• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Hydroelasitic Analysis of the Gravity Cage Subjected to Irregular Waves and Current

    2018-03-28 12:30:16HUKeFUShixiao
    船舶力學(xué) 2018年3期

    HU Ke,FU Shi-xiao

    (1.State Key Laboratory of Ocean Engineering,Shanghai Jiao Tong University,Shanghai 200240,China;2.Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration,Shanghai 200240,China)

    0 Introduction

    The offshore environmental problem is becoming a crucial issue for human society and the development of the nearshore aquaculture industry.Moreover,the demand for more sea foods high in protein is pushing engineers to design cost-effective fish cages that can withstand extreme environmental loads in deeper ocean conditions.Therefore,accurate prediction of a cage’s hydroelastic response has become a key focus in aquaculture engineering.

    Previous investigations into sea loads on gravity net cages normally considered the impact of waves and currents separately.

    First of all,the investigations into the wave loads exerted on the net cages focused on three main aspects:the loads on the net,the loads on the collar and the dynamic response of the fish cage system.

    Concerning wave loads on the net,Lader[1]compared the changes in the wave height and energy before and after the wave passed through the net.Song[2]successfully predicted wave loads of the net by calculating the cubic net cage’s hydrodynamic response based on sinusoidal wave theory and the Morison equation,and he claimed that the relative error between the numerical prediction and test result was under 15%.Ito[3-4]simplified the wave condition intoforms of oscillating flow,under which the hydrodynamic forces on the net with different solidity ratios and pretensioning forces were studied.

    In order to conduct detailed research into the wave loads on the collar,Krassimi[5]calculated the damping coefficient and added mass coefficient for the forced oscillating collar based on the potential flow theory.Kristiansen[6]later conducted a model test in a wave tank with a cylinder fixed on the free surface.He further investigated the nonlinearities in the wave forces on the collar caused by the influence of the free surface.

    To quantify the response of the fish cage,Colbourne[7]conducted an experiment on multiple cages to compare the mooring forces under different kinds of wave loads.Fredriksson[8]and Fredriksson,et al[9-10]carried out a serious of experiments to investigate the mooring line forces and motion of the realistic fish cage.Besides,numerical simulations were also performed,and comparisons between experimental and simulated results indicated good agreements.By using the lumped mass point method and rigid body kinematics theory,Dong[11]and Xu[12]predicted the response of a net cage under irregular wave loads.

    Secondly,in the case with current only(no waves),Aarnses[13]studied the drag force on the net cage,the changes in the cage’s volume and the reduction in current speed by towing a gravity cage model in calm water.Lader[14]conducted an experiment with a full-scale cage to specifically study the relationship between the current speed and cage’s volume.Huang[15]and Zhao[16-17]studied the hydrodynamic response based on the ‘lumped mass point method’.Huang found that the total force of the numerical model was lower than the experimental data when the Reynolds number was lower than the range of 1 400-1 800,while Zhao noticed that the volume of a net cage with diamond grids was larger than that with square grids.Berstad[18]calculated the mooring forces and the volume changes of a net cage by using finite element software(AquaSim).Moe[19]used ABAQUS to analyze the deformation of the net cage in currents with different speeds.Kristiansen[20]estimated the drag force and the volume changes of a net cage by replacing the twine’s drag and lift forces with each plane’s tangential forces and normal forces.The numerical results were in good agreement with the experimental data.

    Based on the previous study,the hydrodynamics of the fish cage under wave or current loads has been researched extensively.Because irregular waves and currents normally co-exist in the real ocean environment,the dynamic response of the gravity net cage under the combined effects of irregular waves and currents needs to be further studied.Besides,because geometric nonlinearity due to net cage’s large deformation under the wave-current loads is evident,research on the full scale model should be conducted.

    In this paper,a full-scale numerical model of a gravity net cage under irregular waves and currents was studied by using FEM.The irregular waves were simulated based on the JONSWAP wave spectrum.On this basis,the dynamic response of the floating collar,the modal contribution from each mode shape to the collar in the combined wave-current flows together and the changes in the mooring-line tension were analyzed.

    1 Basic theory

    1.1 Equations of motion

    When the whole gravity cage is exposed to irregular waves and current,the dynamic equilibrium equations of the structure can be expressed as:

    Both the wave forces fwand the current forces fccan be estimated by the modified Morison equation[21],where the velocity of the current and wave is superposed linearly,as shown in Eq.(3),

    where CMrepresents the inertia coefficient,CM=Cm+1,Cdis the drag coefficient,D is the effective diameter of the beam elements and the truss elements,u and u˙represent velocity and acceleration of water particles in the wave-only condition.U is the current velocity and ρ is the water density.In the dynamic analysis where the motion of the structure must be taken into account,vpand aprepresent the velocity and acceleration of an element forming the structure.In this case,the influence of the mutual interference of the velocity field in the combined wavecurrent condition is not considered,see Lee[22].Based on the equation,the dynamic reponse of the net cage will be studied under wave-current combined condition,and the results will be further compared against those in wave-only condition.

    1.2 Description of irregular waves

    Several linear waves with random phase angles can be combined to generate an irregular wave.

