• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Study on Vibration Characteristic of Jacket Platform Considering the Structure-Pile-Fluid-Soil Interaction

    2018-03-28 12:30:29MaritimeResearchCentreSchoolofCivilandEnvironmentalEngineeringNanyangTechnologicalUniversitySingapore639798SingaporeStateKeyLaboratoryofStructuralAnalysisforIndustrialEquipmentSchoolofNavalArchitectureEngineeringDalianUnivers
    船舶力學(xué) 2018年3期

    (1.Maritime Research Centre,School of Civil and Environmental Engineering,Nanyang Technological University,Singapore 639798,Singapore;2.State Key Laboratory of Structural Analysis for Industrial Equipment,School of Naval Architecture Engineering,Dalian University of Technology,Dalian 116024,China)

    0 Introduction

    Fixed offshore platform is commonly deployed for offshore oil exploration.With the development of offshore industry,more platforms are designed at locations susceptible to rare and severe strong ductility level earthquake.In order to demonstrate that the offshore platform is stable and does not experience structure collapse,one may adopt the nonlinear soil-pile-structure interaction time history analysis as recommended by API RP 2A and ISO 19902.The analysis is used to evaluate whether the platform-foundation system meets structural reserve strength and energy dissipation requirements.In the case of a jacket offshore platform,the piles are typically founded at the bedrock deep below the water and soft soil.During an earthquake event,it is generally believed that the shock waves pass from the bedrock to the soil.The piles in the jacket structure are assumed being moved along with the bedrock are then moved through the soil and hydraulic,resulting in a complex Structure-Pile-Fluid-Soil interaction process.

    To achieve lateral stability of an offshore jacket structure foundation,one has to establish safe attachment of the structure to the ground and in particular how the loads applied to the structure could be safely transferred to the surrounding soil.An established practice is the utilization of appropriate grouted or un-grouted piling system.In a grouted system the certain level of adhesion between the grout and steel surfaces may be achieved and translational movement of pile in the leg will be fixed-fixed ended condition.It was also reported in mechanical tests carried out that the presence of grout improved the strength and fatigue performance of the structural systems(Dedi,2009)[1].Un-grouted piling system is another method of piling system.The top of the pile in the method is fixed to top of the jacket by welding the both members,so that the leg and pile are allowed to have finite axial strain relative to each other but in normal direction they are bound to each other by the aid of wishbone elements.

    Dynamic response of structures founded on soft soils is influenced by the soil properties,and the response is significantly different from that of the fixed base condition as a result of the interaction between the soil and the structure.Several studies(Gazetas,1991[2];Han and Cathrio,1997[3];Wu and Gan,1998[4];Inaba et al,2000[5];Hokmabadi et al,2011[6];Carbonari et al,2011[7])reported findings on seismic soil-pile-structure interactions and the effect of this phenomenon on the seismic response of the structures.There are three groups of analytical methods for studying the soil-pile-structure interaction,and they are:(1)Substructure Methods(or Winkler methods),in which a series of springs and dashpots are employed to represent the soil behaviour;(2)Elastic Continuum Methods;and(3)Numerical Methods based on a set of relevant governing equations.

    Mardfekri et al[8]studied the behavior of laterally loaded monopole foundations using linear and nonlinear approach and assessed the accuracy of different pile-soil interaction model as compared to the results obtained using finite element model.Cyrus et al[9]conducted feasibility study of an un-grouted offshore jacket structure using the endurance time method.Tabeshpour[10]assessed the requirements for accurate modeling of pile-soil interaction of an offshore jacket structure.Wang et al[11]summarized the developments in grouted pile and its performance under different loadings.Various engineering methods and equivalent simplified models and methods have been applied in order to facilitate application and save computation time (Zhou et al,2014&2016)[12-13].The phenomenon of pile-fluid-soil interactions is frequently not considered in detailed during preliminary design of a jacket platform.The equivalent-pile method is often used to account for the pile-soil interaction due to the lack of soil data.The fluid-structure interaction is replaced by treating the fluid as added mass to account for the effects of fluid on the vibrating structure.

    In the present study,finite element method using LS-DYNA software is employed to investigate the effects of piled foundation on the seismic response of offshore platform.For this purpose,the seismic behavior of the platform supported by two types of foundations including the Structure-Pile-Fluid-Soil interaction foundation is compared with the equivalent pile foundation with attached water.Secondly,the natural frequency of the jacket platform with these two foundation models is calculated respectively.By comparing the frequency result of the two models,the frequency of simplified equivalent pile model is modified,and then the modified coefficient relation curve is proposed in the paper.In association with the modified coefficient relation curve,the simplified equivalent pile model can be used to compute the vibration characteristic of an offshore platform effectively.In this way,the computing time will be saved and the precision of results will be improved.

