• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Hydroelasitic Analysis of the Gravity Cage Subjected to Irregular Waves and Current

    2018-03-28 12:30:16HUKeFUShixiao
    船舶力學(xué) 2018年3期

    HU Ke,FU Shi-xiao

    (1.State Key Laboratory of Ocean Engineering,Shanghai Jiao Tong University,Shanghai 200240,China;2.Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration,Shanghai 200240,China)

    0 Introduction

    The offshore environmental problem is becoming a crucial issue for human society and the development of the nearshore aquaculture industry.Moreover,the demand for more sea foods high in protein is pushing engineers to design cost-effective fish cages that can withstand extreme environmental loads in deeper ocean conditions.Therefore,accurate prediction of a cage’s hydroelastic response has become a key focus in aquaculture engineering.

    Previous investigations into sea loads on gravity net cages normally considered the impact of waves and currents separately.

    First of all,the investigations into the wave loads exerted on the net cages focused on three main aspects:the loads on the net,the loads on the collar and the dynamic response of the fish cage system.

    Concerning wave loads on the net,Lader[1]compared the changes in the wave height and energy before and after the wave passed through the net.Song[2]successfully predicted wave loads of the net by calculating the cubic net cage’s hydrodynamic response based on sinusoidal wave theory and the Morison equation,and he claimed that the relative error between the numerical prediction and test result was under 15%.Ito[3-4]simplified the wave condition intoforms of oscillating flow,under which the hydrodynamic forces on the net with different solidity ratios and pretensioning forces were studied.

    In order to conduct detailed research into the wave loads on the collar,Krassimi[5]calculated the damping coefficient and added mass coefficient for the forced oscillating collar based on the potential flow theory.Kristiansen[6]later conducted a model test in a wave tank with a cylinder fixed on the free surface.He further investigated the nonlinearities in the wave forces on the collar caused by the influence of the free surface.

    To quantify the response of the fish cage,Colbourne[7]conducted an experiment on multiple cages to compare the mooring forces under different kinds of wave loads.Fredriksson[8]and Fredriksson,et al[9-10]carried out a serious of experiments to investigate the mooring line forces and motion of the realistic fish cage.Besides,numerical simulations were also performed,and comparisons between experimental and simulated results indicated good agreements.By using the lumped mass point method and rigid body kinematics theory,Dong[11]and Xu[12]predicted the response of a net cage under irregular wave loads.

    Secondly,in the case with current only(no waves),Aarnses[13]studied the drag force on the net cage,the changes in the cage’s volume and the reduction in current speed by towing a gravity cage model in calm water.Lader[14]conducted an experiment with a full-scale cage to specifically study the relationship between the current speed and cage’s volume.Huang[15]and Zhao[16-17]studied the hydrodynamic response based on the ‘lumped mass point method’.Huang found that the total force of the numerical model was lower than the experimental data when the Reynolds number was lower than the range of 1 400-1 800,while Zhao noticed that the volume of a net cage with diamond grids was larger than that with square grids.Berstad[18]calculated the mooring forces and the volume changes of a net cage by using finite element software(AquaSim).Moe[19]used ABAQUS to analyze the deformation of the net cage in currents with different speeds.Kristiansen[20]estimated the drag force and the volume changes of a net cage by replacing the twine’s drag and lift forces with each plane’s tangential forces and normal forces.The numerical results were in good agreement with the experimental data.

    Based on the previous study,the hydrodynamics of the fish cage under wave or current loads has been researched extensively.Because irregular waves and currents normally co-exist in the real ocean environment,the dynamic response of the gravity net cage under the combined effects of irregular waves and currents needs to be further studied.Besides,because geometric nonlinearity due to net cage’s large deformation under the wave-current loads is evident,research on the full scale model should be conducted.

    In this paper,a full-scale numerical model of a gravity net cage under irregular waves and currents was studied by using FEM.The irregular waves were simulated based on the JONSWAP wave spectrum.On this basis,the dynamic response of the floating collar,the modal contribution from each mode shape to the collar in the combined wave-current flows together and the changes in the mooring-line tension were analyzed.

    1 Basic theory

    1.1 Equations of motion

    When the whole gravity cage is exposed to irregular waves and current,the dynamic equilibrium equations of the structure can be expressed as:

    Both the wave forces fwand the current forces fccan be estimated by the modified Morison equation[21],where the velocity of the current and wave is superposed linearly,as shown in Eq.(3),

    where CMrepresents the inertia coefficient,CM=Cm+1,Cdis the drag coefficient,D is the effective diameter of the beam elements and the truss elements,u and u˙represent velocity and acceleration of water particles in the wave-only condition.U is the current velocity and ρ is the water density.In the dynamic analysis where the motion of the structure must be taken into account,vpand aprepresent the velocity and acceleration of an element forming the structure.In this case,the influence of the mutual interference of the velocity field in the combined wavecurrent condition is not considered,see Lee[22].Based on the equation,the dynamic reponse of the net cage will be studied under wave-current combined condition,and the results will be further compared against those in wave-only condition.

    1.2 Description of irregular waves

    Several linear waves with random phase angles can be combined to generate an irregular wave.