    Firstly,the elevation of water surface in an irregular wave can be written as:

    In the four equations above,An,kn, εnand ωnrepresent the wave amplitude,the wave number,the random phase angle and the circular frequency of the nth regular wave component,repectively.z is the vertical position of a water particle,d is the depth of the water,Sη( )ω is the wave spectrum and Δω denotes the difference between the circular frequencies of the measured components.The irregular wave was formed by choosing appropriate input parameters based on the JONSWAP wave spectrum,moreover,the significant wave height defined as the mean of the one third highest waves (H1/3)and the mean wave period (T1)in this paper were chosen as 3 m and 5 s,respectively.The corresponding wave spectrum is shown in Fig.1.

    Based on the wave spectrum presented above,the time series at point(0,0,0)is shown in Fig.2.

    Fig.1 JONSWAP wave spectrum with different significant wave height

    1.3 Geometric nonlinearity

    According to the small deformation hypothesis,the strain in a certain direction at an arbitrary point can be derived by calculating the first-order partial derivative of the corresponding displacement.Under this hypothesis,the large deflection and rotation of the element can be ignored when formulating the equilibrium.Nevertheless,due to the large deformation experienced by the structure,the geometric nonlinearities in the finite element analysis should be focused on in this study.

    Fig.2 Wave elevation time series at point(0,0,0)

    1.3.1 Strain-displacement relationship

    When geometric nonlinearities are considered,the relationship between the stress and the strain can be expressed as:

    1.3.2 Stress-displacement relationship

    The relationship between the increment of stress and that of strain can be expressed as:

    where[D]is the constitutive matrix for the material.Combining Eqs.(8)-(10)can lead to Eq.(11),

    1.3.3 Equilibrium equation

    Based on the principle of virtual work,the equilibrium equation can be expressed as:

    Eq.(15)is the basis for solving geometric nonlinear problems.In this equation,is a standard linear stiffness matrix,is the initial-stress matrix for nonlinear conditions,andis the initial displacement matrix under large deformation.The three matrices can be expressed as:

    1.4 Modal superposition method

    In order to have an overview of the motion and deformation of the system,it is important to study the global deformation of the floating collar at first.Even though it is impossible to use modal superposition method to predict the nonlinear hydrodynamic response of the floating collar,the method can still be considered as a ‘data post-processing’ procedure.Based on the predicted nonlinear hydroelastic results,the method can be applied to analyze the weight of the participation of each mode at any instant.

    In this method,the hydrodynamic response of the floating collar can be described as a linear superposition of all the possible motion and deformation modes:

    After multiplying both sides of Eq.(21)bythe modal-weight matrix at time t can be rewritten as:

    Therefore,the standard deviation of the modal weight can be derived as follows:

    where T is the total time length and)symbolizes the time-averaged modal weight.

    2 Finite element model descriptions

    Numerical and experimental results in the previous work by Lader[14]and Berstad[18]have shown that the bottom nets normally have a negligible effect on the global dynamic response of fish cages.Therefore,in the finite element model,the bottom net and its knots were excluded.The numerical model of the whole gravity net cage is shown in Fig.3.The numerical model is composed of 4 main parts:the floating collar,containment net,mooring lines and bottom ring.To avoid unwanted friction caused by chains and ropes,the bottom ring is attached to the net directly,see Lader[23].The original solidity of net panel is 0.32.The materials used and their relative properties are also listed in Tab.1.Due to the limitation of the computational capability,the mesh size of the net is generally enlarged in order to reduce the computational time.The validation of the simplified method is shown in the section 3.1.Four points on the floating collar(A,B,C and D),marked as chief indications for the the dynamic response of the floating collar,will be further investigated in Chapter 3.

    Fig.3 The complete fish cage system model

    Tab.1 Properties of fish cage system

    To begin with,the collar and bottom ring were simulated by the beam elements.Considering the non-bending properties of net twines,the truss elements were adopted to simulate the twines.

    The instantaneous buoyancy acting on the collar often makes it difficult to calculate the hydrodynamic forces accurately.Therefore,the ‘Buoyancy Distribution’method,see Li[24],was adopted to solve this problem by replacing the partly immerged floating collar with 11 distributed coupled beams as shown in Fig.4.

    Fig.4 Illustration of the distributed coupled beam section

    The instantaneous buoyancy of the whole section fB_sectionequals the sum of the buoyancy of each immerged beamwhich can be expressed as:

    In order to ensure that the distributed beam sections move and deform simultaneously,the six degrees of freedom for each pair of nearby nodes on the neighbouring beams should satisfy the linear constraints.

    Meanwhile,the mass and bending-stiffness properties of the floating collar and the beams must also be equivalent,as described in the following equations:

    where msectionandE()Isectionare the mass density and the bending stiffness of the section in the floating collar,respectively,while miandE()Iiare the mass density and the bending stiffness of the ith distributed beam.

    Secondly,in the simulation of the mooring lines,four spring elements with 6 000 N/m linear tensional stiffness,were employed.The spring elements were attached horizontally to the floating collar in the xoy plane in Fig.3.

    3 Results and discussions

    ABAQUS/Standard,a software for finite element analysis,was used to simulate the model under the combined effect of current and irregular waves.Both the wave load and the current load were calculated based on the Morison equations,the hydrodynamic coefficients CMand Cdshould be chosen according to the Re and KC numbers.In this paper,the Re number was pretty low and the KC number was very high,hence CMand Cdwere chosen as 2.0 and 1.2,respectively[25].Moreover,the geometrical nonlinearities associated with the nets’large deformation and motion were also taken into account.

