• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Application of Propagation Characteristics of Translating-Pulsating Source Green Function in the Side-Wall Effects Discrimination

    2018-03-28 12:30:18XIAOWenbin
    船舶力學 2018年3期

    XIAO Wen-bin

    (Academy of Ocean Science and Technology,National University of Defense Technology,Changsha 410073,China)

    0 Introduction

    In the tank with finite breadth,side-wall effects may exert great influence on the ship model advancing in waves,which is mainly due to the reflection waves acting on the model.The waves produced by the model propagate toward the side wall of the tank,and then may go back to it.If there are side-wall effects,many experimental results,such as the motion response,wave excited force,unsteady wave pattern,fluctuating pressure,may be affected.Studies about these effects will contribute to the investigation of hydrodynamic performance difference in the open water and tank condition,and qualitative and quantitative analyses are expected for the side-wall effects in seakeeping model test[1].

    For the side-wall effects problem in waves,earlier researches focused on the model test of single ship[2-3].In 1978,15th ITTC proposed standards of seakeeping tests for a single floating body[4].Recently,Ghent University in Belgium and other institutes carried out the model tests of two ships in waves[5-8],but the side-wall effects were still not investigated in depth.In the model tests for two ships advancing parallel in waves,the transversal space in between needs to be adjustable in line with the different experimental conditions.However,the enlargement of transversal space may intensify the side-wall effects,which makes the test more difficult in test design and data analysis.The side-wall effects seem to be more complicated for two advancing models than a single one;the critical wavelength corresponding to each model needs to be considered,besides that,the radiation and diffraction waves generated by a model may act upon the other one.Therefore,the relative position of two models in the tank should be taken into consideration to explore the side-wall effects in regular waves.

    In the present paper,the phase function is extracted from the integral representation about 3-D translating-pulsating source Green function in frequency domain,and the stationary phase method is applied to decompose the near-field flow and wave components of the source.Constant phase curves and propagation wave patterns in the far field are then obtained.Based on the propagation characteristics of Bessho form Green function,a simple and practical method is proposed to discriminate the side-wall effects for two ship models advancing in close proximity.Under the experimental conditions,the side-wall effects are examined in a two-model test.

    1 Propagation characteristics of Bessho form Green function

    1.1 Integral representation

    A right-handed equilibrium axis system oxyz is defined in the condition of deep water with the origin o on the plane of undisturbed free surface,and the z-axis is positive upwards.Assuming that the 3-D translating-pulsating source is advancing at a uniform speed U and oscillating at a frequencyis the source point and(x,y, )z is the field point,and then the Bessho form Green function[9]can be written as follows:

    The generalized wave numbers here are represented by k1and k2,and sign is the symbolic function.In terms of the value of τ,the integral path of formula(1)can be divided into two kinds according to the Cauchy integral theorem,which is illustrated in Fig.1.

    Fig.1 Integral path of equation(1)in θ space

    By performing M=sgn c·m=sgn c·k1cosθ,the terms about k1in formula(1)can be transformed into formula(2)with a single integral form[10].

    1.2 Decomposition of near-field flow and wave components

    It is known from formula(2),can reflect some nature of exponent part of the exponential function,whose real component represents the oscillation amplitude and imaginary one the phase information.Therefore,the phase function about Bessho form Green function can be defined as

    According to the traits of phase function,the wave patterns in far field can be determined by the stationary phase analysis method[11-12].If dψ/dM=0,it is easy to obtain that

    By substituting formula(4b)into formula(3),the parametric equation of constant phase curve can then be presented as follows:

    The variation range of θ in formula(6)is linked with the integral path in Fig.1.In m plane,the integral path of the new integrand is transformed,which is illustrated in Fig.2 and Fig.3.

    Fig.2 The new integral path for terms about k1 in m space

    Fig.3 The new integral path for terms about k2 in m space

    The imaginary part of variable m is not equal to zero in the intervals identified by dashed lines in Fig.2 and Fig.3.X and Y are,by definition,real numbers,so there is no stationary phase in the corresponding intervals,which means the near-field flow component of the Bessho form Green function is described here.The solid-line intervals in Fig.2 and Fig.3 are divided into three parts including AA,D1and D2,whose contribution is dominant in far field.Therefore,the propagating waves can be determined by equation(5)in the three intervals above.

    1.3 Wave patterns in far field

    In the water with an infinite free-surface extent,the unsteady waves generated by a translating-pulsating source are closely related to the Strouhal number τ=Uωe/g and its patterns can be indicated by the constant phase curves which represent the wave crests or hollow at a specific time instant[13].Fig.4 shows the propagating wave patterns when the source is located below the origin o.Here X and Y are dimensionless parameters,which can signify the horizontal position between the field point and the source point.

