103/PhysRevB.79.144110

    (25) Babushkin, A. N. High Pressure Res. 1991, 6, 349.doi: 10.1080/08957959208201042

    (26) Eremets, M. I.; Shimizu, K.; Kobayashi, T. C.; Amaya, K.J. Phys. Condens. Matter 1998, 10, 11519.doi: 10.1088/0953-8984/10/49/037

    (27) Breskin, A. Nucl. Instrum. Meth. Phys. Res. A 1996, 371, 116.doi: 10.1016/0168-9002(95)01145-5

    (28) Va'vra, J.; Breskin, A.; Buzulutskov, A.; Chechik, R.; Shefer,E. Nucl. Instrum. Meth. Phys. Res. A 1997, 387, 154.doi: 10.1016/S0168-9002(96)00980-1

    (29) Sham, L. J.; Schlüter, M. Phys. Rev. Lett. 1983, 51, 1888.doi: 10.1103/PhysRevLett.51.1888

    (30) Perdew, J. P. Int. J. Quantum Chem. Symp. 1986, 19, 497.doi: 10.1002/qua.560280846

    (31) Perdew, J. P.; Yang, W.; Burke, K.; Yang, Z.; Gross, E. K. U.;Scheffler, M.; Scuseria, G. E.; Henderson, T. M.; Zhang, I. Y.;Ruzsinszky, A.; et al. Proc. Natl. Acad. Sci. 2017, 114, 2801.doi: 10.1073/pnas.1621352114

    (32) Gonze, X.; Amadon, B.; Anglade, P. M.; Beuken, J. M.;Bottin, F.; Boulanger, P.; Bruneval, F.; Caliste, D.; Caracas, R.;C?té, M.; et al. Comput. Phys. Comm. 2009, 180, 2582.doi: 10.1016/j.cpc.2009.07.007

    (33) Gonze, X.; RignaneseI, G. M.; Verstraete, M.; Beuken, J. M.;Pouillon, Y.; Caracas, R.; Jollet, F.; Torrent, M.; Zerah, G.;Mikami, M. et al. Z. Kristallogr. 2005, 220, 558.doi: 10.1524/zkri.220.5.558.65066

    (34) Bl?chl, P. E. Phys. Rev. B 1994, 50, 17953.doi: 10.1103/PhysRevB.50.17953

    (35) Torrent, M.; Jollet, F.; Bottin, F.; Zerah, G.; Gonze, X.Comput. Mater. Sci. 2008, 42, 337.doi: 10.1016/j.commatsci.2007.07.020

    (36) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996,77, 3865. doi: 10.1103/PhysRevLett.77.3865

    (37) Perdew, J. P.; Ruzsinszky, A.; Csonka, G. I.; Vydrov, O. A.;Scuseria, G. E.; Constantin, L.A.; Zhou, X.; Burke, K. Phys.Rev. Lett. 2008, 100, 136406.doi: 10.1103/PhysRevLett.100.136406

    (38) Cortona, P. Phys. Rev. B 1992, 46, 2008.doi: 10.1103/PhysRevB.46.2008

    (39) Demichelis, R.; Civalleri, B.; D'Arco, P.; Dovesi, R. Int. J.Quantum Chem. 2010, 110, 2260. doi: 10.1002/qua.22574

    (40) Cedillo, A.; Torrent, M.; Cortona, P. J. Phys. Condens. Matter 2016, 28, 185401. doi: 10.1088/0953- 8984/28/18/185401

    (41) Buongiorno, M.; Baroni, S.; Giannozzi, P. Phys. Rev. Lett.1992, 69, 1069. doi: 10.1103/PhysRevLett.69.1069

    (42) Lipp, M. J.; Yoo, C. H.; Strachan, D.; Daniels, W. B. Phys.Rev. B 2006, 73, 085121. doi: 10.1103/PhysRevB.73.085121