    3.1 Validation of the numerical model

    Owing to the large number of meshes in a full-scale net,it is hard to conduct calculations on a model with detailed mesh.Thus,the full-scale model was simplified.The hydrodynamic force,tensile stiffness and mass in the simplified model should be equivalent in the numerical models before and after simplification.This can be described in the following equations:where A and Asectionare the projected area and cross-sectional area of the twine;M is the mass of the net,and E represents the elastic modulus.Moe[19]validated their numerical models by comparing predicted deformation to that of a real model.Similar deformation to that observed by Moe[19]was observed in this model.Moreover,the deformation of the model with detailed mesh agrees well with that of the simplified model.The comparison also indicates that the model with coarse mesh was sufficiently accurate to study the motion and deformation of the gravity cage.The result is shown in Fig.5.

    Fig.5 Validation and verification of the numerical model

    3.2 Modal analysis of floating collar under combined effects of irregular waves and current

    As the modal superposition method mentioned in the section 1.4,the mode shapes of the 1st to the 20th modes of the floating collar calculated by the modal analysis were shown in Fig.6.The modes numbered from 1 to 6 correspond to the six rigid-body-motion modes,while the rest correspond to the flexural deformation modes of the structure.In this analysis,the nonlinearities in the mooring-line are ignored.

    Fig.6 shows that the deformation of the 1st,5th,6th,9th,10th,13th,14th,17th and 18th modes appears in the O-x-y plane,while that of the 2nd,3rd,4th,7th,8th,11th,12th,15th,16th,19th and 20th modes occurs in the O-x-z plane in Fig.3.

    In order to investigate the modal contribution,the numerical model operated in conditions where the current speed was set as 0 m/s,0.5 m/s and 1 m/s,coupled with irregular waves with significant heights set as 0.3 m,1 m and 3 m.Time histories of the modal weight in the horizontal and vertical directions are shown in the figures below(Figs.7-16),and their corresponding standard deviations are depicted in the four following figures(Figs.17-20):

    Analysis of modal weights in the horizontal response revealed that the 5th,6th,9th and 14th modes were the dominant modes.This means that the translational rigid-body-motion modes as well as the in-plane flexural structural-deformation modes dominated the response of the floating collar.However,as the current speed increased,the modal weights of the 5th and 6th modes experienced a steeper increase than the flexural structural-deformation modes,indicating that the current had a stronger influence on the translational rigid-body-motion modes.

    Fig.7 Modal weight(horizontal motion when H1/3=0.3 m,T1=5 s,C=0 m/s)

    Fig.8 Modal weight(vertical motion when H1/3=0.3 m,T1=5 s,C=0 m/s)

    Fig.9 Modal weight(horizontal motion when H1/3=1 m,T1=5 s,C=0 m/s)

    Fig.10 Modal weight(vertical motion when H1/3=1 m,T1=5 s,C=0 m/s)

    Fig.11 Modal weight(horizontal motion when H1/3=3 m,T1=5 s,C=0 m/s)

    Fig.12 Modal weight(vertical motion when H1/3=3 m,T1=5 s,C=0 m/s)

    Fig.13 Modal weight(horizontal motion when H1/3=3 m,T1=5 s,C=0.5 m/s)

    Fig.14 Modal weight(vertical motion when H1/3=3 m,T1=5 s,C=0.5 m/s)

    Fig.15 Modal weight(horizontal motion when H1/3=3 m,T1=5 s,C=1.0 m/s)

    Fig.16 Modal weight(vertical motion when H1/3=3 m,T1=5 s,C=1.0 m/s)

    Fig.17 Standard deviation of the horizontal response of each mode for different significant wave heights

    With regard to the vertical response,the 2nd,3rd,4th and 8th modes participated most actively,as can be observed in Figs.8,10,12,14 and 16.Each modal weight increased with the significant wave height.On the other hand,Figs.12,14,and 16 show that the current had a smaller influence on the modal weight in the vertical direction compared to that in the horizontal direction.

    Fig.18 Standard deviation of the horizontal response of each mode for different current speeds

    Fig.19 Standard deviation of the vertical response of each mode for different significant wave heights

    Fig.20 Standard deviation of the vertical response of each mode for different current speeds

    Besides,the comparison of the horizontal and vertical standard deviations of each mode above shows that much higher modes(flexural structural deformation modes)were excited vertically.The current had a stronger impact on the standard deviation of the 5th and 6th modes in the horizontal direction.In addition,the standard deviation of modal weight increased with significant wave height in both directions,which indicates that higher waves may induce higher order modes.

    From the discussion in this section,it can be seen that compared with the wave-only-condition,the combination of current and wave has a greater influence on the translational rigidbody-motion in the horizontal direction.This indicates that the rigid-body motion of the floating collar should be paid more attention in the design of mooring systems attached to the fish cage in the wave and current combined condition.It has also been suggested that higher wave will arouse more flexible modes,while current contributes little to the flexible modes.