    If 4τ<1,there are three distinct wave patterns including outer V wave from AA,inner V wave from D1and ring wave from D2.For the value of 4τ>1,D1and D2are corresponding to inner V wave and ring-fan wave respectively and AA to fan wave.The ring and ring-fan waves above can be considered as the modified ring waves due to the forward speed,and other wave patterns as the modified Kelvin wake due to the harmonic oscillation of the source.All the wave patterns are restricted in the wedge-shaped region which is symmetrical about the advancing course.For the pulsating source,its constant phase curves are circles with the same center and wavelength in all directions[12].By analyzing the wave patterns,the translating-pulsating source seems to be more truly to reflect the propagating waves generated by an advancing ship than the pulsating source dose,which is largely due to the fact that the former source posses special features of forward movement and harmonic oscillation simultaneously.

    Fig.4 Constant phase curves of wave patterns when the source is located below o(a)4τ<1;(b)4τ>1

    Fig.5 Cusp angle of ring-fan wave pattern

    Fig.6 Cusp angle of ring-fan wave pattern versus τ

    For the propagating region of the ring wave is the whole free surface area,it is impossible to neglect the side-wall effect when 4τ<1.It is worth noting that the propagating scope of the inner V and fan waves is always within the region of ring-fan wave pattern if 4τ>1.Consequently,the influence area of ring-fan wave can be regarded as the propagating region of the radiation and diffraction waves generated by the translating-pulsating source in the condition of 4τ>1.As shown in Fig.5,a cusp angle θris introduced,which is an angle between the boundary of ring-fan wave and the source course.Fig.6 depicts how this cusp angle changes in dependence of Strouhal number[13].As shown in this figure,the backward spreading feature of ring-fan wave is more and more significant as the advancing speed increases or oscillating frequency decreases,which is consistent with the observed result in physics.In addition,ringfan wave is still possible to emerge ahead of the source when 4τ>1.However,θris always less than 90 degrees if τ>0.272,side-wall effects in which condition is the focus of the present work.

    2 Discrimination of side-wall effect for single ship model

    In the seakeeping test for single ship,the model is generally set to the central axis of the tank.Fig.7 shows the ship waves reflect from the side walls at different cusp angle θr.Given the tank breadth BTand model length L,it can be easily concluded that there must be a geometric critical cusp angle θtto discriminate the side-wall effect.

    Fig.7 Waves generated by single model and reflected from the side walls of the tank

    If θris is larger than θt,the waves generated from the ship stem will act on the flow field at the ship stern nearby after side-wall reflection,and the tank wall interference will occur.If θr<θt,the side-wall effect is absent then.Based on the analysis above,a discrimination method of side-wall effect can be proposed for single ship model.The concrete steps are presented as follows.Firstly,the critical angle θtis solved by tank breadth BTand model length L as formula(7).In terms of the monotone function of cusp angle θrin dependence of τ,the Strouhal number is determined when θtequals to θrin the second step.Thirdly,the corresponding frequency ωeat a certain speed U can be obtained by the definition of τ=Uωe/g.And finally,the critical wavelength λtis achieved with parameters of wave frequency and wavelength.Through comparing the value of experimental wavelength with λt,the side-wall effect can then be identified.The flow diagram of the discrimination method above is illustrated in Fig.8,in which β is the wave-to-course angle with the value of zero in head waves.Input of this method is BT,L,U and propagating property of ring-fan waves.

    Fig.8 Flow diagram of discrimination about the side wall effect for single ship model

    Based on the tank breadth,model length,speed Froude number and wave circular frequency,15th ITTC recommended a standard for seakeeping experiment of single model in the form of check list[4],whose data essentially indicates the variation laws of the circular Strouhal number τ0=Uω0/g with the ratio BT/L.The relationship between τ0and τ is given in formula(8).

    Fig.9(a)and(b)illustrates the discrimination margin of side-wall effect for single model,in which the present results are shown with solid lines.Whichever to adopt to discriminate the effect,τ0or τ,the side-wall effect is not ignorable in the lower left region of the lines and vice versa.In addition,the discrimination data of 15th ITTC is listed in Fig.9(a).By comparison,present results calculated by τ0agree well with the standard data.Therefore,the discrimination method above proves to be correct and effective for single model.It is expected to apply this method to the seakeeping test of two ship models.

    Fig.9 Discrimination margin of side wall effect for single ship model

    3 Discrimination of side-wall effects for two ship models

    In the test of two models advancing in close proximity,the best layout plan is that the two models are arranged symmetrically around the central axis of tank.However,it may strengthen the reforming of towing system for there is only one towing device in universal tank.A simple solution is that one model labeled as ship a is arranged into the carriage navigation system,which is usually located in the central axis of tank.Without loss of generality,another model,labeled as ship b,is set on the starboard side of ship a.The transversal and longitudinal spaces between two models are set as Dyand Dx,respectively,as shown as in Fig.10.If Dy>0,ship b is on the starboard side of ship a.For Dx>0,ship b is ahead of ship a.

