• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Spatial patterns nitrogen transfer models of ectomycorrhizal networks in a Mongolian scotch pine plantation

    2018-03-19 05:08:08YanbinLiuHongmeiChenPuMou
    Journal of Forestry Research 2018年2期

    Yanbin Liu?Hongmei Chen?Pu Mou

    Introduction

    Mycorrhizal mycelial networks link plants to facilitate fungal colonization and/or the transfer of compounds among plants(Leake et al.2004;Heijden and Horton 2009;Barto et al.2011;Simard et al.2012;Albarracín et al.2013).Two types of common mycorrhizal networks(CMNs)have been identi fi ed based on the type of mycorrhizae involved:arbuscular endomycorrhizal(AM)network and ectomycorrhizal mycorrhizal(EM)network(Selosse et al.2006).EM networks are mostly studied on their functions of providing a variety of services to plants and ecosystems including nutrient uptake and transfer(He et al.2003,2005,2007;Moyer-Henry et al.2006;Corre?a et al.2008),seedling support(McGuire 2007;Teste et al.2009),prevention of nutrient leaching(Heijden and Horton 2009),internal cycling of nutrients(Callesen et al.2013),and plantcompetition (Booth 2004;Barto etal.2011,2012).

    Many temperate and mediterranean woody species form EM networks with basidiomycete and ascomycete fungi(Selosse et al.2006).Using network analysis,Bahram et al.(2014)concluded that certain ectomycorrhizal communities displayed modularity and attributed to partner selectivity and consequent context dependent.They also showed that the EMs exhibited non-nested or anti-nested patterns,contrasting to other mutualistic interactions.

    Nitrogen is often transferred among plants through EM networks(Selosse et al.2006;Teste et al.2009).Recent studies have focused on nitrogen uptake and transfer from N2- fi xing donors to non-N2- fi xing receivers to demonstrate mutualistic functions among plants via mycorrhizal networks(He et al.2005,2007;Moyer-Henry et al.2006).However,the net N transfer in EM networks and the spatial distribution of EM networks were not found to be ef fi cient in most of the studies.

    There are few tools to evaluate ectomycorrhizal roles in N transfer in situ.Analyses of natural abundance N isotope ratios(15N:14N expressed as δ15N relative to standard),as an integrator of N transfer,can provide a glimpse into mycorrhizal functional ecology within soil pro fi les and across biomes(Dawson et al.2002;Fry 2006;Nave et al.2013;Hobbie et al.2014;Pena and Polle 2014;Mayor et al.2015a,b).In this study,we examined N transfer among trees via the EM network using a stable isotope15N approach in a monoculture tree plantation and characterized the spatial patterns of the EM networks to increase our understanding of the structure and function of EM networks in ecosystems,which may lead to a deeper understanding of ecological stability and evolution and thus new theoretical approaches to improve conservation practices for the management of the Earth’s ecosystems.

    We injected15N solution into the soil at selected locations and periodically sampled the leaves of the trees deviating from the injection locations.We tested the following hypotheses by analyzing changes and variation in15N concentrations in leaves:(1)EM networks in this plantation were structured such that they transfer N homogeneously if leaf15N concentration varies in a similar manner;otherwise,local EM networks would be con fi rmed and functionally differ.(2)EM networks transfer N at high ef fi ciency if there is a strong distance-dependent reduction in leaf15N.

    Materials and methods

    Study site

    The study was conducted in a Mongolian Scotch pine(Pinus sylvestrisvar.mongolicaLitv.)plantation in the Xiaoxing’anling Mountain,nearWuying Township,Yichun City, Heilongjiang Province, China(48°06′11.54′N,129°15′03.58′E).This area is mountainous with mild slopes and lower-elevation reliefs.The mean annual precipitation is 637.0 mm (1958–2006,49 a)(Cheng et al.2010),mostly concentrated as rainfall during the growing season(June to August),and winter snow depth can be up to 113.8 mm.The snow comprises about 17.9% of the annul precipitation.The monthly mean temperature ranges from-23.5 °C in January to 20.3 °C in July.The lowest temperature was-44.9°C in 1970,and the highest was 37.5°C in 2010.The average annual frostfree period lasts 111 days.The regional vegetation is a temperate mixed conifer–hardwood forest dominated by Korean pine(Pinus koreiensisSieb.et Zucc.),Korean spruce (PiceakoraiensisNakai),needle fi r(Abies nephrolepisMaxim.),white birch(Betula platyphyllaSuk.),Manchurian ash(Fraxinus mandschuricaRupr.),Chinese corktree(Phellodendron amurenseRupr.)and Chinese walnut(Juglans mandshuricaMaxim.).The local soil is dark-brown with rich organic matter concentrations,equivalent to Hap-Boric Luvisols in the US soil taxonomy.

    The plantation was the result of forestation in an 18-ha construction pit abundant of coarse sand and small gravel.In 2007,the site was covered with 15 cm thick local forest top soil,and 3-yr-old seedlings of Mongolian Scotch pine were planted with spacing of 2×3 m.On average,the plant-available N in the top soil was 100±5 mg kg-1.At the time of the study,the trees were 2–3 m tall,7–8 years old with DBH of 4–6 cm.The canopy was not closed yet.Understory vegetation was scattered with low total cover,which included forbs,native perennial grasses,mainlyArtemisiaspp.,Carexspp.,andAchilleaspp.,and 98% of pine roots occurred in the top 30 cm of soil.