    Firstly,the elevation of water surface in an irregular wave can be written as:

    In the four equations above,An,kn, εnand ωnrepresent the wave amplitude,the wave number,the random phase angle and the circular frequency of the nth regular wave component,repectively.z is the vertical position of a water particle,d is the depth of the water,Sη( )ω is the wave spectrum and Δω denotes the difference between the circular frequencies of the measured components.The irregular wave was formed by choosing appropriate input parameters based on the JONSWAP wave spectrum,moreover,the significant wave height defined as the mean of the one third highest waves (H1/3)and the mean wave period (T1)in this paper were chosen as 3 m and 5 s,respectively.The corresponding wave spectrum is shown in Fig.1.

    Based on the wave spectrum presented above,the time series at point(0,0,0)is shown in Fig.2.

    Fig.1 JONSWAP wave spectrum with different significant wave height

    1.3 Geometric nonlinearity

    According to the small deformation hypothesis,the strain in a certain direction at an arbitrary point can be derived by calculating the first-order partial derivative of the corresponding displacement.Under this hypothesis,the large deflection and rotation of the element can be ignored when formulating the equilibrium.Nevertheless,due to the large deformation experienced by the structure,the geometric nonlinearities in the finite element analysis should be focused on in this study.

    Fig.2 Wave elevation time series at point(0,0,0)

    1.3.1 Strain-displacement relationship

    When geometric nonlinearities are considered,the relationship between the stress and the strain can be expressed as:

    1.3.2 Stress-displacement relationship

    The relationship between the increment of stress and that of strain can be expressed as:

    where[D]is the constitutive matrix for the material.Combining Eqs.(8)-(10)can lead to Eq.(11),

    1.3.3 Equilibrium equation

    Based on the principle of virtual work,the equilibrium equation can be expressed as:

    Eq.(15)is the basis for solving geometric nonlinear problems.In this equation,is a standard linear stiffness matrix,is the initial-stress matrix for nonlinear conditions,andis the initial displacement matrix under large deformation.The three matrices can be expressed as:

    1.4 Modal superposition method

    In order to have an overview of the motion and deformation of the system,it is important to study the global deformation of the floating collar at first.Even though it is impossible to use modal superposition method to predict the nonlinear hydrodynamic response of the floating collar,the method can still be considered as a ‘data post-processing’ procedure.Based on the predicted nonlinear hydroelastic results,the method can be applied to analyze the weight of the participation of each mode at any instant.

    In this method,the hydrodynamic response of the floating collar can be described as a linear superposition of all the possible motion and deformation modes:

    After multiplying both sides of Eq.(21)bythe modal-weight matrix at time t can be rewritten as:

    Therefore,the standard deviation of the modal weight can be derived as follows:

    where T is the total time length and)symbolizes the time-averaged modal weight.

    2 Finite element model descriptions

    Numerical and experimental results in the previous work by Lader[14]and Berstad[18]have shown that the bottom nets normally have a negligible effect on the global dynamic response of fish cages.Therefore,in the finite element model,the bottom net and its knots were excluded.The numerical model of the whole gravity net cage is shown in Fig.3.The numerical model is composed of 4 main parts:the floating collar,containment net,mooring lines and bottom ring.To avoid unwanted friction caused by chains and ropes,the bottom ring is attached to the net directly,see Lader[23].The original solidity of net panel is 0.32.The materials used and their relative properties are also listed in Tab.1.Due to the limitation of the computational capability,the mesh size of the net is generally enlarged in order to reduce the computational time.The validation of the simplified method is shown in the section 3.1.Four points on the floating collar(A,B,C and D),marked as chief indications for the the dynamic response of the floating collar,will be further investigated in Chapter 3.

    Fig.3 The complete fish cage system model

    Tab.1 Properties of fish cage system

    To begin with,the collar and bottom ring were simulated by the beam elements.Considering the non-bending properties of net twines,the truss elements were adopted to simulate the twines.

    The instantaneous buoyancy acting on the collar often makes it difficult to calculate the hydrodynamic forces accurately.Therefore,the ‘Buoyancy Distribution’method,see Li[24],was adopted to solve this problem by replacing the partly immerged floating collar with 11 distributed coupled beams as shown in Fig.4.

    Fig.4 Illustration of the distributed coupled beam section

    The instantaneous buoyancy of the whole section fB_sectionequals the sum of the buoyancy of each immerged beamwhich can be expressed as:

    In order to ensure that the distributed beam sections move and deform simultaneously,the six degrees of freedom for each pair of nearby nodes on the neighbouring beams should satisfy the linear constraints.

    Meanwhile,the mass and bending-stiffness properties of the floating collar and the beams must also be equivalent,as described in the following equations:

    where msectionandE()Isectionare the mass density and the bending stiffness of the section in the floating collar,respectively,while miandE()Iiare the mass density and the bending stiffness of the ith distributed beam.

    Secondly,in the simulation of the mooring lines,four spring elements with 6 000 N/m linear tensional stiffness,were employed.The spring elements were attached horizontally to the floating collar in the xoy plane in Fig.3.

    3 Results and discussions

    ABAQUS/Standard,a software for finite element analysis,was used to simulate the model under the combined effect of current and irregular waves.Both the wave load and the current load were calculated based on the Morison equations,the hydrodynamic coefficients CMand Cdshould be chosen according to the Re and KC numbers.In this paper,the Re number was pretty low and the KC number was very high,hence CMand Cdwere chosen as 2.0 and 1.2,respectively[25].Moreover,the geometrical nonlinearities associated with the nets’large deformation and motion were also taken into account.

