駱小芳, 朱泉涌, 林銀河*
(1. 南京師范大學(xué) 數(shù)學(xué)科學(xué)學(xué)院, 江蘇 南京 210023; 2. 麗水學(xué)院 數(shù)學(xué)系, 浙江 麗水 323000)
地下水作為水資源的重要組成部分,就水體污染而言,地下水的污染與地表水的污染相比更具有隱蔽性和難以逆轉(zhuǎn)性.地下水一旦受污染,便很難治理及恢復(fù).由于地下水污染流體動力系統(tǒng)的復(fù)雜性,傳統(tǒng)的實(shí)驗(yàn)研究方法花費(fèi)大、周期長、靈活性差且難以重復(fù)實(shí)驗(yàn).因此,研究建立在數(shù)學(xué)物理方法基礎(chǔ)上的地下水污染數(shù)值方法具有重要的理論和應(yīng)用價值[1-8].本文研究地下水污染模型問題[9-13]
(1)
的有限體積元解,其中,R為阻滯因子,s表示地下水污染物的濃度,k表示地下水實(shí)際流動速度,d表示擴(kuò)散系數(shù),λ表示衰減系數(shù),s0(x)為已知的光滑函數(shù),D=[0,L].方程(1)在地下水污染物運(yùn)移問題中具有深刻的物理背景,并且有著廣泛的應(yīng)用[14-17].
為方便討論,R取為1,假設(shè)問題(1)的解存在唯一且有必要的光滑性,并滿足下列條件:
|k(x,q1)-k(x,q2)|≤K1|q1-q2|;
(IV) ?x∈D,有0 下文中用K和ε分別表示一般的正常數(shù)和充分小的正常數(shù),它們在不同的地方可以表示不同的值.此外,記 選取試探函數(shù)空間Ch為相應(yīng)于剖分Th的拉格朗日型二次有限元空間,則整節(jié)點(diǎn)xi與半整節(jié)點(diǎn)xi-1/2的基函數(shù)分別為 而任意sh∈Ch可唯一表示為 φi(x)+si-1/2φi-1/2(x)], 其中si=sh(xi,t),si-1/2=sh(xi-1/2,t). 則任一wh∈Wh可表示為 其中,wj=wh(xj),wj-1/2=wh(xj-1/2). ?s∈Ch. 對?sh∈Ch,引入下面的離散范數(shù) |sh|1,h= 引理1[9]對任意的sh∈Ch,|sh|0,h、|sh|1,h分別與|sh|0、|sh|1等價,即存在與h無關(guān)的正常數(shù)c1、c2、c3、c4,使得 c1|sh|0,h≤|sh|0≤c2|sh|0,h, c3|sh|1,h≤|sh|1≤c4|sh|1,h. 引理2[9]下列結(jié)論成立: 引理3[9]存在正常數(shù)h0、α和M,使得當(dāng)0 c5‖sh‖1≤|||sh|||1≤c6‖sh‖1, ?sh∈Ch. 引入記號 sh=si-1(2ξ-1)(ξ-1)+ 4si-1/2ξ(1-ξ)+siξ(2ξ-1), (3) (4) 即 記ξ=sh-Πhs,η=s-Πhs,則sh-s=ξ-η.由(2)和(4)式得誤差方程 (6) 由引理3得 下面對(6)式右端各項分別進(jìn)行估計,運(yùn)用ε不等式,容易得到 但 故 由 而 故 則 由 M(△t)2, 則 由 故 以上各式聯(lián)立,可得 (7) 綜上所述可得如下定理. 定理1假設(shè)s是問題(1)的解,sh為全離散有限體積二次元格式(4)的解,當(dāng)h與△t充分小時,有以下的誤差估計成立 [1] TRAVERSO L, PHILLIPS T N, YANG Y. Mixed finite element methods for groundwater flow in heterogeneous aquifers[J]. Comput Fluids,2013,88(88):60-80. [2] ZHU Q, WANG Q, FU J, et al. New second-order finite difference scheme for the problem of contaminant in groundwater flow[J]. J Appl Math,2012,2012:1-16. [3] 朱泉涌,王全祥,付菊. 一類拋物型偏微分方程的特征中心差分方法[J]. 純粹數(shù)學(xué)與應(yīng)用數(shù)學(xué),2012(4):507-515. [4] ZHANG G, LU D, YE M, et al. An adaptive sparse grid high order stochastic collocation method for Bayesian inference in groundwater reactive transport modeling[J]. Water Resources Research,2013,49(10):6871-6892. [5] ANDERSON M P, WOESSNER W W, HUNT R J. Applied Groundwater Modeling:Simulation of Flow and Advective Transport[M]. New York:Academic Press,2015. [6] HE X, JIANG L, MOULTON J D. A stochastic dimension reduction multiscale finite element method for groundwater flow problems in heterogeneous random porous media[J]. J Hydrology,2013,478(3):77-88. [7] VANDENBOER K, VAN BEEK V, BEZUIJEN A. 3D finite element method (FEM) simulation of groundwater flow during backward erosion piping[J]. Frontiers of Structural and Civil Engineering,2014,8(2):160-166. [8] XIE Y, WU J, XUE Y, et al. Modified multiscale finite-element method for solving groundwater flow problem in heterogeneous porous media[J]. J Hydrologic Engineering,2014,19(8):04014004. [9] LI R, CHEN Z, WU W. Generalized Difference Methods for Differential Equations:Numerical Analysis of Finite Volume Methods[M]. Boca Raton:CRC Press,2000. [10] WANG Q, ZHANG Z, ZHANG X, et al. Energy-preserving finite volume element method for the improved Boussinesq equation[J]. J Comput Phys,2014,270(8):58-69. [11] RUIZ-BAIER R, TORRES H. Numerical solution of a multidimensional sedimentation problem using finite volume-element methods[J]. Appl Numer Math,2015,95(C):280-291. [12] BUELER E. Stable finite volume element schemes for the shallow-ice approximation[J]. J Glaciology,2016,62(232):230-242. [13] KUMAR S, RUIZ-BAIER R. Equal order discontinuous finite volume element methods for the Stokes problem[J]. J Scientific Computing,2015,65(3):956-978. [14] DILLON P J. An analytical model of contaminant transport from diffuse sources in saturated porous media[J]. Water Resources Research,1989,25(25):1208-1218. [15] ZHANG Z. Error estimates of finite volume element method for the pollution in groundwater flow[J]. Numerical Methods for Partial Differential Equations,2009,25(2):259-274. [16] GRATHWOHL P. Diffusion in Natural Porous Media:Contaminant Transport, Sorption/Desorption and Dissolution Kinetics[M]. New York:Springer-Verlag,2012. [17] BEAR J, CORAPCIOGLU M Y. Advances in Transport Phenomena in Porous Media[M]. New York:Springer-Verlag,1987.1 有限體積元離散方法
2 誤差估計