    黄频高清免费视频| 可以免费在线观看a视频的电影网站| 欧洲精品卡2卡3卡4卡5卡区| netflix在线观看网站| 每晚都被弄得嗷嗷叫到高潮| 日韩欧美三级三区| 男人的好看免费观看在线视频 | 十分钟在线观看高清视频www| 淫妇啪啪啪对白视频| 亚洲精品一卡2卡三卡4卡5卡| 午夜免费成人在线视频| 黑丝袜美女国产一区| 久久性视频一级片| 精品国产乱子伦一区二区三区| 精品福利观看| 在线观看一区二区三区| 性色av乱码一区二区三区2| 亚洲欧美激情综合另类| 国产精品野战在线观看| 免费在线观看影片大全网站| 久久精品影院6| 最近最新免费中文字幕在线| 首页视频小说图片口味搜索| av电影中文网址| 黄色 视频免费看| 久久99热这里只有精品18| 99国产综合亚洲精品| 99在线视频只有这里精品首页| 国产精品 欧美亚洲| 又黄又粗又硬又大视频| 人人妻人人澡欧美一区二区| 制服丝袜大香蕉在线| 中文字幕精品亚洲无线码一区 | 男人舔女人下体高潮全视频| 夜夜爽天天搞| 制服人妻中文乱码| 欧美日韩瑟瑟在线播放| 两个人免费观看高清视频| 91av网站免费观看| 欧美一级毛片孕妇| 国语自产精品视频在线第100页| 国产三级在线视频| 欧美激情高清一区二区三区| 老司机午夜福利在线观看视频| 国产成人精品久久二区二区免费| 亚洲 欧美 日韩 在线 免费| 好男人电影高清在线观看| 久久婷婷成人综合色麻豆| 国内少妇人妻偷人精品xxx网站 | 亚洲av电影不卡..在线观看| 久久热在线av| 午夜免费鲁丝| 色播在线永久视频| 99国产精品一区二区三区| 在线观看免费视频日本深夜| 亚洲国产欧美日韩在线播放| 欧美日韩黄片免| 97人妻精品一区二区三区麻豆 | 人妻丰满熟妇av一区二区三区| 国产精品一区二区精品视频观看| 久久婷婷人人爽人人干人人爱| 18禁美女被吸乳视频| 女人被狂操c到高潮| 国产精品亚洲美女久久久| 午夜影院日韩av| 亚洲九九香蕉| 美女扒开内裤让男人捅视频| 中文亚洲av片在线观看爽| 91麻豆精品激情在线观看国产| 亚洲国产精品成人综合色| 美女扒开内裤让男人捅视频| 变态另类成人亚洲欧美熟女| 宅男免费午夜| 99riav亚洲国产免费| 亚洲欧洲精品一区二区精品久久久| 无限看片的www在线观看| 2021天堂中文幕一二区在线观 | 国产黄片美女视频| 男女做爰动态图高潮gif福利片| 亚洲七黄色美女视频| 欧美一级毛片孕妇| 日韩中文字幕欧美一区二区| 亚洲精品国产精品久久久不卡| 久久九九热精品免费| 亚洲在线自拍视频| 国产男靠女视频免费网站| 久久中文字幕人妻熟女| 婷婷丁香在线五月| 国产精品亚洲一级av第二区| 国产亚洲欧美在线一区二区| 久久久久国产一级毛片高清牌| 国产亚洲精品一区二区www| 村上凉子中文字幕在线| 免费搜索国产男女视频| 我的亚洲天堂| 国产精品影院久久| 免费人成视频x8x8入口观看| 日韩欧美国产在线观看| 亚洲 欧美 日韩 在线 免费| 成在线人永久免费视频| 精品久久久久久成人av| 999久久久精品免费观看国产| 欧美激情 高清一区二区三区| 国产精品久久视频播放| svipshipincom国产片| 一二三四在线观看免费中文在| 久久亚洲精品不卡| 欧美人与性动交α欧美精品济南到| 精品久久久久久久久久免费视频| 欧美日本亚洲视频在线播放| 中亚洲国语对白在线视频| 伦理电影免费视频| 老汉色∧v一级毛片| 国产成年人精品一区二区| 1024手机看黄色片| netflix在线观看网站| 成人三级黄色视频| 大香蕉久久成人网| 