    1 Modeling techniques

    The Structure-Pile-Fluid-Soil interaction is a complex phenomenon as it involves the nature of each element and the coupling relationship and interaction among the elements.In this study,the nonlinear finite element program LSDYNA was used to perform the numerical simulation.LS-DYNA is a fully functional explicit dynamic analysis software,which is used to solve all kinds nonlinear physics(geometry,material and interfacial contact)(Shi et al,2005[14],Bai,2005[15]).The software makes use of Arbitrary Lagrangian-Eulerian(ALE)algorithm which combines the advantages of the Lagrange algorithm and Euler algorithm,and is a real fluid-solid coupling algorithm.With regard to structural boundary motion,it has the characteristics of the Lagrange algorithm which can track the movement at the boundary of structure effectively.It also has the characteristics of Euler algorithm which can cause the inner grid to exist independently of the physical entity.Moreover,the location of grid can be modified in the process of solving according to the parameters defined,by which the grid will not suffer from severe distortion.This algorithm is very appropriate for handling the large deformation problem.The main characteristic of the fluid-solid coupling method in ALE algorithm is the model of structure and fluid which allows overlapping of the grid when building up and meshing the model(see Fig.1).The finite element meshes of the structure and fluid were constructed independently.ALE algorithm was used to perform the numerical simulation of fluid-solid coupling in this study①.

    The interfacial contact between different moving objects was achieved by defining the possible contact surface,contact type and contact parameters.In the process of calculation,the contact interface was guaranteed not to be penetrated.As a result of soil-pile interaction,non-slip condition was not enforced and the friction induced due to relative movement of the objects moving on the contact surface was taken into account②.

    Notes:①Fluid-solid coupling was achieved by using the key word*CONSTRAINED_LAGRANGE_N_SOLID in the LS-DYNA program;

    Fig.1 ALE algorithm in LS-DYNA

    ②Soil-pile coupling was done by using the key word*CONTACT_ERODING_SURFACE_TO_SURFACE in the LS-DYNA program.

    2 Analysis of three-dimensional(3D)finite element model

    The 3D finite element model of a jacket platform contained the following parameters:the height of platform was 68 m,and the platform was located in a 30 m-deep sea.The mass of three decks from bottom to top was 93 tons,2 670 tons and 1 231 tons,respectively.The length of pile above soil surface was 30 m;the length of pile embedded in the soil was 25 m.The dimension of the section for the piles was Ф 1 333×20 mm;the dimension of the stay bars was Ф 800×10 mm.The living quarters,piles and stay bars were modeled using shell element.Two finite element models were used to analyze the velocity and acceleration at the top of the platform.Model 1 was a 3D model considering the actual physics of Structure-Pile-Fluid-Soil interactions(see Fig.2).Model 2 was a 3D model with attached-water and equivalent-pile effect(see Fig.3).

    Fig.2 Model 1(Structure-Pile-Fluid-Soil interaction)

    Fig.3 Model 2(attached water and equivalent pile)

    In Model 1,the soil and fluid were modeled using solid element.Non-reflection domain boundary condition was applied to simulate infinite space.The bottom of piled foundation was simply supported.In Model 2,the equivalent-pile model was embedded by 6-times the pile diameter(according to the rule of China Classification Society).The mass of fluid was incorporated on the structure as added mass on the vibrating structure.

    Fig.4 shows the time history of seismic wave.Node 2231 refers to the top of jacket structure as shown in Fig.2 and Fig.3.Figs.5-8 show the comparison results at node 2231 when L/D=4.5 and 8.5,respectively,where L is the pile spacing and D is the pile diameter.The results of response extremum are tabulated in Tab.1 to Tab.4.

    Fig.4 Acceleration of seismic excitation

    Fig.5 Comparison of velocity at node 2231when L/D=4.5

    Fig.6 Comparison of acceleration at node 2231 when L/D=4.5

    Tab.1 Comparison for extremum value of velocity at node 2231 when L/D=4.5

    Tab.2 Comparison for extremum value of acceleration at node 2231 when L/D=4.5

    Tab.3 Comparison for extremum value of velocity at node 2231 when L/D=8.5

    Tab.4 Comparison for extremum value of acceleration at node 2231 when L/D=8.5

    Fig.7 Comparison of velocity at node 2231 when L/D=8.5

    Fig.8 Comparison of acceleration at node 2231 when L/D=8.5

    Model 1 reflects the actual physics of the structure-pile-fluid-soil interactions with the dynamic response well damped and modulated.Model 2 produces large magnitude responses.These behaviors are shown clearly by comparing the responses of the two models.Model 1 with Structure-Pile-Fluid-Soil interaction tends to modify the time-history of velocity and acceleration.This is due to the presence of stiff pile elements in the soil damping the dynamic properties of the whole system.The maximum velocity and acceleration of Model 1 are lower than those of Model 2.It should be noted that although the velocity and acceleration are increased due to Structure-Pile-Fluid-Soil interaction,the largest velocity and acceleration are smaller.When L/D is increased from 4.5 to 8.5,the largest amplitude of velocity is reduced by nearly 30%and the largest amplitude of acceleration is reduced by more than 20%.It could be concluded that increasing L/D leads to reduction in the magnitude of the structural response.