    3.1 Validation of the numerical model

    Owing to the large number of meshes in a full-scale net,it is hard to conduct calculations on a model with detailed mesh.Thus,the full-scale model was simplified.The hydrodynamic force,tensile stiffness and mass in the simplified model should be equivalent in the numerical models before and after simplification.This can be described in the following equations:where A and Asectionare the projected area and cross-sectional area of the twine;M is the mass of the net,and E represents the elastic modulus.Moe[19]validated their numerical models by comparing predicted deformation to that of a real model.Similar deformation to that observed by Moe[19]was observed in this model.Moreover,the deformation of the model with detailed mesh agrees well with that of the simplified model.The comparison also indicates that the model with coarse mesh was sufficiently accurate to study the motion and deformation of the gravity cage.The result is shown in Fig.5.

    Fig.5 Validation and verification of the numerical model

    3.2 Modal analysis of floating collar under combined effects of irregular waves and current

    As the modal superposition method mentioned in the section 1.4,the mode shapes of the 1st to the 20th modes of the floating collar calculated by the modal analysis were shown in Fig.6.The modes numbered from 1 to 6 correspond to the six rigid-body-motion modes,while the rest correspond to the flexural deformation modes of the structure.In this analysis,the nonlinearities in the mooring-line are ignored.

    Fig.6 shows that the deformation of the 1st,5th,6th,9th,10th,13th,14th,17th and 18th modes appears in the O-x-y plane,while that of the 2nd,3rd,4th,7th,8th,11th,12th,15th,16th,19th and 20th modes occurs in the O-x-z plane in Fig.3.

    In order to investigate the modal contribution,the numerical model operated in conditions where the current speed was set as 0 m/s,0.5 m/s and 1 m/s,coupled with irregular waves with significant heights set as 0.3 m,1 m and 3 m.Time histories of the modal weight in the horizontal and vertical directions are shown in the figures below(Figs.7-16),and their corresponding standard deviations are depicted in the four following figures(Figs.17-20):

    Analysis of modal weights in the horizontal response revealed that the 5th,6th,9th and 14th modes were the dominant modes.This means that the translational rigid-body-motion modes as well as the in-plane flexural structural-deformation modes dominated the response of the floating collar.However,as the current speed increased,the modal weights of the 5th and 6th modes experienced a steeper increase than the flexural structural-deformation modes,indicating that the current had a stronger influence on the translational rigid-body-motion modes.

    Fig.7 Modal weight(horizontal motion when H1/3=0.3 m,T1=5 s,C=0 m/s)

    Fig.8 Modal weight(vertical motion when H1/3=0.3 m,T1=5 s,C=0 m/s)

    Fig.9 Modal weight(horizontal motion when H1/3=1 m,T1=5 s,C=0 m/s)

    Fig.10 Modal weight(vertical motion when H1/3=1 m,T1=5 s,C=0 m/s)

    Fig.11 Modal weight(horizontal motion when H1/3=3 m,T1=5 s,C=0 m/s)

    Fig.12 Modal weight(vertical motion when H1/3=3 m,T1=5 s,C=0 m/s)

    Fig.13 Modal weight(horizontal motion when H1/3=3 m,T1=5 s,C=0.5 m/s)

    Fig.14 Modal weight(vertical motion when H1/3=3 m,T1=5 s,C=0.5 m/s)

    Fig.15 Modal weight(horizontal motion when H1/3=3 m,T1=5 s,C=1.0 m/s)

    Fig.16 Modal weight(vertical motion when H1/3=3 m,T1=5 s,C=1.0 m/s)

    Fig.17 Standard deviation of the horizontal response of each mode for different significant wave heights

    With regard to the vertical response,the 2nd,3rd,4th and 8th modes participated most actively,as can be observed in Figs.8,10,12,14 and 16.Each modal weight increased with the significant wave height.On the other hand,Figs.12,14,and 16 show that the current had a smaller influence on the modal weight in the vertical direction compared to that in the horizontal direction.

    Fig.18 Standard deviation of the horizontal response of each mode for different current speeds

    Fig.19 Standard deviation of the vertical response of each mode for different significant wave heights

    Fig.20 Standard deviation of the vertical response of each mode for different current speeds

    Besides,the comparison of the horizontal and vertical standard deviations of each mode above shows that much higher modes(flexural structural deformation modes)were excited vertically.The current had a stronger impact on the standard deviation of the 5th and 6th modes in the horizontal direction.In addition,the standard deviation of modal weight increased with significant wave height in both directions,which indicates that higher waves may induce higher order modes.

    From the discussion in this section,it can be seen that compared with the wave-only-condition,the combination of current and wave has a greater influence on the translational rigidbody-motion in the horizontal direction.This indicates that the rigid-body motion of the floating collar should be paid more attention in the design of mooring systems attached to the fish cage in the wave and current combined condition.It has also been suggested that higher wave will arouse more flexible modes,while current contributes little to the flexible modes.