精品久久久久久久人妻蜜臀av| 18禁观看日本| 少妇裸体淫交视频免费看高清 | 亚洲第一电影网av| 日韩欧美 国产精品| 亚洲中文av在线| 亚洲成a人片在线一区二区| 欧美绝顶高潮抽搐喷水| 国产精品,欧美在线| 国产熟女午夜一区二区三区| 亚洲av中文字字幕乱码综合 | 成人三级做爰电影| 一级黄色大片毛片| 国产成年人精品一区二区| 最近在线观看免费完整版| 久久人妻av系列| 亚洲精品一卡2卡三卡4卡5卡| 亚洲一区二区三区色噜噜| 国产一区在线观看成人免费| 天堂动漫精品| 久久久久久久精品吃奶| 亚洲人成伊人成综合网2020| 欧美久久黑人一区二区| 成人永久免费在线观看视频| 亚洲成人久久性| 国产精品久久久人人做人人爽| 1024香蕉在线观看| 美女高潮到喷水免费观看| 在线观看午夜福利视频| 少妇的丰满在线观看| 最新美女视频免费是黄的| 女性被躁到高潮视频| 一进一出抽搐gif免费好疼| 国产又色又爽无遮挡免费看| 在线天堂中文资源库| 国产成人精品无人区| 久久香蕉激情| 国产成人啪精品午夜网站| 亚洲人成网站高清观看| 亚洲一区二区三区不卡视频| 亚洲专区国产一区二区| 美女午夜性视频免费| 一个人免费在线观看的高清视频| 真人一进一出gif抽搐免费| 99精品在免费线老司机午夜| 欧美 亚洲 国产 日韩一| 三级毛片av免费| 色尼玛亚洲综合影院| 色播在线永久视频| 精品国产亚洲在线| 色综合亚洲欧美另类图片| 久久久久久久精品吃奶| 午夜老司机福利片| 制服人妻中文乱码| 超碰成人久久| 身体一侧抽搐| 在线永久观看黄色视频| 国产成人精品久久二区二区91| 99久久综合精品五月天人人| 亚洲一区中文字幕在线| 最好的美女福利视频网| 国产av不卡久久| 桃红色精品国产亚洲av| 精品午夜福利视频在线观看一区| 国内精品久久久久精免费| 777久久人妻少妇嫩草av网站| 久久精品人妻少妇| 免费电影在线观看免费观看| 免费观看人在逋| 午夜激情福利司机影院| 亚洲在线自拍视频| 在线观看免费视频日本深夜| av在线播放免费不卡| 91av网站免费观看| 国产精品久久电影中文字幕| 亚洲精品在线观看二区| 午夜福利在线观看吧| 一级毛片高清免费大全| 18禁国产床啪视频网站| 人人妻人人澡人人看| 99久久99久久久精品蜜桃| 婷婷六月久久综合丁香| 欧美在线一区亚洲| 人人妻人人澡人人看| 精品人妻1区二区| 日韩欧美三级三区| 后天国语完整版免费观看| 欧美一级a爱片免费观看看 | 我的亚洲天堂| 不卡一级毛片| 88av欧美| 一本久久中文字幕| 久久午夜综合久久蜜桃| 人人妻人人看人人澡| 在线观看www视频免费| 国产真人三级小视频在线观看| 久久中文字幕一级| 中出人妻视频一区二区| 欧美三级亚洲精品| 深夜精品福利| 香蕉丝袜av| 精品无人区乱码1区二区| 法律面前人人平等表现在哪些方面| 一边摸一边做爽爽视频免费| 又紧又爽又黄一区二区| 岛国视频午夜一区免费看| 一夜夜www| 日本三级黄在线观看| 国产激情偷乱视频一区二区| 婷婷亚洲欧美| 国产在线观看jvid| 99热只有精品国产| av片东京热男人的天堂| 欧美丝袜亚洲另类 | 国产精品亚洲一级av第二区| 久久国产乱子伦精品免费另类| 国内毛片毛片毛片毛片毛片| 非洲黑人性xxxx精品又粗又长| 午夜免费鲁丝| 免费无遮挡裸体视频| АⅤ资源中文在线天堂| 国产熟女午夜一区二区三区| 亚洲欧美日韩高清在线视频| 亚洲成人久久性| 十八禁网站免费在线| 一进一出抽搐动态| 九色国产91popny在线| 欧美又色又爽又黄视频| 国产精品日韩av在线免费观看| 两性夫妻黄色片| www.