    One may conclude that the equivalent-pile model with attached water greatly simplifies the computational complexity and improves the computational efficiency at the expense of the accuracy of the dynamic response which may lead to unduly conservative engineering design of the platform.

    3 Proposed frequency modification for equivalent pile model

    With the wide-spread use of the finite element software,the emphasis has been set on full-physics 3D modeling of structures.Ideally the more comprehensive and more inclusive the models are,the more accurate are the simulation results.However,these comprehensive models are not readily adopted in engineering practice during the preliminary design stage.This is especially so for a jacket platform which poses a complex Structure-Pile-Fluid-Soil system.It is very complicated and time consuming to study its dynamic characteristics as a whole.A simpler and equivalent modeling approach with less computation resources is needed to establish the seismic response relatively quickly and economically.By comparing the frequency result of the 3D analysis of Model 1 and Model 2,one could note the frequency of the full-physics model(Model 1)and modify the equivalent model(Model 2)to achieve similar response through the use of a modified coefficient relation curve which is described herein.

    The coefficient relation curve is typically established based on a simpler platform which could easily be visualized as a structure with the bulk of the mass lumped to the floor deck.In this study,the two models shown in Fig.2 and Fig.3 in Chap.2 are still adopted here.Fig.9 shows the arrangement of platform legs.The response frequencies were computed for various ratio of pile spacing to pile diameter(L/D)ranging from 4.5,5.5,6.5,7.5 to 8.5 where D=1.3 m,1.5 m and 1.7 m,respectively.The coefficient relationship is defined as φi=fi/fˉi,where fiis the frequency response from the 3D model which included the full physics of the Structure-Pile-Fluid-Soil interaction,and fˉiis the frequency response from the simplified equivalent pile model;i is the order of vibration.The authors found that the coefficient correlates best with L1.25/D2.The first order of modified coefficient φ1relation curve is shown in Fig.10.

    Fig.9 Arrangement of piles

    Fig.10 Modified coefficient relation curve

    4 Conclusions

    The following conclusions can be achieved by the numerical computation and comparison.

    (1)The equivalent-pile model with attached water greatly simplifies the tedious calculation for dynamic response of offshore platforms and increases the calculation efficiency although the calculation results are a little bit rough.The equivalent calculation method is very convenient in engineering practice,especially in the preliminary design stage of offshore platforms.

    (2)The natural period will become larger,and the vibration velocity and acceleration will change smaller after considering the Structure-Pile-Fluid-Soil interactions.In the dynamic response analysis of an offshore platform,the actual working state can be truly reflected so that the structural design can be more economical and reasonable by means of considering the Structure-Pile-Fluid-Soil interaction.

    (3)Despite the advised models and computational method in large amount of literatures,the current engineering practice still prefers simplified structural calculation model and method in which a reasonable degree of precisions could be achieved.The modified coefficient relation curve proposed in the paper can be used to compute the vibration characteristic of an offshore platform effectively.Using the simplified equivalent pile model to compute the frequency of offshore platforms and amending the frequency result in association with the modified coefficient relation curve,the natural frequency after considering the Structure-Pile-Fluid-Soil interaction will be obtained.The computing time will be saved and the precision of results will be improved.

    (4)In the analysis of various geometric nonlinear,material nonlinear and contact nonlinear problems,the size of grid has a certain impact on the computational time and result accuracy.Although the result will be closer to the real situation through refining mesh,it also increases the computing time significantly.Therefore,it is practical and economic to choose a reasonable mesh size by which the accuracy of result can be guaranteed and the computing time can be saved at same time.

    Acknowledgements

    This work is supported by the Fundamental Research Funds for the Central Universities.

    [1]Dedi N.Analysis of grouted connection in monopile wind turbine foundations[M].LAP LAMBERT Academic publishing,2009.

    [2]Gazetas G.Formulas and charts for impedances of surface and embedded foundations[J].Journal of Geotechnical Engineering,1991,117:1363-1381.

    [3]Han Y C,Cathro D.Seismic behaviour of tall building supported on pile foundations.Seismic analysis and design for soilpile-structure interaction[J].Geotechnical Special publications,ASCE,1997(70):36-51.

    [4]Wu S M,Gan G.Dynamic soil-structure interaction for high-rise buildings[J].Developments in Geotechnical Engineering,1998,83:203-216.