    4 Conclusions

    This paper presents an analysis based on the FEM in predicting the dynamic response of the gravity net cage system under the combined effects of irregular waves and current.The following conclusions are derived:the modal weight in both the horizontal and vertical directions becomes larger as the significant wave height increases,which can be found from the modal analysis of the floating collar under the combination of irregular wave and current.Meanwhile,the modal weight of the rigid-body-motion mode in the horizontal direction grows with the current speed,while the modal weight in the vertical direction is only slightly influenced by the variation of the speed.Moreover,it can be seen from the standard deviation of modal weight that much higher order modes will be excited with significant wave height increased.This indicates that when analyzing the total dynamic response under larger wave height,more attention should be paid on deformation.

    [1]Lader P F,Olsen A,Jensen A,Sveen J K,Fredheim A,Enerhaug B.Experimental investigation of the interaction between waves and net structures-damping mechanism[J].Aquacultural Engineering,2007,37(2):100-114.

    [2] Song W H,Liang Z L,Zhao F F,Huang L Y,Zhu L X.Approximate calculated on waving-force for a square sea-cage hydrodynamics[J].J Zhejiang Ocean Univ.,2003,23:211-220.(in Chinese)

    [3]Ito S,Kinoshita T,Kitazawa D,Bao W,Itakura H,Nishizawa S.Experimental investigation and numerical modeling of hydrodynamic force characteristics of a heaving net[C].ASME,2010.

    [4]Ito S,Kinoshita T,Kitazawa D,Bao W,Itakura H.Experimental investigation and numerical modeling of hydrodynamic force characteristics and deformation of an elastic net[C].ASME,2011.

    [5]Krassimi I,Doynov.A dynamic response model for free floating horizontal cylinders subjected to waves[D].Doctoral dissertation,University of Florida,1998.

    [6]Kristiansen David.Wave induced effects on floaters of aquaculture plants[D].Doctoral dissertation,Dept.of Marine Hydrodynamics,Norwegian Institute of Technology,2012.

    [7]Colbourne D B,Allen J H.Observations on motions and loads in aquaculture cages from full scale and model scale measurements[J].Aquacultural Engineering,2001,24(2):129-148.

    [8]Fredriksson D W.Open ocean fish cage and mooring system dynamics[D].Dept.Mechanical and Ocean Engineering,U-niversity of New Hampshire,2001.

    [9]Fredriksson D W,Swift M R,Irish J D,Tsukrov I,Celikkol B.Fish cage and mooring system dynamics using physical and numerical models with field measurements[J].Aquacultural Engineering,2003,27:117-46.

    [10]Fredriksson D W,DeCewa J,Swift M R,Tsukrov I,Chambers M D,Celikkol B.The design and analysis of a four-cage grid mooring for open ocean aquaculture[J].Aquacultural Engineering,2004,32:77-94.

    [11]Dong G H,Xu T J,Zhao Y P,Li Y C,Gui F K.Numerical simulation of hydrodynamic behavior of gravity cage in irregular waves[J].Aquacultural Engineering,2010,42(2):90-101.

    [12]Xu T J,Dong G H,Zhao Y P,Li Y C,Gui F K.Analysis of hydrodynamic behaviors of gravity net cage in irregular waves[J].Ocean Engineering,2011,38(13):1545-1554.

    [13]Aarsnes J V,Rudi H,L?land G.Current forces on cage,net deflection[C]//Engineering for offshore fish farming.Proceedings of a conference organised by the Institution of Civil Engineers,17-18 October 1990.Glasgow,UK,Thomas Telford,1990:137-152.

    [14]Lader P F,Enerhaug B.Experimental investigation of forces and geometry of a net cage in uniform flow[J].IEEE Journal of Oceanic Engineering,2005,30(1):79-84.

    [15]Huang C C,Tang H J,Liu J Y.Dynamical analysis of net cage structures for marine aquaculture:Numerical simulation and model testing[J].Aquacultural Engineering,2006,35(3):258-270.

    [16]Zhao Y P,Li Y C,Dong G H,Gui F K,Teng B.Numerical simulation of the effects of structure size ratio and mesh type on three-dimensional deformation of the fishing-net gravity cage in current[J].Aquacultural Engineering,2007,36(3):285-301.

    [17]Zhao Y P,Li Y C,Dong G H,Gui F K,Teng B.The numerical simulation of hydrodynamic behaviors of gravity cage in current and waves[J].International Journal of Offshore and Polar Engineering,2009,19(1):97-107.

    [18]Berstad A J,Tronstad H,Sivertsen S A,Leite E.Enhancement of design criteria for fish farm facilities including operations[C].ASME,2005.

    [19]Moe H,Fredheim A,Hopperstad O S.Structural analysis of aquaculture net cages in current[J].Journal of Fluids and Structures,2010,26(3):503-516.

    [20]Kristiansen T,Faltinsen O M.Modelling of current loads on aquaculture net cages[J].Journal of Fluids and Structures,2012,34:218-235.

    [21]Faltinsen O.Sea loads on ships and offshore structures[M].Cambridge,UK:Cambridge University Press,1993.

    [22]Lee C W,Kim Y B,Lee G H,Choe M Y,Lee M K,Koo K Y.Dynamic simulation of a fish cage system subjected to currents and waves[J].Ocean Engineering,2008,35(14):1521-1532.

    [23]Lader P,Kristiansen D,Jensen O,Fredriksson D W.Experimental study on the interaction between the net and the weight system for a gravity type fish farm[C].ASME,2013.

    [24]Li L,Fu S,Xu Y,Wang J,Yang J.Dynamic responses of floating fish cage in waves and current[J].Ocean Engineering,2013,72:297-303.