    Fig.10 Waves generated by two models and reflected from the side walls of tank

    The radiation and diffraction waves here are so complex that they need to be analyzed one by one.Taking Fig.10 as an example,the waves generated by the model may reflect back to interfere its own response in waves.In this case,the critical angle can be referenced by the single model.For ship a,this angle θtaais satisfied with formula(9a).For ship b,transversal space Dyis taken into account in the angle θtbbdue to its proximity to the right side wall,which is shown in formula(9b).

    where Laand Lbare the lengths of ship a and ship b,respectively.

    In addition,the waves from a model may act on the other one after the side-wall reflection.Because of the shadowing effect of ship hull,the interference waves between models’broad sides are restricted in a narrow area,which is an important feature of hydrodynamic interference when two ships are advancing parallel in close proximity.If the two models are not captured,this shadowing effect is not complete in waves[15].And there are radiation and diffraction waves produced by ship a on the starboard of ship b.Here the wave propagation must follow the shortest distance principle from one model to the other.For instance,the wave from ship a is quicker to reach ship b by the right side wall than the left side.So the critical angle θtbais determined by the right side wall as formula(9c).In a similar way,the angle θtabis given in formula(9d).

    Above all,the side-wall effects for two models advancing parallel in waves can be discriminated in terms of the four angles as formula(9a)~(9d).And the minimum value of them is defined as θtto determine if the side-wall effects occur.

    4 Instance analyses

    For the models test of Cheng Kung University in Ref.[16],the discrimination method above is applied to check the side-wall effects.Tab.1 shows the main particulars of the tested models.

    Tab.1 Main particulars of tested models

    In the test,two models are advancing in head regular waves with the wavelength range 1.93-6.24 m.The principal dimension of the towing tank is 180 m×8 m×3.5 m and speed Froude numbers Fnare 0,0.076 and 0.141.In the experimental condition with Dx=0,two kinds of model layout are discussed here.The first layout is that ship a is set in the central axis of tank and ship b is on the starboard side of ship a with Dy=0.72 m,0.82 m and 0.92 m.No matter how the transversal space changes,two models are arranged symmetrically around the central axis of tank in the other layout.

    When Fnequals to 0 or 0.076,side-wall effects occur in both layouts.For Fn=0.141,the critical wavelength appears near 5 m.Fig.11 depicts the wavelength range free of side-wall effect in the experimental conditions.From this figure,the critical wavelength tends to be shorter along with the increase of transversal space.For the transversal space is relative small(Dx/BT=9.0%~11.5%),the change of critical wavelength in accordance with the transversal space is not significant on the whole.

    Fig.11 Wavelength range free of side-wall effect(Fn=0.141)

    In addition,the wavelength range free of side-wall effect is boarder in the second layout than that in the first one.The symmetrical layout plan,though is more advantageous to avoid the side-wall effect,may enlarge the experimental difficulty and increase the equipment-testing workload.In order to minimize the interference of side-wall effect,the time-history data to be analyzed should be properly intercepted and deep research should focus on its quantitative analysis,which may be the future course of this problem.

    5 Conclusions

    Based on the propagation characteristics of translating-pulsating source Green function,a practical approach is proposed to discriminate the side-wall effects for single ship model and two models in waves.The main contents and conclusions in present paper are included below:

    (1)For the single integral representation about 3-D translating-pulsating source Green function of Bessho form in frequency domain,the parametric equation of constant phase curve is obtained by stationary phase method.The integral intervals of near-field flow and wave components are made clear by the real number property of constant phase curve.If 4τ>1,the propagating area of inner V and fan waves is always within the region of ring-fan wave pattern.And the influence scope of radiation-diffraction waves of the source can be considered as the propagating area of ring-fan wave.

    (2)Ring wave and ring-fan wave pattern may emerge ahead of the translating-pulsating source for τ<0.272,and then side-wall effects seem to be not ignored.If τ>0.272,the cusp angle of the source is larger than 90 degrees,therefore it is needed to discriminate the sidewall effects by corresponding method or regulation.

    (3)By comparing the ring-fan wave’s cusp angle and geometric critical cusp angle of experimental tank,a discrimination method and its implementing process are presented in the side-wall effect problem for single ship model,and the discrimination margin is obtained by the Strouhal number.Further,a discrimination method of side-wall effects is proposed for two models advancing parallel in regular waves based on the model particulars,tank breadth and relative position of two models,in which the interference of reflection waves acting on both models are taken into account by the shortest distance principle of propagating waves.

    (4)The present discrimination method of side-wall effects is not only suitable for the single model and two models test,but also can be applied to the seakeeping test of multihull vehicle and multiple ships.The future work is to further investigate the propagation velocity of the wave patterns,because there is time interval for the propagation waves from the ship to the side wall.