熟女人妻精品国产| 曰老女人黄片| 无遮挡黄片免费观看| 俺也久久电影网| 可以免费在线观看a视频的电影网站| 波多野结衣巨乳人妻| 亚洲精品中文字幕在线视频| 午夜a级毛片| 在线观看日韩欧美| 看片在线看免费视频| 国产精品久久久久久亚洲av鲁大| 他把我摸到了高潮在线观看| 少妇粗大呻吟视频| 久久久久国产精品人妻aⅴ院| 999久久久精品免费观看国产| 久热这里只有精品99| 色播亚洲综合网| 欧美日韩亚洲国产一区二区在线观看| 色播在线永久视频| 麻豆久久精品国产亚洲av| 黄色女人牲交| 欧美日韩精品网址| 国产伦一二天堂av在线观看| 精品久久久久久,| 久久香蕉激情| 亚洲欧美精品综合一区二区三区| 欧美激情高清一区二区三区| 中文字幕av电影在线播放| 久久精品夜夜夜夜夜久久蜜豆 | 麻豆av在线久日| 中文字幕高清在线视频| 免费高清视频大片| 久久久久久久久免费视频了| 午夜福利欧美成人| 女人被狂操c到高潮| 国内少妇人妻偷人精品xxx网站 | 大型av网站在线播放| 亚洲av片天天在线观看| 亚洲熟妇中文字幕五十中出| 亚洲天堂国产精品一区在线| 国产真人三级小视频在线观看| 精品熟女少妇八av免费久了| 欧美三级亚洲精品| 高清毛片免费观看视频网站| 亚洲精品一卡2卡三卡4卡5卡| 久久久精品欧美日韩精品| 精品一区二区三区av网在线观看| 亚洲国产看品久久| x7x7x7水蜜桃| 国产高清视频在线播放一区| 嫁个100分男人电影在线观看| 99国产精品一区二区三区| 欧美性猛交黑人性爽| 欧美久久黑人一区二区| 宅男免费午夜| 国产久久久一区二区三区| 91成人精品电影| 99在线视频只有这里精品首页| 成年版毛片免费区| 狠狠狠狠99中文字幕| 波多野结衣巨乳人妻| www.999成人在线观看| 级片在线观看| 久久婷婷人人爽人人干人人爱| 97超级碰碰碰精品色视频在线观看| 熟女电影av网| 亚洲国产欧美一区二区综合| 日韩精品中文字幕看吧| 欧美在线一区亚洲| 免费无遮挡裸体视频| 国产伦人伦偷精品视频| 免费在线观看视频国产中文字幕亚洲| 久久久精品欧美日韩精品| 成人欧美大片| 日本精品一区二区三区蜜桃| 精品一区二区三区av网在线观看| 久久婷婷人人爽人人干人人爱| 成人国语在线视频| 午夜免费成人在线视频| 久久这里只有精品19| 成人特级黄色片久久久久久久| 成人午夜高清在线视频 | 国内揄拍国产精品人妻在线 | 嫩草影视91久久| 国产高清有码在线观看视频 | 日本一区二区免费在线视频| 欧美日韩瑟瑟在线播放| 久久久国产精品麻豆| 国产亚洲欧美精品永久| 动漫黄色视频在线观看| 国产av不卡久久| 午夜老司机福利片| 国产精品一区二区精品视频观看| 国产免费av片在线观看野外av| 久久天躁狠狠躁夜夜2o2o| 久久伊人香网站| 动漫黄色视频在线观看| 在线天堂中文资源库| av福利片在线| 亚洲一区中文字幕在线| 黄色女人牲交| 免费在线观看黄色视频的| 亚洲 欧美一区二区三区| 免费看a级黄色片| 欧美成人一区二区免费高清观看 | 亚洲熟妇熟女久久| 给我免费播放毛片高清在线观看| 精品国内亚洲2022精品成人| 国产精品久久久人人做人人爽| 97超级碰碰碰精品色视频在线观看| 亚洲最大成人中文| 日韩欧美三级三区| 可以在线观看的亚洲视频| 国产精品亚洲美女久久久| 国产精品香港三级国产av潘金莲| 国产精品 国内视频| 欧美日韩亚洲国产一区二区在线观看| 少妇熟女aⅴ在线视频| 