    [25]Li L,Fu S,Xu Y.Nonlinear hydroelastic analysis of an aquaculture fish cage in irregular waves[J].Marine Structures,2013,34:56-73.

    国产精品久久久久久精品电影小说 | 成人毛片a级毛片在线播放| 天天躁日日操中文字幕| 卡戴珊不雅视频在线播放| 国产亚洲精品久久久com| 精品人妻熟女av久视频| 精品久久久久久久末码| 1024手机看黄色片| 久久精品国产99精品国产亚洲性色| 国产私拍福利视频在线观看| 天堂√8在线中文| 久久综合国产亚洲精品| 亚洲精品粉嫩美女一区| 成人漫画全彩无遮挡| 毛片一级片免费看久久久久| 精品久久久久久久末码| 三级毛片av免费| 九九热线精品视视频播放| 国模一区二区三区四区视频| 日本撒尿小便嘘嘘汇集6| 乱系列少妇在线播放| 国产v大片淫在线免费观看| 男女那种视频在线观看| 精品久久久久久久久久免费视频| 欧美潮喷喷水| 亚洲人成网站在线观看播放| 不卡视频在线观看欧美| 男的添女的下面高潮视频| 欧美+亚洲+日韩+国产| 啦啦啦观看免费观看视频高清| 国内精品久久久久精免费| 国产成人aa在线观看| 久久精品夜色国产| 国产淫片久久久久久久久| 国产一区二区三区在线臀色熟女| 国产精品一二三区在线看| 搡老妇女老女人老熟妇| 九九热线精品视视频播放| 欧美三级亚洲精品| 尾随美女入室| h日本视频在线播放| 中文字幕av成人在线电影| 18禁黄网站禁片免费观看直播| 丰满的人妻完整版| 一级毛片电影观看 | 国产探花在线观看一区二区| 国内精品一区二区在线观看| 精品熟女少妇av免费看| 亚洲人成网站在线播放欧美日韩| 黄色欧美视频在线观看| 床上黄色一级片| 国产亚洲精品久久久久久毛片| 超碰av人人做人人爽久久| 久久精品国产亚洲av天美| 秋霞在线观看毛片| 国产91av在线免费观看| 国产成人精品一,二区 | 国产 一区精品| 菩萨蛮人人尽说江南好唐韦庄 | 久久精品91蜜桃| 97超碰精品成人国产| 久久人人爽人人片av| 99热这里只有精品一区| 国产av麻豆久久久久久久| 黄色配什么色好看| 男女啪啪激烈高潮av片| 男女做爰动态图高潮gif福利片| 五月伊人婷婷丁香| 秋霞在线观看毛片| 在现免费观看毛片| 国产黄色视频一区二区在线观看 | 亚洲精品国产av成人精品| 亚洲av电影不卡..在线观看| 欧美最黄视频在线播放免费| 在线观看免费视频日本深夜| 国产av在哪里看| 长腿黑丝高跟| 日韩欧美精品免费久久| 人妻系列 视频| 免费看日本二区| 天堂影院成人在线观看| 欧美另类亚洲清纯唯美| 一区二区三区四区激情视频 | 久久精品91蜜桃| 国产一区二区三区av在线 | 黄色欧美视频在线观看| 看免费成人av毛片| 国产爱豆传媒在线观看| 国产蜜桃级精品一区二区三区| 男女做爰动态图高潮gif福利片| 在线播放国产精品三级| 久久久久国产网址| 18禁黄网站禁片免费观看直播| 久久久精品94久久精品| 青青草视频在线视频观看| 中文字幕精品亚洲无线码一区| 老师上课跳d突然被开到最大视频| 亚洲欧美成人精品一区二区| 精品熟女少妇av免费看| 亚洲av男天堂| 亚洲五月天丁香| 一级av片app| 亚洲在线自拍视频| 国产黄片美女视频| 日本免费一区二区三区高清不卡| 亚洲一区二区三区色噜噜| 一本久久精品| 国产精品久久视频播放| 99热这里只有是精品在线观看| 性欧美人与动物交配| 搡老妇女老女人老熟妇| 中文字幕av成人在线电影| 欧美日韩综合久久久久久| 国产探花在线观看一区二区| 国产黄色视频一区二区在线观看 | 国产精品av视频在线免费观看| 亚洲欧美成人精品一区二区| 人人妻人人澡人人爽人人夜夜 | 少妇猛男粗大的猛烈进出视频 | 国产成人午夜福利电影在线观看| 在线观看免费视频日本深夜| 日本在线视频免费播放| 性插视频无遮挡在线免费观看| 精品一区二区三区视频在线| 久久久久久久久久久丰满| 亚洲性久久影院| 一进一出抽搐gif免费好疼| 看黄色毛片网站| 黄色一级大片看看| 久久热精品热| 日日干狠狠操夜夜爽| 日本在线视频免费播放| 99久久久亚洲精品蜜臀av| 久久久精品欧美日韩精品| 免费看日本二区| 在线观看66精品国产| 国产成年人精品一区二区| 国产精品美女特级片免费视频播放器| 亚洲无线观看免费| 五月伊人婷婷丁香| 禁无遮挡网站| 人人妻人人看人人澡| 久久国产乱子免费精品| 天天躁日日操中文字幕| 