    [5]Inaba T,Dohi H,Okuta K,Sato T,Akagi H.Nonlinear response of surface soil and NTT building due to soil-structure interaction during the 1995 Hyogo-ken Nanbu(Kobe)earthquake[J].Soil Dynamics and Earthquake Engineering,2000,20(5):289-300.

    [6]Hokmabadi A S,Fakher A,Fatahi B.Seismic strain wedge model for analysis of single piles under lateral seismic loading[J].Australian Geomechanics,2011,46:31-41.

    [7]Carbonari S,Dezi F,Leoni G.Linear soil-structure interaction of coupled wall-frame structures on pile foundations[J].Soil Dynamics and Earthquake Engineering,2011,31:1296-1309.

    [8]Mardfekri M,Gardoni P,Roesset J M.Modeling laterally loaded single piles accounting for nonlinear soil-pile interactions[J].Journal of Engineering,2013(5):29-38.

    [9]Cyrus M,Yazdi S R S,Javid A H.Utilization of endurance time method for seismic analysis of offshore structures[C]//The Fifth Iranian National Offshore Industry(OIC2013).Sharif University-Tehran,Iran,2012.

    [10]Tabeshpour M R.Conceptual interpretation(Chapter 2).2800 seismic building design regulation(In Farsi)[M].Ebrahimian H,2006.

    [11]Wang Z,Jiang S C,Zhang J.Structural performance of prestressed grouted pile-to-sleeve performance connection[J].Progress in Steel Building Structures,2010,14:304-311.

    [12]Zhou B,Han X S,Tan S.A simplified computational method for random seismic responses of a jacket platform[J].Ocean Engineering,2014,82:85-90.

    [13]Zhou B,Guo W,Han X S,Tan S.Random seismic response analysis of jacket structure with Timoshenko’s beam theory[J].Ships and Offshore Structures,2016,11(4):438-444.

    [14]Shi D Y,Li Y C,Zhang S M.The analysis method and engineering examples of ANSYS/LS-DYNA(In Chinese)[M].Beijing:Qinghua University Press,2005.

    [15]Bai J Z.Theoretical basis and example analysis of LS-DYNA3D(In Chinese)[M].Beijing:Science Press,2005.