    4 Conclusions

    This paper presents an analysis based on the FEM in predicting the dynamic response of the gravity net cage system under the combined effects of irregular waves and current.The following conclusions are derived:the modal weight in both the horizontal and vertical directions becomes larger as the significant wave height increases,which can be found from the modal analysis of the floating collar under the combination of irregular wave and current.Meanwhile,the modal weight of the rigid-body-motion mode in the horizontal direction grows with the current speed,while the modal weight in the vertical direction is only slightly influenced by the variation of the speed.Moreover,it can be seen from the standard deviation of modal weight that much higher order modes will be excited with significant wave height increased.This indicates that when analyzing the total dynamic response under larger wave height,more attention should be paid on deformation.

    [1]Lader P F,Olsen A,Jensen A,Sveen J K,Fredheim A,Enerhaug B.Experimental investigation of the interaction between waves and net structures-damping mechanism[J].Aquacultural Engineering,2007,37(2):100-114.

    [2] Song W H,Liang Z L,Zhao F F,Huang L Y,Zhu L X.Approximate calculated on waving-force for a square sea-cage hydrodynamics[J].J Zhejiang Ocean Univ.,2003,23:211-220.(in Chinese)

    [3]Ito S,Kinoshita T,Kitazawa D,Bao W,Itakura H,Nishizawa S.Experimental investigation and numerical modeling of hydrodynamic force characteristics of a heaving net[C].ASME,2010.

    [4]Ito S,Kinoshita T,Kitazawa D,Bao W,Itakura H.Experimental investigation and numerical modeling of hydrodynamic force characteristics and deformation of an elastic net[C].ASME,2011.

    [5]Krassimi I,Doynov.A dynamic response model for free floating horizontal cylinders subjected to waves[D].Doctoral dissertation,University of Florida,1998.

    [6]Kristiansen David.Wave induced effects on floaters of aquaculture plants[D].Doctoral dissertation,Dept.of Marine Hydrodynamics,Norwegian Institute of Technology,2012.

    [7]Colbourne D B,Allen J H.Observations on motions and loads in aquaculture cages from full scale and model scale measurements[J].Aquacultural Engineering,2001,24(2):129-148.

    [8]Fredriksson D W.Open ocean fish cage and mooring system dynamics[D].Dept.Mechanical and Ocean Engineering,U-niversity of New Hampshire,2001.

    [9]Fredriksson D W,Swift M R,Irish J D,Tsukrov I,Celikkol B.Fish cage and mooring system dynamics using physical and numerical models with field measurements[J].Aquacultural Engineering,2003,27:117-46.

    [10]Fredriksson D W,DeCewa J,Swift M R,Tsukrov I,Chambers M D,Celikkol B.The design and analysis of a four-cage grid mooring for open ocean aquaculture[J].Aquacultural Engineering,2004,32:77-94.

    [11]Dong G H,Xu T J,Zhao Y P,Li Y C,Gui F K.Numerical simulation of hydrodynamic behavior of gravity cage in irregular waves[J].Aquacultural Engineering,2010,42(2):90-101.

    [12]Xu T J,Dong G H,Zhao Y P,Li Y C,Gui F K.Analysis of hydrodynamic behaviors of gravity net cage in irregular waves[J].Ocean Engineering,2011,38(13):1545-1554.

    [13]Aarsnes J V,Rudi H,L?land G.Current forces on cage,net deflection[C]//Engineering for offshore fish farming.Proceedings of a conference organised by the Institution of Civil Engineers,17-18 October 1990.Glasgow,UK,Thomas Telford,1990:137-152.

    [14]Lader P F,Enerhaug B.Experimental investigation of forces and geometry of a net cage in uniform flow[J].IEEE Journal of Oceanic Engineering,2005,30(1):79-84.

    [15]Huang C C,Tang H J,Liu J Y.Dynamical analysis of net cage structures for marine aquaculture:Numerical simulation and model testing[J].Aquacultural Engineering,2006,35(3):258-270.

    [16]Zhao Y P,Li Y C,Dong G H,Gui F K,Teng B.Numerical simulation of the effects of structure size ratio and mesh type on three-dimensional deformation of the fishing-net gravity cage in current[J].Aquacultural Engineering,2007,36(3):285-301.

    [17]Zhao Y P,Li Y C,Dong G H,Gui F K,Teng B.The numerical simulation of hydrodynamic behaviors of gravity cage in current and waves[J].International Journal of Offshore and Polar Engineering,2009,19(1):97-107.

    [18]Berstad A J,Tronstad H,Sivertsen S A,Leite E.Enhancement of design criteria for fish farm facilities including operations[C].ASME,2005.

    [19]Moe H,Fredheim A,Hopperstad O S.Structural analysis of aquaculture net cages in current[J].Journal of Fluids and Structures,2010,26(3):503-516.

    [20]Kristiansen T,Faltinsen O M.Modelling of current loads on aquaculture net cages[J].Journal of Fluids and Structures,2012,34:218-235.

    [21]Faltinsen O.Sea loads on ships and offshore structures[M].Cambridge,UK:Cambridge University Press,1993.

    [22]Lee C W,Kim Y B,Lee G H,Choe M Y,Lee M K,Koo K Y.Dynamic simulation of a fish cage system subjected to currents and waves[J].Ocean Engineering,2008,35(14):1521-1532.

    [23]Lader P,Kristiansen D,Jensen O,Fredriksson D W.Experimental study on the interaction between the net and the weight system for a gravity type fish farm[C].ASME,2013.

    [24]Li L,Fu S,Xu Y,Wang J,Yang J.Dynamic responses of floating fish cage in waves and current[J].Ocean Engineering,2013,72:297-303.