免费观看精品视频网站| 村上凉子中文字幕在线| 性色avwww在线观看| 可以在线观看毛片的网站| 自拍偷自拍亚洲精品老妇| 嫩草影院新地址| 亚洲不卡免费看| 寂寞人妻少妇视频99o| 九九热线精品视视频播放| 晚上一个人看的免费电影| 成人亚洲欧美一区二区av| 99热网站在线观看| 亚洲成人久久爱视频| 麻豆成人av视频| 久久精品久久久久久噜噜老黄 | 中文字幕免费在线视频6| 成年女人看的毛片在线观看| 中国国产av一级| 男人狂女人下面高潮的视频| 成人特级黄色片久久久久久久| 久久精品综合一区二区三区| 九九爱精品视频在线观看| 寂寞人妻少妇视频99o| 我要看日韩黄色一级片| 国产精品蜜桃在线观看 | 欧美一区二区亚洲| 一本精品99久久精品77| 神马国产精品三级电影在线观看| 少妇猛男粗大的猛烈进出视频 | 一个人免费在线观看电影| 精品久久久久久久久久久久久| 一区二区三区高清视频在线| 久久久久久大精品| 国产久久久一区二区三区| 人妻夜夜爽99麻豆av| 偷拍熟女少妇极品色| 人妻久久中文字幕网| 精品熟女少妇av免费看| 国产一区二区三区在线臀色熟女| 国产亚洲精品久久久com| 亚洲av不卡在线观看| 久久99蜜桃精品久久| 欧美精品一区二区大全| 国产一区二区亚洲精品在线观看| 亚洲欧美中文字幕日韩二区| 精品日产1卡2卡| 成年av动漫网址| 高清午夜精品一区二区三区 | 久久热精品热| 日韩成人av中文字幕在线观看| 欧美极品一区二区三区四区| 婷婷精品国产亚洲av| 精品午夜福利在线看| 51国产日韩欧美| 国产日韩欧美在线精品| 一级黄色大片毛片| 国产精品一及| 99久国产av精品国产电影| 国内精品久久久久精免费| 国产精品久久久久久亚洲av鲁大| 亚洲最大成人av| 中文字幕免费在线视频6| av.在线天堂| 久久婷婷人人爽人人干人人爱| 观看美女的网站| 又爽又黄a免费视频| .国产精品久久| 美女国产视频在线观看| 午夜爱爱视频在线播放| 国产精品野战在线观看| 国产高潮美女av| 国产精品日韩av在线免费观看| 久久精品夜色国产| 国产亚洲精品av在线| 亚洲欧美精品专区久久| 69人妻影院| 在线播放国产精品三级| 边亲边吃奶的免费视频| 国产一区二区在线av高清观看| 麻豆精品久久久久久蜜桃| 麻豆成人av视频| 欧美+亚洲+日韩+国产| 久久精品综合一区二区三区| 日韩亚洲欧美综合| 国产色婷婷99| 神马国产精品三级电影在线观看| 两个人视频免费观看高清| 99久久人妻综合| 人体艺术视频欧美日本| 波多野结衣高清作品| 日本欧美国产在线视频| 波多野结衣巨乳人妻| 久久久久久九九精品二区国产| 国产一区二区三区在线臀色熟女| 成熟少妇高潮喷水视频| 在线天堂最新版资源| 变态另类丝袜制服| 日本撒尿小便嘘嘘汇集6| 精品少妇黑人巨大在线播放 | 亚洲精品成人久久久久久| 97热精品久久久久久| 日韩视频在线欧美| 国产av在哪里看| 少妇猛男粗大的猛烈进出视频 | 成人亚洲精品av一区二区| 亚洲电影在线观看av| 国产高清激情床上av| 久久6这里有精品| 老师上课跳d突然被开到最大视频| 全区人妻精品视频| 长腿黑丝高跟| 国产精品一区www在线观看| 女人被狂操c到高潮| 欧美最黄视频在线播放免费| 久久久久久九九精品二区国产| 中文欧美无线码| 搡女人真爽免费视频火全软件| 日韩欧美精品免费久久| 国产综合懂色| 国产老妇女一区| 97在线视频观看| 亚洲高清免费不卡视频| av黄色大香蕉| 精品人妻偷拍中文字幕| 亚洲成人中文字幕在线播放| 又粗又硬又长又爽又黄的视频 | 级片在线观看| 国产极品精品免费视频能看的| 亚洲欧洲日产国产| 久久人人爽人人片av| 日韩,欧美,国产一区二区三区 | 亚洲国产欧洲综合997久久,| 国产精品美女特级片免费视频播放器| 亚洲国产日韩欧美精品在线观看| 亚洲成人精品中文字幕电影| 亚洲五月天丁香| 欧美一级a爱片免费观看看| 欧美+亚洲+日韩+国产| 日本免费a在线| 内地一区二区视频在线| 你懂的网址亚洲精品在线观看 | av视频在线观看入口| 国产成人午夜福利电影在线观看| 少妇的逼好多水| 国产大屁股一区二区在线视频| 国产精品福利在线免费观看| 久久精品夜色国产| 91久久精品电影网| 亚洲五月天丁香| 日韩国内少妇激情av| 亚洲熟妇中文字幕五十中出| 国产av一区在线观看免费| 日韩av不卡免费在线播放| 国产精品久久视频播放| 国产欧美日韩精品一区二区| 亚洲乱码一区二区免费版| 国产精品一及| 日韩av在线大香蕉| 