    [1]Tasai F,Takaki M,Ohkusu M.Ship motions in restricted waters[J].Journal of the Japan Society of Naval Architects and Ocean Engineers,1978,56:33-45.

    [2]Hosoda R.Effects of side-wall interference of towing tank on the results of experiments in waves(1)[J].Journal of the Society of Naval Architects of Japan,1976,139:23-30.

    [3]Hosoda R.Effects of side-wall interference of towing tank on the results of experiments in waves(2)[J].Journal of the Society of Naval Architects of Japan,1978,143:52-60.

    [4]The Seakeeping Committee of ITTC.Report of the seakeeping committee[C]//Proceedings of the 15th International Towing Tank Conference.Netherlands,1978:55-114.

    [5]Vantorre M,Verzhbitskaya E,Laforce E.Model test based formulations of ship-ship interaction forces[J].Ship Technology Research,2002,49(3):1-9.

    [6]Evert L,Marc V,Guilaume D.Captive model testing for ship to ship operations[C]//Proceedings of International Conference on Marine Simulation and Ship Maneuverability.Panama,2009:1-10.

    [7]Greet V K,Marc V,Guilaume D.Advanced model testing techniques for ship behavior in shallow and confined water[C]//Proceedings of the 1st International Conference on Advanced Model Measurement Technology for the EU Maritime Industry.Nantes,France,2009:158-172.

    [8]Zhao W H,Yang J M,Hu Z Q,et al.Recent developments on the hydrodynamics of floating liquid natural gas(FLNG)[J].Ocean Engineering,2011,38:1555-1567.

    [9]Bessho M.On the fundamental singularity in the theory of ship motion in a seaway[J].Memoirs of the Defense Academy of Japan,1977,17(8):95-105.

    [10]Iwashita H,Ohkusu M.Hydrodynamic forces on a ship moving with forward speed in waves[J].Journal of the Society of Naval Architects of Japan,1989,166:87-109.

    [11]Noblesse F,Hendrix D.On the theory of potential flow about a ship advancing in waves[J].Journal of Ship Research,1992,36(1):17-29.

    [12]Xu Y,Dong W C,Xiao W B.Study on far field wave patterns and their characteristics of Havelock form Green function[J].China Ocean Engineering,2013,27(3):283-298.

    [13]Chen X B,Diebold L.Analytical expressions of unsteady wave patterns[C]//Proceedings of the 14th International Workshop on Water Waves and Floating Bodies.Port Huron,USA,25-28.

    [14]Faltinsen O M.Hydrodynamics of high-speed marine vehicles[M].Cambridge University Press,UK,2005:99-140.

    [15]Xu Y.Study on the mechanism of hydrodynamic interaction between multiple ships advancing in waves at close proximity[D].Wuhan:Naval University of Engineering,2012.

    [16]Yang W H.Experimental verification of the seakeeping performance for two ships advancing parallel in waves[D].Taiwan:National Cheng Kung University,2001.

    [17]Mctaggart K,Cumming D,Hsiung C C,et al.Seakeeping of two ships in close proximity[J].Ocean Engineering,2003,30:1051-1063.