    中国美女看黄片| 91成人精品电影| 纯流量卡能插随身wifi吗| 国产一区二区三区视频了| 国产成人欧美| 免费看a级黄色片| 搡老岳熟女国产| 国产主播在线观看一区二区| 亚洲久久久国产精品| 老司机影院毛片| 男女免费视频国产| 免费看十八禁软件| 国产麻豆69| 女人被狂操c到高潮| 国产精品久久电影中文字幕 | svipshipincom国产片| 国产精品一区二区在线不卡| 欧洲精品卡2卡3卡4卡5卡区| 成年女人毛片免费观看观看9 | 午夜精品在线福利| 亚洲av日韩精品久久久久久密| 热re99久久精品国产66热6| 国产成人精品久久二区二区免费| 国产成人欧美在线观看 | 丝袜人妻中文字幕| 亚洲精品国产区一区二| 男人的好看免费观看在线视频 | 精品少妇久久久久久888优播| 91在线观看av| 黄色成人免费大全| 亚洲国产精品sss在线观看 | 久久精品亚洲熟妇少妇任你| 男人舔女人的私密视频| 国产精品久久久人人做人人爽| 黄色视频不卡| 法律面前人人平等表现在哪些方面| 欧美日韩一级在线毛片| 中文字幕制服av| 亚洲国产精品sss在线观看 | 制服诱惑二区| 国产成人欧美在线观看 | 免费黄频网站在线观看国产| 18禁观看日本| 午夜福利欧美成人| 欧美激情极品国产一区二区三区| 一级片免费观看大全| 国产精品久久久久久人妻精品电影| 亚洲精品在线观看二区| 老司机影院毛片| 国产免费男女视频| 一区二区三区激情视频| 久久香蕉精品热| 亚洲国产欧美日韩在线播放| 免费少妇av软件| 在线免费观看的www视频| 90打野战视频偷拍视频| 欧美精品一区二区免费开放| 国产精品久久电影中文字幕 | 国精品久久久久久国模美| 欧美国产精品va在线观看不卡| 欧美日韩黄片免| 日韩成人在线观看一区二区三区| 成年人免费黄色播放视频| 高清黄色对白视频在线免费看| 久久九九热精品免费| 免费在线观看亚洲国产| 国产日韩一区二区三区精品不卡| 欧美人与性动交α欧美软件| 欧美 亚洲 国产 日韩一| 精品国产超薄肉色丝袜足j| av天堂在线播放| 国产精品秋霞免费鲁丝片| aaaaa片日本免费| 久久久久久久久免费视频了| 9热在线视频观看99| 999久久久精品免费观看国产| 午夜影院日韩av| 国产精品免费一区二区三区在线 | 久久这里只有精品19| 成人三级做爰电影| 国产人伦9x9x在线观看| 亚洲精品一卡2卡三卡4卡5卡| 午夜精品国产一区二区电影| 欧美老熟妇乱子伦牲交| 免费观看人在逋| 国产av又大| 国产精品秋霞免费鲁丝片| 国产片内射在线| 女人爽到高潮嗷嗷叫在线视频| 激情视频va一区二区三区| 亚洲五月色婷婷综合| 国产深夜福利视频在线观看| 美女高潮到喷水免费观看| 亚洲精华国产精华精| 黄色片一级片一级黄色片| 国内久久婷婷六月综合欲色啪| 9191精品国产免费久久| 黄网站色视频无遮挡免费观看| 美女福利国产在线| 王馨瑶露胸无遮挡在线观看| 欧美日韩亚洲高清精品| 人妻 亚洲 视频| 日韩欧美一区视频在线观看| 丝袜美腿诱惑在线| 精品久久久久久电影网| 美女福利国产在线| 悠悠久久av| 精品一区二区三卡| 亚洲av第一区精品v没综合| bbb黄色大片| 午夜成年电影在线免费观看| 国产免费男女视频| 免费黄频网站在线观看国产| 国内毛片毛片毛片毛片毛片| 精品无人区乱码1区二区| 9色porny在线观看| 侵犯人妻中文字幕一二三四区| a级毛片黄视频| 婷婷成人精品国产| 亚洲熟妇熟女久久| 国产欧美日韩一区二区精品| av一本久久久久| 日日夜夜操网爽| 女同久久另类99精品国产91| 亚洲美女黄片视频| 成在线人永久免费视频| 亚洲人成电影观看| 免费在线观看亚洲国产| 国产亚洲精品一区二区www | 成在线人永久免费视频| 久久午夜亚洲精品久久| 91大片在线观看| 亚洲va日本ⅴa欧美va伊人久久| 欧美性长视频在线观看| 久久久国产欧美日韩av| 欧美激情高清一区二区三区| 在线观看日韩欧美| 人人澡人人妻人| 侵犯人妻中文字幕一二三四区| 亚洲国产精品sss在线观看 | 一本大道久久a久久精品| 婷婷成人精品国产| 免费在线观看完整版高清| 亚洲视频免费观看视频| 高清黄色对白视频在线免费看| 精品国产一区二区久久| 天天躁日日躁夜夜躁夜夜| 成人av一区二区三区在线看| 国产一区二区三区综合在线观看| 成人手机av| 可以免费在线观看a视频的电影网站| 91老司机精品| 建设人人有责人人尽责人人享有的| 