91精品国产九色| 亚洲经典国产精华液单| 少妇丰满av| 国产精品一区www在线观看| 大香蕉久久网| 亚洲av.av天堂| 国产麻豆成人av免费视频| 伊人久久精品亚洲午夜| 日韩欧美三级三区| 日韩 亚洲 欧美在线| 小蜜桃在线观看免费完整版高清| 熟女电影av网| 色哟哟·www| 国产精品久久久久久久久免| 精品熟女少妇av免费看| 成年女人永久免费观看视频| 亚洲久久久久久中文字幕| 中文亚洲av片在线观看爽| 国产一区二区激情短视频| 啦啦啦啦在线视频资源| 成年版毛片免费区| 深夜精品福利| 精品人妻熟女av久视频| 啦啦啦韩国在线观看视频| 日日啪夜夜撸| 亚洲人成网站高清观看| 国产午夜精品论理片| 一区福利在线观看| 亚洲国产色片| av福利片在线观看| 国产精品人妻久久久影院| 亚洲一区高清亚洲精品| 黄色配什么色好看| 亚洲美女视频黄频| 三级毛片av免费| 欧美最新免费一区二区三区| 久久精品综合一区二区三区| 女人被狂操c到高潮| 两性午夜刺激爽爽歪歪视频在线观看| 久久精品人妻少妇| 欧美一区二区国产精品久久精品| 毛片一级片免费看久久久久| 乱码一卡2卡4卡精品| 熟女电影av网| 变态另类丝袜制服| 一边摸一边抽搐一进一小说| 亚洲无线观看免费| 97人妻精品一区二区三区麻豆| 舔av片在线| 成人综合一区亚洲| 久久精品国产自在天天线| 嫩草影院新地址| 免费看日本二区| 国产成人freesex在线| 亚洲国产高清在线一区二区三| 国内精品美女久久久久久| 亚洲国产欧美在线一区| 久久精品久久久久久久性| 欧美日本视频| 深夜a级毛片| av女优亚洲男人天堂| 国产伦一二天堂av在线观看| 国产成人福利小说| 人妻系列 视频| 亚洲一区二区三区色噜噜| 亚洲精品粉嫩美女一区| 亚洲第一电影网av| 亚洲精品自拍成人| 卡戴珊不雅视频在线播放| 免费一级毛片在线播放高清视频| 五月伊人婷婷丁香| 国产片特级美女逼逼视频| 日本熟妇午夜| 国产国拍精品亚洲av在线观看| 国产精品伦人一区二区| 国产成人精品久久久久久| 午夜亚洲福利在线播放| 国产精品电影一区二区三区| 国产精品av视频在线免费观看| 51国产日韩欧美| 在线观看免费视频日本深夜| a级毛片a级免费在线| 在线观看午夜福利视频| 久久久久久久久久久丰满| 欧美日韩在线观看h| 好男人在线观看高清免费视频| 日韩,欧美,国产一区二区三区 | 少妇高潮的动态图| 天堂√8在线中文| 国产69精品久久久久777片| 国产黄片美女视频| 久久精品久久久久久噜噜老黄 | 欧美又色又爽又黄视频| 九九热线精品视视频播放| 久久久国产成人免费| 丝袜喷水一区| 特级一级黄色大片| 亚洲国产欧洲综合997久久,| 欧美丝袜亚洲另类| 成人一区二区视频在线观看| 一级黄色大片毛片| 国产成人91sexporn| 男人和女人高潮做爰伦理| 看免费成人av毛片| 久久久精品欧美日韩精品| 国产高清三级在线| 久久精品久久久久久噜噜老黄 | 久久午夜亚洲精品久久| 久久久久国产网址| 欧美性猛交╳xxx乱大交人| 精品国内亚洲2022精品成人| 搡女人真爽免费视频火全软件| 日韩一区二区三区影片| av天堂中文字幕网| 国产三级中文精品| 国产高清视频在线观看网站| 欧美xxxx性猛交bbbb| 国产午夜福利久久久久久| 日韩成人av中文字幕在线观看| 国内精品久久久久精免费| 26uuu在线亚洲综合色| 午夜爱爱视频在线播放| 全区人妻精品视频| 国产精品野战在线观看| 免费无遮挡裸体视频| 国产真实伦视频高清在线观看| 国内精品宾馆在线| 中文资源天堂在线| avwww免费| 午夜激情欧美在线| 成人毛片60女人毛片免费| 久久精品影院6| 久久6这里有精品| 久久精品国产亚洲av天美| 悠悠久久av| 男女视频在线观看网站免费| 又爽又黄无遮挡网站| 日韩成人伦理影院| 91午夜精品亚洲一区二区三区| 99国产精品一区二区蜜桃av| 在现免费观看毛片| 久久鲁丝午夜福利片| 国产精品精品国产色婷婷| 大又大粗又爽又黄少妇毛片口| 婷婷六月久久综合丁香| 热99re8久久精品国产| 欧美精品一区二区大全| 亚洲精品国产av成人精品| .