    [25]Li L,Fu S,Xu Y.Nonlinear hydroelastic analysis of an aquaculture fish cage in irregular waves[J].Marine Structures,2013,34:56-73.

    一级毛片 在线播放| 少妇被粗大猛烈的视频| 久久天躁狠狠躁夜夜2o2o | 少妇人妻精品综合一区二区| 亚洲精品日本国产第一区| 丰满少妇做爰视频| 亚洲国产精品成人久久小说| 亚洲欧美中文字幕日韩二区| 久久久久网色| 热99国产精品久久久久久7| 精品久久久精品久久久| 老司机在亚洲福利影院| av电影中文网址| 久久精品久久精品一区二区三区| 成人18禁高潮啪啪吃奶动态图| 日本vs欧美在线观看视频| 麻豆av在线久日| 在线观看免费午夜福利视频| 性少妇av在线| 丰满乱子伦码专区| 青春草亚洲视频在线观看| 成人影院久久| 亚洲成国产人片在线观看| 一级毛片 在线播放| 日韩av免费高清视频| 久久热在线av| 毛片一级片免费看久久久久| 青青草视频在线视频观看| 久久久久精品国产欧美久久久 | 免费av中文字幕在线| 久久久久视频综合| 日本av免费视频播放| 亚洲精品,欧美精品| 国产黄频视频在线观看| 亚洲熟女精品中文字幕| 汤姆久久久久久久影院中文字幕| 久久久久久久久久久久大奶| 久久精品人人爽人人爽视色| 日本黄色日本黄色录像| 日韩欧美一区视频在线观看| 黄色 视频免费看| 成年av动漫网址| 久久久国产欧美日韩av| 日韩精品免费视频一区二区三区| 精品亚洲成国产av| 国产精品久久久人人做人人爽| 成人免费观看视频高清| 日韩制服骚丝袜av| 男女国产视频网站| 黑人欧美特级aaaaaa片| 国产99久久九九免费精品| 精品卡一卡二卡四卡免费| 久久人人爽人人片av| 久久精品国产a三级三级三级| 精品人妻在线不人妻| 午夜福利免费观看在线| 一级毛片 在线播放| 亚洲国产精品一区三区| 国产成人免费观看mmmm| 婷婷色麻豆天堂久久| 1024视频免费在线观看| 高清黄色对白视频在线免费看| 十八禁网站网址无遮挡| 新久久久久国产一级毛片| 人妻 亚洲 视频| 19禁男女啪啪无遮挡网站| 天天操日日干夜夜撸| 日韩不卡一区二区三区视频在线| 最近最新中文字幕免费大全7| 欧美中文综合在线视频| 久久青草综合色| 婷婷色综合www| 最近2019中文字幕mv第一页| 激情视频va一区二区三区| 欧美 日韩 精品 国产| 国产乱人偷精品视频| 成年动漫av网址| 亚洲国产精品999| 欧美激情极品国产一区二区三区| 叶爱在线成人免费视频播放| 天堂中文最新版在线下载| 免费av中文字幕在线| 人成视频在线观看免费观看| 男女下面插进去视频免费观看| 国产免费福利视频在线观看| 捣出白浆h1v1| 国产欧美亚洲国产| 美女脱内裤让男人舔精品视频| 19禁男女啪啪无遮挡网站| 大陆偷拍与自拍| 亚洲精品日韩在线中文字幕| a级毛片在线看网站| 亚洲av欧美aⅴ国产| 如日韩欧美国产精品一区二区三区| 操出白浆在线播放| 亚洲国产中文字幕在线视频| av在线播放精品| 99九九在线精品视频| 最近的中文字幕免费完整| 久久人人爽人人片av| 自线自在国产av| 国产午夜精品一二区理论片| 宅男免费午夜| 岛国毛片在线播放| 国产伦人伦偷精品视频| 国产极品天堂在线| 少妇人妻久久综合中文| 一边亲一边摸免费视频| 欧美日韩视频高清一区二区三区二| 啦啦啦视频在线资源免费观看| 啦啦啦在线免费观看视频4| 亚洲精品日本国产第一区| 欧美日韩亚洲高清精品| 国产一区二区激情短视频 | 国产成人啪精品午夜网站| 久久久久久久精品精品| 老司机影院成人| 九九爱精品视频在线观看| 宅男免费午夜| 男女免费视频国产| 肉色欧美久久久久久久蜜桃| 伊人亚洲综合成人网| 久久天躁狠狠躁夜夜2o2o | 欧美精品一区二区大全| 日本一区二区免费在线视频| 操美女的视频在线观看| 成人漫画全彩无遮挡| 亚洲精品国产av成人精品| 日韩一区二区三区影片| 国产免费又黄又爽又色| 黄色一级大片看看| 亚洲国产欧美一区二区综合| 欧美人与性动交α欧美精品济南到| 一区在线观看完整版| 99热网站在线观看| av天堂久久9| 国产成人免费无遮挡视频| a 毛片基地| 国产xxxxx性猛交| 交换朋友夫妻互换小说| 欧美日韩视频高清一区二区三区二| 亚洲熟女毛片儿| 男女午夜视频在线观看| 国产精品久久久av美女十八| 国产精品久久久av美女十八| 