精品一区二区三区视频在线观看免费 | 涩涩av久久男人的天堂| 9191精品国产免费久久| 亚洲av片天天在线观看| 日本五十路高清| 天堂动漫精品| 成人手机av| 国产高清国产精品国产三级| 亚洲午夜精品一区,二区,三区| 十八禁高潮呻吟视频| 天堂动漫精品| 国产色视频综合| 一进一出抽搐动态| 国产激情欧美一区二区| 亚洲精品国产区一区二| 一进一出好大好爽视频| a级毛片在线看网站| 99热网站在线观看| 亚洲精品av麻豆狂野| 女同久久另类99精品国产91| 国产一区在线观看成人免费| 亚洲av第一区精品v没综合| 两人在一起打扑克的视频| 91精品国产国语对白视频| 国产精品亚洲一级av第二区| 亚洲精品久久成人aⅴ小说| 99国产综合亚洲精品| 母亲3免费完整高清在线观看| 中文字幕色久视频| 老司机深夜福利视频在线观看| 黑人巨大精品欧美一区二区mp4| 悠悠久久av| 高清视频免费观看一区二区| 波多野结衣一区麻豆| www.熟女人妻精品国产| 国产亚洲精品久久久久久毛片 | 国产一区二区激情短视频| 久久精品91无色码中文字幕| 成年人黄色毛片网站| 亚洲欧洲精品一区二区精品久久久| 757午夜福利合集在线观看| av中文乱码字幕在线| 欧美日本中文国产一区发布| 中文欧美无线码| svipshipincom国产片| 国产精品国产高清国产av | 国产精品 国内视频| 日韩有码中文字幕| 啦啦啦在线免费观看视频4| 国产一区二区三区视频了| 人人妻,人人澡人人爽秒播| 国产欧美日韩精品亚洲av| 亚洲成人国产一区在线观看| 中文字幕人妻丝袜制服| 国产免费现黄频在线看| 亚洲精品中文字幕一二三四区| 国产97色在线日韩免费| 老司机亚洲免费影院| 欧美在线黄色| 国产av精品麻豆| 久9热在线精品视频| 精品午夜福利视频在线观看一区| 国产精品乱码一区二三区的特点 | 丝瓜视频免费看黄片| 欧美黑人欧美精品刺激| 中文欧美无线码| 一级毛片女人18水好多| 亚洲成人免费电影在线观看| av视频免费观看在线观看| 高清毛片免费观看视频网站 | 欧美成狂野欧美在线观看| 亚洲成人手机| tube8黄色片| 亚洲性夜色夜夜综合| 亚洲欧美激情综合另类| 欧美人与性动交α欧美软件| 久久精品国产亚洲av香蕉五月 | 看黄色毛片网站| 亚洲欧美一区二区三区久久| av一本久久久久| 中国美女看黄片| 久久久久久亚洲精品国产蜜桃av| 国产成人av教育| 亚洲色图 男人天堂 中文字幕| 91麻豆av在线| 大片电影免费在线观看免费| 国产人伦9x9x在线观看| 国产成+人综合+亚洲专区| 国内久久婷婷六月综合欲色啪| 熟女少妇亚洲综合色aaa.| 波多野结衣一区麻豆| 久9热在线精品视频| 精品熟女少妇八av免费久了| 三级毛片av免费| 成人18禁在线播放| 久久午夜综合久久蜜桃| 欧美日韩国产mv在线观看视频| 在线观看www视频免费| 日韩三级视频一区二区三区| 久久ye,这里只有精品| 亚洲精品在线观看二区| 国产欧美日韩综合在线一区二区| 成人特级黄色片久久久久久久| 国产精品一区二区在线观看99| 成人三级做爰电影| 国产无遮挡羞羞视频在线观看| 亚洲av成人av| 操出白浆在线播放| 丝袜美足系列| 国产主播在线观看一区二区| 国产欧美日韩一区二区精品| 91精品国产国语对白视频| 亚洲精品一二三| 久久久久久久久久久久大奶| 视频区图区小说| 91麻豆av在线| 久久久精品免费免费高清| avwww免费| 国产主播在线观看一区二区| 日韩大码丰满熟妇| 久久久久久久久久久久大奶| 欧美性长视频在线观看| 一区福利在线观看| 在线观看免费日韩欧美大片| 精品久久久精品久久久| 国产淫语在线视频| 极品教师在线免费播放| 制服人妻中文乱码| 精品亚洲成国产av| 夜夜爽天天搞| 国产日韩一区二区三区精品不卡| 韩国精品一区二区三区| 日本a在线网址| 久久这里只有精品19| 亚洲va日本ⅴa欧美va伊人久久| 久久香蕉国产精品| 久久久国产成人精品二区 | 亚洲成人手机| 亚洲全国av大片| 午夜福利在线观看吧| 午夜日韩欧美国产| 欧美av亚洲av综合av国产av| 男人的好看免费观看在线视频 | 男女高潮啪啪啪动态图| 精品国产超薄肉色丝袜足j| 成人免费观看视频高清| 成人三级做爰电影| 韩国av一区二区三区四区| 超碰97精品在线观看| 在线天堂中文资源库| svipshipincom国产片| 自线自在国产av| 999久久久国产精品视频| 国产高清激情床上av| 