国产精品久久| 国产高清有码在线观看视频| 欧美日本视频| 国产一区二区激情短视频| 国产在线精品亚洲第一网站| 久久99热这里只有精品18| 中出人妻视频一区二区| 日本与韩国留学比较| 美女 人体艺术 gogo| 国产高潮美女av| 好男人在线观看高清免费视频| 人体艺术视频欧美日本| 男女视频在线观看网站免费| 黄色一级大片看看| а√天堂www在线а√下载| 亚洲国产日韩欧美精品在线观看| 国产一区二区亚洲精品在线观看| 欧美一级a爱片免费观看看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 69av精品久久久久久| 天天一区二区日本电影三级| 日韩成人av中文字幕在线观看| av在线亚洲专区| 淫秽高清视频在线观看| 日韩视频在线欧美| 日日撸夜夜添| 国产久久久一区二区三区| 亚洲欧美日韩无卡精品| 久久精品夜色国产| 日本-黄色视频高清免费观看| 我要看日韩黄色一级片| 联通29元200g的流量卡| 国产精品,欧美在线| 中文字幕免费在线视频6| 不卡一级毛片| 好男人视频免费观看在线| 国产成人午夜福利电影在线观看| 国产高清视频在线观看网站| 亚洲第一电影网av| 五月伊人婷婷丁香| 韩国av在线不卡| 男人舔奶头视频| 免费观看的影片在线观看| 老熟妇乱子伦视频在线观看| 青春草亚洲视频在线观看| 又黄又爽又刺激的免费视频.| 色噜噜av男人的天堂激情| 久久久国产成人精品二区| 神马国产精品三级电影在线观看| 少妇人妻精品综合一区二区 | 国产成人精品婷婷| 亚洲久久久久久中文字幕| 在线观看一区二区三区| 亚洲人成网站在线播| 亚洲欧洲国产日韩| 高清毛片免费看| 久久精品国产亚洲av香蕉五月| 欧美成人精品欧美一级黄| 97人妻精品一区二区三区麻豆| 又爽又黄无遮挡网站| 国产 一区精品| 如何舔出高潮| 精品无人区乱码1区二区| 亚洲激情五月婷婷啪啪| 少妇人妻精品综合一区二区 | 超碰av人人做人人爽久久| 国产伦理片在线播放av一区 | 国产91av在线免费观看| 搡女人真爽免费视频火全软件| 99久久人妻综合| 美女黄网站色视频| 国产色婷婷99| 国产一区二区激情短视频| a级一级毛片免费在线观看| 成人特级av手机在线观看| 麻豆成人av视频| 性色avwww在线观看| 亚洲精品久久久久久婷婷小说 | 麻豆一二三区av精品| 色播亚洲综合网| 日本免费一区二区三区高清不卡| 成年av动漫网址| 国产黄a三级三级三级人| 黄色一级大片看看| 午夜爱爱视频在线播放| avwww免费| 99久久精品一区二区三区| 亚洲aⅴ乱码一区二区在线播放| 12—13女人毛片做爰片一| 成熟少妇高潮喷水视频| 国产精品三级大全| 亚洲av二区三区四区| 亚洲人与动物交配视频| 草草在线视频免费看| 国产探花在线观看一区二区| 欧美在线一区亚洲| 久久精品人妻少妇| 国产乱人偷精品视频| 中国国产av一级| 国产精品久久久久久久电影| 啦啦啦啦在线视频资源| 精品午夜福利在线看| 日本熟妇午夜| 人妻少妇偷人精品九色| 精品国产三级普通话版| 国产成人午夜福利电影在线观看| 日韩高清综合在线| 欧美精品一区二区大全| 亚洲成a人片在线一区二区| 成人三级黄色视频| 久久久精品欧美日韩精品| 国产精品蜜桃在线观看 | www日本黄色视频网| 色尼玛亚洲综合影院| 亚洲精品色激情综合| av专区在线播放| 欧美性猛交╳xxx乱大交人| 国产精品乱码一区二三区的特点| 久久韩国三级中文字幕| 九九在线视频观看精品| 精品欧美国产一区二区三| 在线观看av片永久免费下载| 国产69精品久久久久777片| 色噜噜av男人的天堂激情| 精品人妻一区二区三区麻豆| 国产私拍福利视频在线观看| 日韩视频在线欧美| 激情 狠狠 欧美| 黄色一级大片看看| 男人的好看免费观看在线视频| 一区二区三区高清视频在线| 男插女下体视频免费在线播放| 三级经典国产精品| 一本久久精品| 国产高潮美女av| 精品欧美国产一区二区三| 成人特级黄色片久久久久久久| 精品一区二区三区视频在线| 国产三级中文精品| 欧美成人精品欧美一级黄| 91麻豆精品激情在线观看国产| 精品国内亚洲2022精品成人| 偷拍熟女少妇极品色| 网址你懂的国产日韩在线| 午夜精品在线福利| av天堂在线播放| 久久精品国产亚洲av天美| 久久精品影院6| 久久久久久久久久成人| 一区二区三区免费毛片| 欧美区成人在线视频| 中文字幕精品亚洲无线码一区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 久久精品国产清高在天天线| 欧美激情国产日韩精品一区| 国产精品一区www在线观看| 亚洲av.av天堂| 成人高潮视频无遮挡免费网站| 美女 人体艺术 gogo| 免费av毛片视频| 国产激情偷乱视频一区二区| 天美传媒精品一区二区| 国产成人一区二区在线| 午夜福利在线在线| 久久久久性生活片|