久久婷婷人人爽人人干人人爱| 人成视频在线观看免费观看| 国产精品久久电影中文字幕| 侵犯人妻中文字幕一二三四区| av天堂在线播放| 亚洲五月天丁香| 国产免费男女视频| 满18在线观看网站| 在线国产一区二区在线| 国产一区二区三区在线臀色熟女| 久久国产亚洲av麻豆专区| 国产一区二区激情短视频| 成人欧美大片| 久久久精品欧美日韩精品| 国产亚洲精品av在线| 99国产综合亚洲精品| 看黄色毛片网站| 久久久久久国产a免费观看| 真人做人爱边吃奶动态| 黄色视频,在线免费观看| av电影中文网址| 色综合站精品国产| 午夜日韩欧美国产| 黄色视频不卡| 在线国产一区二区在线| 听说在线观看完整版免费高清| 国产av一区在线观看免费| 国产免费男女视频| 国产激情偷乱视频一区二区| 欧美日本亚洲视频在线播放| av福利片在线| 在线观看66精品国产| 精品免费久久久久久久清纯| 亚洲最大成人中文| 亚洲五月天丁香| 国产亚洲av高清不卡| 麻豆av在线久日| 岛国在线观看网站| 中亚洲国语对白在线视频| 久久香蕉精品热| 国产色视频综合| 麻豆久久精品国产亚洲av| 男女之事视频高清在线观看| 亚洲中文日韩欧美视频| 久久久国产精品麻豆| 亚洲男人的天堂狠狠| 18禁观看日本| 午夜福利在线观看吧| 侵犯人妻中文字幕一二三四区| 精品国产乱码久久久久久男人| 搡老熟女国产l中国老女人| 国产精品自产拍在线观看55亚洲| 精品卡一卡二卡四卡免费| 久久精品国产亚洲av香蕉五月| 国产亚洲欧美精品永久| 黄色女人牲交| 国内精品久久久久精免费| 国产三级黄色录像| 国产精品亚洲美女久久久| 成人午夜高清在线视频 | 天天添夜夜摸| 岛国在线观看网站| 俺也久久电影网| 丝袜在线中文字幕| 给我免费播放毛片高清在线观看| 亚洲成人久久性| 精品一区二区三区四区五区乱码| 国产精品久久久久久亚洲av鲁大| 日韩成人在线观看一区二区三区| 久久久国产成人精品二区| 啦啦啦免费观看视频1| 日本在线视频免费播放| 美女高潮喷水抽搐中文字幕| 看免费av毛片| 国产精品爽爽va在线观看网站 | 长腿黑丝高跟| 波多野结衣巨乳人妻| 中文字幕另类日韩欧美亚洲嫩草| 亚洲一区中文字幕在线| 久久精品成人免费网站| 成人av一区二区三区在线看| 国产区一区二久久| 黄色女人牲交| 中文字幕av电影在线播放| 欧美性猛交黑人性爽| 又黄又粗又硬又大视频| 国产麻豆成人av免费视频| 色在线成人网| 伦理电影免费视频| 19禁男女啪啪无遮挡网站| 在线观看舔阴道视频| 国产成人精品无人区| 国产精品99久久99久久久不卡| 一边摸一边抽搐一进一小说| 丝袜在线中文字幕| 国内精品久久久久久久电影| 国产精品香港三级国产av潘金莲| 级片在线观看| 色综合站精品国产| 日韩精品中文字幕看吧| 两性夫妻黄色片| 一进一出抽搐gif免费好疼| 久久久久久亚洲精品国产蜜桃av| 亚洲国产看品久久| 国产aⅴ精品一区二区三区波| 国产精品一区二区三区四区久久 | 色综合亚洲欧美另类图片| 中文字幕久久专区| 日韩欧美免费精品| 黑人巨大精品欧美一区二区mp4| 成人手机av| 国产爱豆传媒在线观看 | 国产激情欧美一区二区| 日本免费a在线| 国产精品1区2区在线观看.