国产精华一区二区三区| 午夜91福利影院| 免费在线观看影片大全网站| 18禁美女被吸乳视频| 男女高潮啪啪啪动态图| 人人妻,人人澡人人爽秒播| 99精国产麻豆久久婷婷| 黄片大片在线免费观看| 久久久久视频综合| 欧美国产精品va在线观看不卡| 国产91精品成人一区二区三区| 免费观看a级毛片全部| 中出人妻视频一区二区| av电影中文网址| 波多野结衣av一区二区av| 黄色片一级片一级黄色片| 欧美精品啪啪一区二区三区| 久久久水蜜桃国产精品网| 成熟少妇高潮喷水视频| 妹子高潮喷水视频| 亚洲av成人av| 国产精品久久电影中文字幕 | 国产野战对白在线观看| 又大又爽又粗| 一区二区三区国产精品乱码| 美女午夜性视频免费| 最新在线观看一区二区三区| 日韩中文字幕欧美一区二区| 国产有黄有色有爽视频| 国内久久婷婷六月综合欲色啪| 嫩草影视91久久| 亚洲欧美一区二区三区黑人| 伦理电影免费视频| 黑人巨大精品欧美一区二区蜜桃| 国产精品久久视频播放| 搡老熟女国产l中国老女人| 老司机靠b影院| 日韩视频一区二区在线观看| 亚洲国产欧美网| 欧美黑人精品巨大| 免费不卡黄色视频| 亚洲综合色网址| 国产99白浆流出| 叶爱在线成人免费视频播放| 精品第一国产精品| 无遮挡黄片免费观看| 精品久久久久久久毛片微露脸| 亚洲人成电影观看| 精品亚洲成国产av| 女人高潮潮喷娇喘18禁视频| 80岁老熟妇乱子伦牲交| 久久精品成人免费网站| 国产日韩一区二区三区精品不卡| www日本在线高清视频| 国产高清视频在线播放一区| 在线永久观看黄色视频| 18禁美女被吸乳视频| 操美女的视频在线观看| 久久青草综合色| 国产乱人伦免费视频| 亚洲国产精品sss在线观看 | 亚洲全国av大片| 国产精品免费一区二区三区在线 | 亚洲伊人色综图| 少妇被粗大的猛进出69影院| 捣出白浆h1v1| 51午夜福利影视在线观看| 亚洲一区高清亚洲精品| 欧美激情久久久久久爽电影 | 可以免费在线观看a视频的电影网站| 午夜免费成人在线视频| av线在线观看网站| 精品一区二区三卡| 久久中文看片网| 久久精品91无色码中文字幕| 日本撒尿小便嘘嘘汇集6| 久久国产亚洲av麻豆专区| 午夜两性在线视频| 激情在线观看视频在线高清 | 天天躁日日躁夜夜躁夜夜| 午夜视频精品福利| 极品少妇高潮喷水抽搐| 成年人免费黄色播放视频| 成人黄色视频免费在线看| 国产精品久久电影中文字幕 | 国产精品美女特级片免费视频播放器 | 久久久久精品人妻al黑| 国产欧美日韩精品亚洲av| 免费女性裸体啪啪无遮挡网站| 欧美乱妇无乱码| 50天的宝宝边吃奶边哭怎么回事| 欧美乱色亚洲激情| 日本黄色视频三级网站网址 | 国产亚洲欧美在线一区二区| www.熟女人妻精品国产| 免费一级毛片在线播放高清视频 | 亚洲成国产人片在线观看| 国产亚洲av高清不卡| 亚洲熟妇熟女久久| 国产激情久久老熟女| 国产99白浆流出| а√天堂www在线а√下载 | 一区福利在线观看| 欧美人与性动交α欧美精品济南到| 下体分泌物呈黄色| 亚洲精品国产精品久久久不卡| 精品欧美一区二区三区在线| 不卡一级毛片| 亚洲av熟女| xxxhd国产人妻xxx| av欧美777| 免费在线观看黄色视频的| 亚洲专区字幕在线| 国产不卡一卡二| 在线观看免费午夜福利视频| 久久久久国产精品人妻aⅴ院 | 日韩欧美在线二视频 | 一边摸一边抽搐一进一小说 | 捣出白浆h1v1| 自拍欧美九色日韩亚洲蝌蚪91| 精品少妇一区二区三区视频日本电影| 亚洲精品粉嫩美女一区| 久久久国产一区二区| 女人被躁到高潮嗷嗷叫费观| 天天添夜夜摸| 午夜成年电影在线免费观看| 国产深夜福利视频在线观看| 久久99一区二区三区| 成人精品一区二区免费| 国产免费av片在线观看野外av| 很黄的视频免费| 女同久久另类99精品国产91| 免费高清在线观看日韩| 精品久久蜜臀av无| 亚洲精品一卡2卡三卡4卡5卡| 天堂动漫精品| 亚洲精品国产一区二区精华液| 一进一出抽搐gif免费好疼 | 天天添夜夜摸| xxx96com| 欧美精品高潮呻吟av久久| 美女扒开内裤让男人捅视频| 日日夜夜操网爽| 国产一区有黄有色的免费视频| 国产精品久久视频播放| 国产成人免费无遮挡视频| www.