国产探花极品一区二区| 国产福利在线免费观看视频| 18在线观看网站| 可以免费在线观看a视频的电影网站 | 一级片'在线观看视频| 亚洲国产欧美网| 晚上一个人看的免费电影| 国产成人午夜福利电影在线观看| 满18在线观看网站| 日本wwww免费看| 久久热在线av| 亚洲国产精品成人久久小说| 日韩中文字幕欧美一区二区 | 欧美av亚洲av综合av国产av | 亚洲av成人精品一二三区| 久久久精品94久久精品| 免费在线观看视频国产中文字幕亚洲 | 午夜免费男女啪啪视频观看| 99精品久久久久人妻精品| 卡戴珊不雅视频在线播放| 欧美成人午夜精品| 在线观看一区二区三区激情| 人人妻人人澡人人爽人人夜夜| 麻豆av在线久日| 国产精品 国内视频| 国产成人免费观看mmmm| 国产精品久久久久久精品电影小说| 亚洲精品久久成人aⅴ小说| 最近中文字幕2019免费版| 免费在线观看黄色视频的| 2018国产大陆天天弄谢| 久久人人爽av亚洲精品天堂| 一边摸一边抽搐一进一出视频| 亚洲精品在线美女| 国产日韩欧美亚洲二区| 另类亚洲欧美激情| 欧美激情高清一区二区三区 | 国产乱来视频区| 久热这里只有精品99| 91精品三级在线观看| 国产成人精品无人区| av片东京热男人的天堂| 另类亚洲欧美激情| 欧美精品一区二区大全| 精品一区二区三区四区五区乱码 | 午夜福利网站1000一区二区三区| 哪个播放器可以免费观看大片| 亚洲av福利一区| 亚洲色图综合在线观看| 国产精品一二三区在线看| videos熟女内射| 老司机影院毛片| 日韩精品有码人妻一区| 成人漫画全彩无遮挡| 五月天丁香电影| 美女午夜性视频免费| 日韩熟女老妇一区二区性免费视频| 日本午夜av视频| 国产免费视频播放在线视频| 久久精品国产a三级三级三级| 色网站视频免费| 最近最新中文字幕免费大全7| 美国免费a级毛片| 亚洲第一av免费看| 最近最新中文字幕大全免费视频 | 久久久精品国产亚洲av高清涩受| 男男h啪啪无遮挡| 亚洲伊人色综图| 夫妻性生交免费视频一级片| 国产成人欧美在线观看 | 多毛熟女@视频| 曰老女人黄片| av视频免费观看在线观看| av在线观看视频网站免费| 青春草亚洲视频在线观看| 久久久精品区二区三区| 免费在线观看完整版高清| 在线观看免费日韩欧美大片| av在线播放精品| 久久久久久久大尺度免费视频| 日本黄色日本黄色录像| 日韩精品有码人妻一区| 国产成人免费无遮挡视频| 久久精品国产a三级三级三级| 看十八女毛片水多多多| 亚洲一卡2卡3卡4卡5卡精品中文| 9色porny在线观看| 国产乱来视频区| 在线精品无人区一区二区三| 婷婷色综合大香蕉| 丝袜美足系列| 蜜桃国产av成人99| 久久av网站| 欧美日韩视频精品一区| 日本av手机在线免费观看| 激情视频va一区二区三区| 亚洲成av片中文字幕在线观看| 日韩av在线免费看完整版不卡| av网站在线播放免费| 最近中文字幕高清免费大全6| 黄网站色视频无遮挡免费观看| 国产免费又黄又爽又色| 日韩一本色道免费dvd| 免费av中文字幕在线| 欧美成人午夜精品| 在线精品无人区一区二区三| 欧美人与性动交α欧美精品济南到| 久久影院123| 99热全是精品| 人妻一区二区av| 91国产中文字幕| 精品久久蜜臀av无| 亚洲成人手机| 精品亚洲成a人片在线观看| 亚洲av日韩在线播放| 啦啦啦在线观看免费高清www| 免费日韩欧美在线观看| 国产xxxxx性猛交| 亚洲精品aⅴ在线观看| 亚洲综合色网址| 老司机深夜福利视频在线观看 | 一区二区三区精品91| 免费av中文字幕在线| 黄色视频在线播放观看不卡| 国产又爽黄色视频| 久久久久久久久久久久大奶| 激情五月婷婷亚洲| 九色亚洲精品在线播放| 考比视频在线观看| 欧美日韩视频精品一区| 丝袜美足系列| www.自偷自拍.com| 中文字幕人妻丝袜制服| 精品午夜福利在线看| 一级黄片播放器| 亚洲第一青青草原| 视频在线观看一区二区三区| 国产精品 欧美亚洲| 成年人午夜在线观看视频| 高清在线视频一区二区三区| 美女脱内裤让男人舔精品视频| www.精华液| 久久久久国产精品人妻一区二区| 一个人免费看片子| 免费女性裸体啪啪无遮挡网站| 国产男女内射视频| 国产精品一区二区精品视频观看| 赤兔流量卡办理| av网站免费在线观看视频| 国产亚洲最大av| 日韩一区二区三区影片| 国产精品.