| 最近在线观看免费完整版| 国产亚洲精品第一综合不卡| 校园春色视频在线观看| 国产精品,欧美在线| 中文字幕高清在线视频| 国产精品久久久久久人妻精品电影| 亚洲av五月六月丁香网| 国产av又大| av天堂在线播放| 午夜成年电影在线免费观看| 变态另类丝袜制服| 中文字幕精品免费在线观看视频| 中亚洲国语对白在线视频| 一区二区三区高清视频在线| 国产v大片淫在线免费观看| 国产精品,欧美在线| 在线国产一区二区在线| 日本 欧美在线| 国产精品综合久久久久久久免费| 成年免费大片在线观看| 国产一卡二卡三卡精品| 久久国产亚洲av麻豆专区| 香蕉丝袜av| 国语自产精品视频在线第100页| 久久性视频一级片| 91成人精品电影| 国产久久久一区二区三区| 欧美激情极品国产一区二区三区| 又黄又粗又硬又大视频| 麻豆av在线久日| 亚洲国产欧美日韩在线播放| 国产97色在线日韩免费| 亚洲第一av免费看| xxx96com| 少妇裸体淫交视频免费看高清 | 一进一出抽搐gif免费好疼| 狂野欧美激情性xxxx| 国产91精品成人一区二区三区| 中文字幕av电影在线播放| 香蕉丝袜av| 久热爱精品视频在线9| 日本一区二区免费在线视频| 国内揄拍国产精品人妻在线 | av欧美777| 可以在线观看毛片的网站| 亚洲一码二码三码区别大吗| 久久久久久免费高清国产稀缺| 国产国语露脸激情在线看| 国产在线观看jvid| 国内精品久久久久精免费| 18禁美女被吸乳视频| 不卡一级毛片| 色综合欧美亚洲国产小说| АⅤ资源中文在线天堂| 美女国产高潮福利片在线看| 久久九九热精品免费| 欧美av亚洲av综合av国产av| 黄色a级毛片大全视频| 搡老妇女老女人老熟妇| 久久久久久免费高清国产稀缺| aaaaa片日本免费| 午夜福利一区二区在线看| 欧美最黄视频在线播放免费| 国产成人精品久久二区二区91| 国产午夜福利久久久久久| 国产单亲对白刺激| 欧美黄色片欧美黄色片| 女人爽到高潮嗷嗷叫在线视频| а√天堂www在线а√下载| 亚洲精品国产区一区二| 色综合欧美亚洲国产小说| 国产黄a三级三级三级人| 免费无遮挡裸体视频| 黄色片一级片一级黄色片| 久久99热这里只有精品18| 9191精品国产免费久久| 1024视频免费在线观看| 亚洲 国产 在线| 精品久久久久久久久久久久久 | 观看免费一级毛片| 欧美日韩乱码在线| 久久婷婷成人综合色麻豆| 成人亚洲精品av一区二区| 国产精品日韩av在线免费观看| 日韩精品中文字幕看吧| 久久香蕉激情| 男女做爰动态图高潮gif福利片| 日日爽夜夜爽网站| 亚洲aⅴ乱码一区二区在线播放 | 琪琪午夜伦伦电影理论片6080| 超碰成人久久| 制服诱惑二区| 久久国产乱子伦精品免费另类| 久久人妻av系列| 搡老妇女老女人老熟妇| 午夜福利高清视频| 国产精品 欧美亚洲| 视频区欧美日本亚洲| 午夜激情av网站| 午夜精品久久久久久毛片777| 久久国产乱子伦精品免费另类| 欧美久久黑人一区二区| av视频在线观看入口| 久久婷婷成人综合色麻豆| 国产激情久久老熟女| 两个人免费观看高清视频| 男男h啪啪无遮挡| 欧美成人一区二区免费高清观看 | 久久久久久免费高清国产稀缺| 国产精品亚洲av一区麻豆| 一二三四社区在线视频社区8| 欧美精品啪啪一区二区三区| 免费在线观看黄色视频的| 午夜影院日韩av| 日本三级黄在线观看| 亚洲熟妇中文字幕五十中出| 真人做人爱边吃奶动态| 视频区欧美日本亚洲| 老司机深夜福利视频在线观看| 午夜亚洲福利在线播放| 婷婷亚洲欧美| 大香蕉久久成人网| 每晚都被弄得嗷嗷叫到高潮| 免费在线观看亚洲国产| 欧美在线黄色| 亚洲第一电影网av| 国产黄a三级三级三级人| 好看av亚洲va欧美ⅴa在| 亚洲国产欧美一区二区综合| 丝袜在线中文字幕| 99热6这里只有精品| avwww免费| 日韩大尺度精品在线看网址| a级毛片a级免费在线|