    国产69精品久久久久777片| 免费大片18禁| 你懂的网址亚洲精品在线观看| 亚洲国产精品国产精品| 午夜福利视频精品| 国产极品天堂在线| 新久久久久国产一级毛片| 国产综合精华液| 亚洲欧美日韩无卡精品| 亚洲性久久影院| 男人狂女人下面高潮的视频| 舔av片在线| 2022亚洲国产成人精品| 不卡视频在线观看欧美| 人妻系列 视频| av国产精品久久久久影院| 欧美bdsm另类| 精品熟女少妇av免费看| 国产一区有黄有色的免费视频| 日韩亚洲欧美综合| 啦啦啦在线观看免费高清www| 九九在线视频观看精品| 欧美变态另类bdsm刘玥| 精品一区二区三区视频在线| 亚洲成人精品中文字幕电影| av在线亚洲专区| 亚洲人成网站在线播| 王馨瑶露胸无遮挡在线观看| 免费av毛片视频| 国产探花极品一区二区| 日韩一区二区三区影片| 最近中文字幕高清免费大全6| 亚洲欧美成人综合另类久久久| 国产 精品1| 婷婷色综合大香蕉| 欧美激情久久久久久爽电影| 老师上课跳d突然被开到最大视频| 97热精品久久久久久| 一级毛片电影观看| 高清日韩中文字幕在线| 亚洲熟女精品中文字幕| 亚洲电影在线观看av| 国产成人freesex在线| 99九九线精品视频在线观看视频| 国产免费福利视频在线观看| 日韩国内少妇激情av| tube8黄色片| 狠狠精品人妻久久久久久综合| 亚洲欧美日韩另类电影网站 | 国产精品不卡视频一区二区| 久久精品国产亚洲av天美| 99热这里只有是精品在线观看| 大香蕉97超碰在线| 嫩草影院精品99| 一级毛片 在线播放| 久久99精品国语久久久| 精品熟女少妇av免费看| 国产白丝娇喘喷水9色精品| 亚洲av中文字字幕乱码综合| 极品少妇高潮喷水抽搐| 性色av一级| 久久久久性生活片| 国产亚洲av嫩草精品影院| 国产黄色视频一区二区在线观看| 一区二区三区四区激情视频| 一本色道久久久久久精品综合| 亚洲精品,欧美精品| 日本免费在线观看一区| 国产男女超爽视频在线观看| 黄色配什么色好看| 一级爰片在线观看| 久久精品国产a三级三级三级| 人妻系列 视频| 高清欧美精品videossex| 国产精品久久久久久av不卡| av一本久久久久| 国产男女内射视频| 国产成人免费观看mmmm| 欧美日韩在线观看h| 国产男女超爽视频在线观看| 精品视频人人做人人爽| av女优亚洲男人天堂| 性插视频无遮挡在线免费观看| 精品午夜福利在线看| 国产免费一级a男人的天堂| 国产精品一二三区在线看| 亚洲欧美日韩卡通动漫| 夫妻午夜视频| 18禁裸乳无遮挡动漫免费视频 | 日韩免费高清中文字幕av| 最近中文字幕高清免费大全6| 国产精品女同一区二区软件| 欧美另类一区| 亚洲av福利一区| 免费av毛片视频| 国产精品无大码| 麻豆久久精品国产亚洲av| 免费av观看视频| 久久久久久久大尺度免费视频| 18禁动态无遮挡网站| 成年免费大片在线观看| 久久久久九九精品影院| 丰满少妇做爰视频| av国产久精品久网站免费入址| 欧美日韩视频高清一区二区三区二| 久久久久久伊人网av| www.色视频.com| 九九久久精品国产亚洲av麻豆| 精品国产乱码久久久久久小说| 国产精品无大码| 欧美亚洲 丝袜 人妻 在线| 欧美日韩一区二区视频在线观看视频在线 | 午夜免费男女啪啪视频观看| 人妻 亚洲 视频| 免费黄频网站在线观看国产| 狠狠精品人妻久久久久久综合| 秋霞在线观看毛片| 一区二区三区乱码不卡18| 性色avwww在线观看| 春色校园在线视频观看| 国语对白做爰xxxⅹ性视频网站| 18禁在线无遮挡免费观看视频| 国产成人免费无遮挡视频| 亚洲精品国产成人久久av| 我的女老师完整版在线观看| 欧美bdsm另类| 日本午夜av视频| 免费高清在线观看视频在线观看| 九草在线视频观看| 黄色一级大片看看| 欧美激情国产日韩精品一区| 欧美日本视频| 欧美精品一区二区大全| 看免费成人av毛片| av在线亚洲专区| 久久久精品免费免费高清| 国产伦精品一区二区三区四那| 国产淫语在线视频| av专区在线播放| 亚洲国产精品国产精品| 国产大屁股一区二区在线视频| 久久精品国产a三级三级三级| 18禁动态无遮挡网站| 成年av动漫网址| 丝瓜视频免费看黄片| 高清毛片免费看| 国产精品久久久久久久久免| 日韩一区二区三区影片| 精品人妻熟女av久视频| 日本欧美国产在线视频| 久久久色成人| 久久国内精品自在自线图片| 