久久久| 各种免费的搞黄视频| 久久精品久久精品一区二区三区| 国产一级毛片在线| 色网站视频免费| 久久ye,这里只有精品| 亚洲精品在线美女| 国产一区二区激情短视频 | 国产无遮挡羞羞视频在线观看| 不卡视频在线观看欧美| 免费在线观看黄色视频的| 国产免费一区二区三区四区乱码| 欧美精品高潮呻吟av久久| 国产成人精品久久二区二区91 | 在线观看一区二区三区激情| 亚洲,欧美,日韩| 99热国产这里只有精品6| 免费在线观看视频国产中文字幕亚洲 | 五月开心婷婷网| av片东京热男人的天堂| 国产精品嫩草影院av在线观看| 久久天堂一区二区三区四区| 国产欧美日韩综合在线一区二区| av不卡在线播放| 国产精品久久久人人做人人爽| 只有这里有精品99| 久久久久久久精品精品| 无遮挡黄片免费观看| 国产精品久久久久久人妻精品电影 | 精品福利永久在线观看| xxx大片免费视频| 久久久久网色| 久久亚洲国产成人精品v| 日韩伦理黄色片| 无限看片的www在线观看| 国产精品麻豆人妻色哟哟久久| 男女下面插进去视频免费观看| 最新在线观看一区二区三区 | 在线观看三级黄色| 老司机影院成人| 久久亚洲国产成人精品v| 久久精品久久久久久噜噜老黄| 亚洲精品日本国产第一区| 亚洲精品美女久久久久99蜜臀 | 色吧在线观看| 国产精品国产三级国产专区5o| 黄色视频不卡| 中国三级夫妇交换| 丝袜脚勾引网站| 国产成人午夜福利电影在线观看| 操出白浆在线播放| 在线 av 中文字幕| 日韩一区二区视频免费看| 久久99精品国语久久久| 日本av手机在线免费观看| 国产日韩欧美亚洲二区| a级毛片在线看网站| 日日爽夜夜爽网站| 无遮挡黄片免费观看| 一级片免费观看大全| 丁香六月欧美| 男女无遮挡免费网站观看| 美女主播在线视频| 女性被躁到高潮视频| 亚洲国产日韩一区二区| 亚洲美女视频黄频| 在现免费观看毛片| 久久精品国产亚洲av涩爱| 777米奇影视久久| 99久国产av精品国产电影| 1024香蕉在线观看| 国产麻豆69| 咕卡用的链子| 亚洲欧美成人精品一区二区| 两性夫妻黄色片| 少妇猛男粗大的猛烈进出视频| 在线观看人妻少妇| 麻豆av在线久日| 99久久综合免费| 80岁老熟妇乱子伦牲交| 国产精品 欧美亚洲| 80岁老熟妇乱子伦牲交| 精品第一国产精品| 亚洲国产精品999| av网站在线播放免费| 国产欧美日韩一区二区三区在线| 免费观看av网站的网址| 国产男女内射视频| 国产无遮挡羞羞视频在线观看| 欧美xxⅹ黑人| 91老司机精品| 亚洲欧美色中文字幕在线| 亚洲欧洲国产日韩| 久久久国产欧美日韩av| 高清av免费在线| 日韩精品免费视频一区二区三区| 一级毛片电影观看| 中文字幕人妻丝袜一区二区 | 18禁国产床啪视频网站| 亚洲av电影在线观看一区二区三区| 日韩电影二区| 国产成人91sexporn| 国产精品一区二区精品视频观看| 深夜精品福利| 国产成人91sexporn| 日韩一区二区三区影片| 久久精品人人爽人人爽视色| 日韩中文字幕视频在线看片| 亚洲欧美一区二区三区国产| 老司机影院毛片| 一级片'在线观看视频| 中文字幕制服av| 丝袜人妻中文字幕| 日本欧美国产在线视频| 黄色视频不卡| 一边亲一边摸免费视频| 亚洲精品第二区| 黄色视频不卡| 亚洲国产精品一区三区| 亚洲第一av免费看| 亚洲一卡2卡3卡4卡5卡精品中文| 在现免费观看毛片| 日韩,欧美,国产一区二区三区| 亚洲国产中文字幕在线视频| 自线自在国产av| 国产精品偷伦视频观看了| 亚洲国产精品成人久久小说| 亚洲在久久综合| 国产精品 欧美亚洲| 欧美 日韩 精品 国产| 亚洲七黄色美女视频| 亚洲,一卡二卡三卡| 80岁老熟妇乱子伦牲交| 午夜老司机福利片| 在线免费观看不下载黄p国产| 老司机影院毛片| 国产精品女同一区二区软件| 日韩精品免费视频一区二区三区| 99香蕉大伊视频| 一级a爱视频在线免费观看| 狠狠婷婷综合久久久久久88av| 国产高清国产精品国产三级| 自线自在国产av| 一级,二级,三级黄色视频| 9191精品国产免费久久| 久久天堂一区二区三区四区| 各种免费的搞黄视频| 亚洲美女搞黄在线观看| 男人操女人黄网站| 中文乱码字字幕精品一区二区三区| www.av在线官网国产| 久久久久久久久免费视频了| 国产色婷婷99| 性少妇av在线| 自线自在国产av| 亚洲色图 男人天堂 中文字幕| 欧美精品亚洲一区二区| 国产伦人伦偷精品视频| 国精品久久久久久国模美| 另类亚洲欧美激情| 欧美日韩亚洲国产一区二区在线观看 | 亚洲欧美日韩另类电影网站| 肉色欧美久久久久久久蜜桃| 