自偷自拍.com| 国产精品av久久久久免费| 18禁裸乳无遮挡动漫免费视频| 欧美日韩瑟瑟在线播放| 亚洲精品久久成人aⅴ小说| 午夜福利在线观看吧| 91精品国产国语对白视频| 午夜免费成人在线视频| 欧美激情高清一区二区三区| 精品第一国产精品| 国产精品综合久久久久久久免费 | 在线观看免费日韩欧美大片| 成人精品一区二区免费| 一区二区日韩欧美中文字幕| 国产精华一区二区三区| 超碰成人久久| 十八禁网站免费在线| 成年女人毛片免费观看观看9 | 美女午夜性视频免费| 成年人黄色毛片网站| 欧美乱色亚洲激情| 久久久久精品人妻al黑| 亚洲精品国产一区二区精华液| 纯流量卡能插随身wifi吗| 狠狠狠狠99中文字幕| xxxhd国产人妻xxx| 亚洲国产看品久久| 两性夫妻黄色片| 亚洲国产精品合色在线| 亚洲久久久国产精品| 国产成人欧美在线观看 | 香蕉丝袜av| 精品国产乱子伦一区二区三区| 国产精品久久久av美女十八| 在线观看午夜福利视频| 好看av亚洲va欧美ⅴa在| 欧美黄色片欧美黄色片| 成年女人毛片免费观看观看9 | av欧美777| 18禁黄网站禁片午夜丰满| 亚洲欧美日韩另类电影网站| 极品教师在线免费播放| 久久热在线av| 村上凉子中文字幕在线| av福利片在线| 一级a爱视频在线免费观看| 亚洲精品粉嫩美女一区| 国产男女内射视频| 女人被躁到高潮嗷嗷叫费观| 精品免费久久久久久久清纯 | 三上悠亚av全集在线观看| 成在线人永久免费视频| 多毛熟女@视频| 国产极品粉嫩免费观看在线| 欧美日韩瑟瑟在线播放| 两个人免费观看高清视频| 99久久国产精品久久久| 亚洲精品成人av观看孕妇| 日韩三级视频一区二区三区| 国内久久婷婷六月综合欲色啪| 亚洲 国产 在线| 午夜福利在线观看吧| 国产免费男女视频| 亚洲av成人av| 日韩一卡2卡3卡4卡2021年| 一区二区三区激情视频| 丝袜美腿诱惑在线| 黄色怎么调成土黄色| 两个人免费观看高清视频| 两人在一起打扑克的视频| 婷婷成人精品国产| 久久香蕉国产精品| 国产人伦9x9x在线观看| 999久久久国产精品视频| 国产精品久久视频播放| 亚洲欧美一区二区三区久久| 亚洲第一青青草原| 国产单亲对白刺激| ponron亚洲| 欧美乱妇无乱码| 97人妻天天添夜夜摸| 亚洲av电影在线进入| 亚洲情色 制服丝袜| 国产真人三级小视频在线观看| 精品无人区乱码1区二区| 国产精品影院久久| 日本vs欧美在线观看视频| 色在线成人网| 很黄的视频免费| 久久久久久久国产电影| 两性夫妻黄色片| 女同久久另类99精品国产91| 亚洲av熟女| 亚洲va日本ⅴa欧美va伊人久久| 精品久久久久久久毛片微露脸| 精品久久久久久久久久免费视频 | 老司机深夜福利视频在线观看| 岛国毛片在线播放| av天堂久久9| av视频免费观看在线观看| www.精华液| 午夜福利欧美成人| e午夜精品久久久久久久| 亚洲专区中文字幕在线| 一级作爱视频免费观看| 97人妻天天添夜夜摸| 天堂中文最新版在线下载| 天天躁日日躁夜夜躁夜夜| 国产精品一区二区在线观看99| 国产激情欧美一区二区| 99热只有精品国产| 丰满迷人的少妇在线观看| 久久精品aⅴ一区二区三区四区| 十分钟在线观看高清视频www| av线在线观看网站| 制服诱惑二区| 欧美亚洲日本最大视频资源| a在线观看视频网站| 国产精品亚洲一级av第二区| 色精品久久人妻99蜜桃| 欧美日韩精品网址| 老鸭窝网址在线观看| 热99国产精品久久久久久7| 精品国产乱码久久久久久男人| 亚洲av成人一区二区三| 国产精品.久久久| 真人做人爱边吃奶动态| 99在线人妻在线中文字幕 | 国产xxxxx性猛交| 亚洲精品乱久久久久久| 巨乳人妻的诱惑在线观看| 亚洲成a人片在线一区二区| 十八禁高潮呻吟视频| 久久久精品国产亚洲av高清涩受| 每晚都被弄得嗷嗷叫到高潮| 欧美乱妇无乱码| 久久久久久免费高清国产稀缺| 成人手机av| 成人特级黄色片久久久久久久| 交换朋友夫妻互换小说| 国产精品亚洲一级av第二区| 中亚洲国语对白在线视频| 少妇 在线观看| 国产精品 国内视频| 国产亚洲精品久久久久久毛片 | 亚洲专区字幕在线| 国产免费现黄频在线看| 韩国av一区二区三区四区| 成在线人永久免费视频| 免费一级毛片在线播放高清视频 | 国产99久久九九免费精品| 国产亚洲欧美在线一区二区| 美女福利国产在线| 黑丝袜美女国产一区| 国产在视频线精品| 日韩欧美免费精品| 久久精品亚洲精品国产色婷小说| 亚洲精品中文字幕一二三四区| 亚洲自偷自拍图片 自拍| 欧美日韩中文字幕国产精品一区二区三区 | 国产日韩一区二区三区精品不卡| 亚洲久久久国产精品|