久久午夜福利片| 久久午夜福利片| 色视频www国产| 99热全是精品| 大片免费播放器 马上看| 精品少妇久久久久久888优播| 视频中文字幕在线观看| 大片电影免费在线观看免费| 亚洲精品色激情综合| 菩萨蛮人人尽说江南好唐韦庄| 国产精品av视频在线免费观看| 黄片wwwwww| 亚洲精品成人久久久久久| 日韩人妻高清精品专区| 天天躁夜夜躁狠狠久久av| 搡女人真爽免费视频火全软件| 成人国产麻豆网| 国产成人91sexporn| 又粗又硬又长又爽又黄的视频| 日韩三级伦理在线观看| 欧美精品国产亚洲| 啦啦啦在线观看免费高清www| 色哟哟·www| 亚洲av一区综合| 男男h啪啪无遮挡| 国产亚洲精品久久久com| 2021少妇久久久久久久久久久| 久久久久精品性色| 少妇人妻精品综合一区二区| 国产精品一区www在线观看| 国产 精品1| 如何舔出高潮| av在线老鸭窝| 精品一区二区三卡| 日韩成人伦理影院| 大香蕉久久网| 夜夜看夜夜爽夜夜摸| 婷婷色麻豆天堂久久| 五月伊人婷婷丁香| 久久久久久久久大av| 国产国拍精品亚洲av在线观看| 日韩强制内射视频| 国产精品女同一区二区软件| 大片免费播放器 马上看| 在线免费十八禁| 如何舔出高潮| 国产精品麻豆人妻色哟哟久久| 一级毛片aaaaaa免费看小| 国产成人午夜福利电影在线观看| 国产午夜精品一二区理论片| 国产一区二区三区综合在线观看 | 久久久精品欧美日韩精品| 天天躁日日操中文字幕| 大香蕉97超碰在线| 少妇人妻精品综合一区二区| 亚洲av不卡在线观看| 精品99又大又爽又粗少妇毛片| 一级爰片在线观看| 欧美老熟妇乱子伦牲交| 女人久久www免费人成看片| 色网站视频免费| 午夜福利高清视频| 欧美日韩视频精品一区| 精品一区二区免费观看| 精品午夜福利在线看| 偷拍熟女少妇极品色| 国产成人免费无遮挡视频| 欧美日韩国产mv在线观看视频 | 97在线视频观看| 久久ye,这里只有精品| 欧美激情在线99| 在线免费十八禁| 美女视频免费永久观看网站| 极品少妇高潮喷水抽搐| 黄色欧美视频在线观看| 色5月婷婷丁香| 网址你懂的国产日韩在线| 国产高潮美女av| 国产精品成人在线| 日日摸夜夜添夜夜添av毛片| 国产91av在线免费观看| av在线app专区| 国产大屁股一区二区在线视频| 赤兔流量卡办理| 网址你懂的国产日韩在线| 大话2 男鬼变身卡| 精品久久久久久久久av| 亚洲怡红院男人天堂| 亚洲熟女精品中文字幕| 国产伦精品一区二区三区视频9| 美女国产视频在线观看| 少妇的逼好多水| 亚洲国产精品成人综合色| 毛片女人毛片| 男人狂女人下面高潮的视频| 精品人妻一区二区三区麻豆| 亚洲av中文字字幕乱码综合| 国产毛片a区久久久久| 日本-黄色视频高清免费观看| 亚洲精品,欧美精品| 日韩大片免费观看网站| 久久ye,这里只有精品| 最近手机中文字幕大全| 麻豆精品久久久久久蜜桃| 国产在线一区二区三区精| 小蜜桃在线观看免费完整版高清| 九草在线视频观看| 成人亚洲欧美一区二区av| 日日啪夜夜撸| 亚洲av中文av极速乱| 黄片无遮挡物在线观看| 国产成人精品婷婷| 最近中文字幕高清免费大全6| 国产精品三级大全| 卡戴珊不雅视频在线播放| 偷拍熟女少妇极品色| 国产精品嫩草影院av在线观看| 中文字幕亚洲精品专区| 国产免费又黄又爽又色| 网址你懂的国产日韩在线| 只有这里有精品99| 中国三级夫妇交换| 综合色丁香网| 国产成人aa在线观看| 内地一区二区视频在线| 国产成人a区在线观看| 免费看光身美女| 国产精品一区二区在线观看99| 日韩人妻高清精品专区| 高清日韩中文字幕在线| 色播亚洲综合网| 建设人人有责人人尽责人人享有的 | 黄色一级大片看看| 91午夜精品亚洲一区二区三区| 亚洲怡红院男人天堂| 综合色丁香网| 韩国av在线不卡| 秋霞伦理黄片| 最近中文字幕2019免费版| 国产女主播在线喷水免费视频网站| 国产精品久久久久久精品电影| 久久久精品欧美日韩精品| 国产亚洲av嫩草精品影院| 国产91av在线免费观看| 国产午夜精品一二区理论片| 天堂中文最新版在线下载 | 欧美国产精品一级二级三级 | 欧美日本视频| 国产女主播在线喷水免费视频网站| 99久久精品热视频| 欧美日韩视频高清一区二区三区二| 亚洲国产最新在线播放| 国产精品女同一区二区软件| 麻豆久久精品国产亚洲av| 99久久精品国产国产毛片| 边亲边吃奶的免费视频| 