9191精品国产免费久久| 看免费成人av毛片| 制服人妻中文乱码| 日本欧美视频一区| bbb黄色大片| 蜜桃国产av成人99| 老鸭窝网址在线观看| 99久国产av精品国产电影| 精品国产一区二区三区久久久樱花| 好男人视频免费观看在线| 天天躁夜夜躁狠狠躁躁| 亚洲精品日韩在线中文字幕| 欧美乱码精品一区二区三区| 1024香蕉在线观看| 一本色道久久久久久精品综合| 悠悠久久av| 最新的欧美精品一区二区| 在现免费观看毛片| 亚洲成色77777| 国产成人av激情在线播放| 在线观看免费视频网站a站| 亚洲国产欧美在线一区| 女人高潮潮喷娇喘18禁视频| 看非洲黑人一级黄片| 国产精品99久久99久久久不卡 | 9色porny在线观看| 日韩一区二区视频免费看| 欧美日韩亚洲国产一区二区在线观看 | 国产又色又爽无遮挡免| 一本—道久久a久久精品蜜桃钙片| 国产深夜福利视频在线观看| 国产极品天堂在线| 五月天丁香电影| 亚洲av电影在线进入| 观看美女的网站| 国产成人一区二区在线| 国产精品欧美亚洲77777| 国产亚洲av片在线观看秒播厂| 国产 一区精品| 韩国av在线不卡| 久久天躁狠狠躁夜夜2o2o | 国产精品久久久久成人av| 国产精品av久久久久免费| 在线观看免费高清a一片| 国产探花极品一区二区| 欧美久久黑人一区二区| 国产成人系列免费观看| 十分钟在线观看高清视频www| 999精品在线视频| 91aial.com中文字幕在线观看| 一级毛片我不卡| 黄色一级大片看看| 欧美日韩视频高清一区二区三区二| 两个人免费观看高清视频| 亚洲一级一片aⅴ在线观看| 精品人妻在线不人妻| 国产视频首页在线观看| kizo精华| 欧美少妇被猛烈插入视频| 久久精品熟女亚洲av麻豆精品| 777米奇影视久久| videos熟女内射| 久久这里只有精品19| av线在线观看网站| 精品久久久久久电影网| 高清在线视频一区二区三区| 久久这里只有精品19| 新久久久久国产一级毛片| 别揉我奶头~嗯~啊~动态视频 | 精品一区二区三区四区五区乱码 | 夜夜骑夜夜射夜夜干| 九草在线视频观看| 国产成人av激情在线播放| 国产毛片在线视频| 国产精品女同一区二区软件| 国产毛片在线视频| 日韩成人av中文字幕在线观看| 十八禁网站网址无遮挡| 天美传媒精品一区二区| 国产精品二区激情视频| 久久影院123| 国产精品久久久av美女十八| 国产极品粉嫩免费观看在线| 麻豆精品久久久久久蜜桃| 成人毛片60女人毛片免费| 最近2019中文字幕mv第一页| 亚洲精品,欧美精品| 晚上一个人看的免费电影| 视频区图区小说| av线在线观看网站| 日本午夜av视频| 999精品在线视频| 精品国产一区二区久久| 久久久久久人人人人人| 久久性视频一级片| 一二三四在线观看免费中文在| 麻豆av在线久日| 少妇 在线观看| 国产一区二区三区av在线| 国产精品一二三区在线看| 香蕉国产在线看| 精品国产超薄肉色丝袜足j| 黄片无遮挡物在线观看| 亚洲国产欧美日韩在线播放| 日韩伦理黄色片| 韩国精品一区二区三区| 成人国语在线视频| avwww免费| 国产男女内射视频| 免费看不卡的av| 人人妻人人添人人爽欧美一区卜| 日本黄色日本黄色录像| 久久 成人 亚洲| 亚洲人成77777在线视频| 一本久久精品| 男女下面插进去视频免费观看| 一级a爱视频在线免费观看| 欧美日韩成人在线一区二区| 国产亚洲一区二区精品| 欧美人与性动交α欧美精品济南到| 久久久久久人人人人人| 日韩精品有码人妻一区| 精品亚洲乱码少妇综合久久| 国产成人欧美在线观看 | 久久久国产一区二区| 日韩精品免费视频一区二区三区| 成人三级做爰电影| 日韩欧美一区视频在线观看| 成人影院久久| 亚洲,欧美,日韩| 国产免费一区二区三区四区乱码| 大话2 男鬼变身卡| 久热爱精品视频在线9| 中文欧美无线码| 狠狠精品人妻久久久久久综合| 别揉我奶头~嗯~啊~动态视频 | 美女扒开内裤让男人捅视频| 1024香蕉在线观看| av国产精品久久久久影院| 90打野战视频偷拍视频| av电影中文网址| 日韩av不卡免费在线播放| 国产精品一二三区在线看| 亚洲美女黄色视频免费看| 飞空精品影院首页| 18禁裸乳无遮挡动漫免费视频| av视频免费观看在线观看| 高清不卡的av网站| 色网站视频免费| 又黄又粗又硬又大视频| 男女之事视频高清在线观看 | 丁香六月欧美| 亚洲综合色网址| 成人午夜精彩视频在线观看| 黄色怎么调成土黄色| 国产av精品麻豆|