国产亚洲一区二区精品| 在线观看免费高清a一片| 欧美日韩国产mv在线观看视频 | av在线播放精品| a级毛色黄片| 99热这里只有是精品50| www.av在线官网国产| 国产免费福利视频在线观看| 又大又黄又爽视频免费| 2018国产大陆天天弄谢| 国产熟女欧美一区二区| 黄片无遮挡物在线观看| 草草在线视频免费看| 色哟哟·www| 最近手机中文字幕大全| 18禁动态无遮挡网站| 国产伦精品一区二区三区四那| 亚洲av二区三区四区| 婷婷色麻豆天堂久久| 国内揄拍国产精品人妻在线| 男女国产视频网站| 精品一区二区三区视频在线| 亚洲精品乱码久久久v下载方式| 免费看不卡的av| 亚洲欧美一区二区三区黑人 | 婷婷色麻豆天堂久久| 各种免费的搞黄视频| 久久午夜福利片| 九九爱精品视频在线观看| 黄色配什么色好看| 亚洲精品久久久久久婷婷小说| 久久人人爽人人爽人人片va| 一级毛片我不卡| 欧美成人午夜免费资源| 伦理电影大哥的女人| 中文字幕av成人在线电影| 免费不卡的大黄色大毛片视频在线观看| 免费观看性生交大片5| 成年免费大片在线观看| 日韩在线高清观看一区二区三区| 亚洲av中文av极速乱| 欧美少妇被猛烈插入视频| 春色校园在线视频观看| 精品人妻一区二区三区麻豆| 一个人看的www免费观看视频| 国产精品国产三级专区第一集| 最近最新中文字幕免费大全7| 性插视频无遮挡在线免费观看| 国产一级毛片在线| 亚洲性久久影院| 国产精品成人在线| 91在线精品国自产拍蜜月| 又爽又黄无遮挡网站| 熟女av电影| 91aial.com中文字幕在线观看| 亚洲国产欧美人成| 亚洲av免费高清在线观看| 国产综合懂色| 亚洲成人av在线免费| www.色视频.com| 亚洲高清免费不卡视频| 在线亚洲精品国产二区图片欧美 | 国产精品一二三区在线看| 国产午夜精品一二区理论片| 婷婷色麻豆天堂久久| 久久久久久久午夜电影| 国产黄色视频一区二区在线观看| 午夜免费观看性视频| 日韩av不卡免费在线播放| 亚洲内射少妇av| 久久久久精品性色| 国产免费又黄又爽又色| 日本黄大片高清| 又粗又硬又长又爽又黄的视频| 中文乱码字字幕精品一区二区三区| 精品久久久噜噜| 成人毛片a级毛片在线播放| 九色成人免费人妻av| 精品人妻熟女av久视频| 日韩欧美一区视频在线观看 | 69人妻影院| 欧美3d第一页| 国产一区二区三区综合在线观看 | 国产精品伦人一区二区| 麻豆成人av视频| 久久精品国产自在天天线| 最后的刺客免费高清国语| 一级爰片在线观看| 亚洲av欧美aⅴ国产| 国国产精品蜜臀av免费| 国产亚洲一区二区精品| 搞女人的毛片| 久久久久精品久久久久真实原创| 毛片一级片免费看久久久久| 国产综合懂色| 国产精品一区二区性色av| 亚洲国产欧美人成| 成人二区视频| 国产黄片美女视频| 国产精品国产三级国产av玫瑰| 国产亚洲av嫩草精品影院| 可以在线观看毛片的网站| 免费看a级黄色片| 69人妻影院| 精品亚洲乱码少妇综合久久| 永久网站在线| 九色成人免费人妻av| 久久99热6这里只有精品| 欧美激情久久久久久爽电影| 26uuu在线亚洲综合色| 18禁在线无遮挡免费观看视频| 熟妇人妻不卡中文字幕| 高清午夜精品一区二区三区| 成人特级av手机在线观看| 亚洲精品成人av观看孕妇| av在线亚洲专区| 亚洲熟女精品中文字幕| 欧美xxxx黑人xx丫x性爽| 久久久久久久久久久丰满| 亚洲色图av天堂| 亚洲综合色惰| 热99国产精品久久久久久7| 又黄又爽又刺激的免费视频.| 91午夜精品亚洲一区二区三区| 91在线精品国自产拍蜜月| 最近最新中文字幕大全电影3| 亚洲精品aⅴ在线观看| 久久综合国产亚洲精品| 99热这里只有精品一区| 日本免费在线观看一区| 国产精品av视频在线免费观看| 一区二区三区乱码不卡18| av专区在线播放| 国产精品国产三级专区第一集| 18禁裸乳无遮挡免费网站照片| 波多野结衣巨乳人妻| 免费看a级黄色片| av国产久精品久网站免费入址| 成人午夜精彩视频在线观看| 精华霜和精华液先用哪个| 能在线免费看毛片的网站| 午夜免费男女啪啪视频观看| 久久这里有精品视频免费| h日本视频在线播放| 大片电影免费在线观看免费| 女人被狂操c到高潮| 制服丝袜香蕉在线| 免费大片18禁| 国产午夜精品一二区理论片| 日韩制服骚丝袜av| 亚洲四区av| 在线精品无人区一区二区三 | 日日啪夜夜撸| 18禁裸乳无遮挡免费网站照片| 99久久精品一区二区三区| 成人国产麻豆网| 狂野欧美白嫩少妇大欣赏| 国产毛片a区久久久久| 国产av不卡久久| 在线亚洲精品国产二区图片欧美 | 亚洲欧美日韩东京热| 亚洲精品乱久久久久久| 久久人人爽人人片av| .国产精品久久| 一级片'在线观看视频| 亚洲国产成人一精品久久久| 永久网站在线| 69人妻影院| 又黄又爽又刺激的免费视频.| av播播在线观看一区| 男人和女人高潮做爰伦理| 十八禁网站网址无遮挡 | 国产乱人偷精品视频| 中文字幕av成人在线电影| 视频中文字幕在线观看| 欧美成人午夜免费资源| 中文字幕av成人在线电影| 国语对白做爰xxxⅹ性视频网站| 国产日韩欧美在线精品| 午夜日本视频在线| 欧美激情在线99| 亚洲丝袜综合中文字幕| 日韩伦理黄色片| 国产人妻一区二区三区在| 天堂网av新在线| 亚洲精品日韩在线中文字幕| 久久韩国三级中文字幕| 成人一区二区视频在线观看| 国产黄色免费在线视频| 97超视频在线观看视频| 国产乱来视频区| 精品少妇黑人巨大在线播放| 国产午夜精品久久久久久一区二区三区| 亚洲精品国产av成人精品| 国产成人午夜福利电影在线观看| 精品一区二区免费观看| 干丝袜人妻中文字幕| 国产高潮美女av| 欧美成人a在线观看| 另类亚洲欧美激情| 看非洲黑人一级黄片| 午夜爱爱视频在线播放| 国产av码专区亚洲av| 久久99热这里只频精品6学生| 一级毛片aaaaaa免费看小| 草草在线视频免费看| 久久精品久久久久久久性| 日本-黄色视频高清免费观看| 欧美日韩视频高清一区二区三区二| 精品久久久噜噜| 看非洲黑人一级黄片| 性色av一级| 国产爱豆传媒在线观看| 欧美成人一区二区免费高清观看| 亚洲在久久综合| 国产av不卡久久| 亚洲精品一区蜜桃| 日韩欧美精品v在线| 高清欧美精品videossex| 看十八女毛片水多多多| 国产高清国产精品国产三级 | 狠狠精品人妻久久久久久综合| 亚洲av国产av综合av卡| 男人爽女人下面视频在线观看| 亚洲,欧美,日韩| 国产精品人妻久久久影院| 女的被弄到高潮叫床怎么办| 免费看a级黄色片| 简卡轻食公司| 老司机影院毛片| 国精品久久久久久国模美| 国产伦理片在线播放av一区| 色哟哟·www| 成人美女网站在线观看视频| 久久99热这里只有精品18| 狂野欧美白嫩少妇大欣赏| 成年女人看的毛片在线观看| 亚洲色图综合在线观看| 中国美白少妇内射xxxbb| 久久久久久国产a免费观看| 国产色爽女视频免费观看| 视频区图区小说| 色视频www国产| 亚洲av国产av综合av卡| 国产老妇伦熟女老妇高清| 欧美日韩一区二区视频在线观看视频在线 | 亚洲精品日韩在线中文字幕| 国产亚洲精品久久久com| 伦理电影大哥的女人| 欧美日韩视频高清一区二区三区二| 久久久精品免费免费高清| 爱豆传媒免费全集在线观看| 老师上课跳d突然被开到最大视频| 亚洲欧洲国产日韩| 水蜜桃什么品种好| 三级国产精品欧美在线观看| 男人和女人高潮做爰伦理| 国产av码专区亚洲av| 插阴视频在线观看视频| 色网站视频免费| 卡戴珊不雅视频在线播放| 亚洲欧美日韩东京热| 91在线精品国自产拍蜜月| 内射极品少妇av片p| 久久久国产一区二区| 最近最新中文字幕大全电影3| 亚洲伊人久久精品综合| 亚洲精品乱码久久久v下载方式| av国产免费在线观看| 久热久热在线精品观看| 亚洲精品,欧美精品| 韩国高清视频一区二区三区| av播播在线观看一区| 麻豆乱淫一区二区| 午夜福利在线在线| 国产精品国产三级国产专区5o| 久久久亚洲精品成人影院| 精品人妻熟女av久视频| 在线观看av片永久免费下载| 熟女人妻精品中文字幕| 在线观看av片永久免费下载| 简卡轻食公司| 亚洲精品aⅴ在线观看| 一本一本综合久久| 天天躁夜夜躁狠狠久久av| 久久久久性生活片| 午夜福利在线在线| 久久99热6这里只有精品| 亚洲精品久久久久久婷婷小说| 久久久久性生活片| 欧美日韩在线观看h| 特大巨黑吊av在线直播| 久久精品国产自在天天线| 狠狠精品人妻久久久久久综合| 日韩伦理黄色片| 蜜桃亚洲精品一区二区三区| av免费观看日本| 亚洲av不卡在线观看| 成人国产麻豆网| 晚上一个人看的免费电影| 欧美bdsm另类| 久久久久久久久久久丰满| 亚洲av.av天堂| 乱码一卡2卡4卡精品| 国产精品人妻久久久影院| 成人综合一区亚洲| 精品久久国产蜜桃|