    The top soil(0–30 cm surface layer)throughout the experimental site was full of dense white rhizomorphs,mainlySuillus luteus(L.:Fr.)Grey.based on sporocarp inventory and DNA sequencing(Liu’s unpublished data),Gomphidius rutilus(Schaeff.:Fr.)Land.Et Nannf.,Laccaria laccata(Scop.:Fr.)Berk.et Br.andLycoperdon pyriformeSchaeff.:Pers.scattered in the fi eld at low abundance.Some other saprophytic fungi,includingHygrophorus conicus(Fr.)Fr.,H.agathosmus(Fr.)Epicr.,Marasmius androsaceus(L.:Fr.)Fr.,Phallus tenuis(Fisch.)D.Ktze.,andCoprinus parouillardiQuél.were also observed.

    15N application,leaf sampling and measurements

    In August 2011,four plots(20×20 m)were randomly selected,which were far enough away from each other and separated by cement tracks.As a result,they did not interfere with each other.At the center of each plot,125 ml 5 at.% 0.15 mol/Lsolution wasinjected within a 2.5-cm radius.To avoid slope and precipitation interference,four sample lines expanded from plot center to four directions and were as perpendicular as possible according to the seedling pattern,slope and orientation.Each sample line was 14–15 m and contained 5–6 pines.In total,we sampled 20 pines,21 pines,20 pines and 20 pines in four respective plots.

    At 0,2,6,30 and 215 days after15N application,we sampled needles(current year)of each pine along a transect line.Needles were immediately sealed in Ziplock plastic bags and stored in cool boxes until taken to the lab.Needles were oven-dried at 65°C for 48 h,ground and sieved through a 0.2 mm sieve.

    Needle δ15N values and N concentration(in%)were measured on 10±1 mg of each sample at the Stable Isotope Laboratory in the Chinese Academy of Forestry(Beijing,China)with an elemental analyzer(Flash EA1112 HT,Thermo Fisher Scienti fi c,USA)coupled with a gas isotope ratio mass spectrometer(DELTA V Advantage,Thermo Fisher Scienti fi c).δ15N(‰)were calculated as:δ15N(‰)=[(Rsample/Rstandard)-1]× 1000,whereRis the ratio of15N/14N of the sample and standard(Knowles and Blackburn 1993).

    Statistical analyses

    Data from four plots were pooled together and divided into fi ve groups according to the distance of the sampled tree from the15N application point,i.e.,1–3,>3–5,>5–7,>7–9,and >9–11 m.All data were analyzed with a Kolomogrov–Smirnov goodness of fi t test and Levine’s test to examine their normality and homogeneity of variance.When the data were not normally distributed,data were transformed to meet the requirements.A one-way ANOVA was used to compare means N and15N concentrations among different groups,and Turkey’s honestly signi fi cant difference(HSD)test was used to test for differences among group means if ANOVA results were signi fi cant(P<0.05).If the data,even after transformation,did not satisfy the requirement of normality and homescedasticitic tests,Kruskal–Wallis test was used to compare the fi ve group means.To assess the relationship between groups of variables,Spearman’s rank correlation test was performed on all data.We used linear regression models to examine the relationship between N and15N concentrations of the needles and the relationship between the needle15N concentrations and the distance away from the injection points.Time interval and excess meant the needle N and15N concentrations of the same tree from the day 0 to day 2,day 2 to day 6,and day 6 to day 30,and day 30 to day 215.We wanted to determine any changes in needle N and15N concentrations among time intervals.All statistical analyses were performed using SPSS(v.21;SPSS,Inc.,IBM,Armonk,NY,USA)and Origin(OriginPro v.9.1.0,OriginLab Corp.,Northampton,MA,USA)for Windows,and all differences were considered signi fi cant atP<0.05.

    Results

    Needle N concentration and15N/14N ratio pattern

    NeedleNconcentrationand15N/14Nratiorangedfrom1.07to 2.77%,and from 0.36648 to 0.37669,respectively.ANOVA resultsdidnottestforsigni fi cantdifferencesamongthemeans ofneedleNconcentrationsorneedle15N/14Nratioamongthe four plots(P%N=0.06,=0.88).The needle N and15N/14Nratio(n=227)increasedsigni fi cantlyafter30 days,up to 31 and 0.42%,respectively(Fig.1a,c).The needle N concentration was highest on day 30 after the treatment and the15N/14N ratio was highest on day 215.The needle N concentrationsincreasedby20,18,31and23%onday2,6,30 and 215 after treatment,respectively.The15N/14N ratio increased by 0.09,0.17,0.35 and 0.42%,on day 2,6,30 and 215 after treatment,respectively.The needle N concentration excess,aswellas15N/14Nratioexcesssigni fi cantlydecreased over time(Fig.1b,d).

    Variations and correlations between needle N concentration and15N/14N ratio

    Needle N concentration and15N/14N ratio were not positively correlated through time (R2=0.40,n=5,P=0.156;Fig.2a).Needle N concentration excess and15N/14N ratio excess were positively correlated across different time intervals(R2=0.89,n=4,P<0.05;Fig.2b).

    Needle15N/14N spatiotemporal pattern

    Needle15N/14N ratio increased with time,but was not signi fi cantly correlated with distance(Figs.1c,3).There was weak trend of decreasing15N/14N ratio with increasing distance at day 0,day 6 and 30,but the ratio increased with increasing distance at day 2.

    Fig.1 Changes in pine needle N and15N concentrations in a Mongolian Scotch pine plantation:a N concentration,b time interval N concentration change,c15N/14N ratio,d time interval15N/14N ratio change.Values are%and at.%excess(n=227–232)with SE bars.Values with different letters indicate signi fi cant differences among means according to Tukey’s honestly signi fi cant difference tests(P<0.05)

    Fig.2 Relationship between N concentration and15N/14N ratio of pine needle in a Mongolian Scotch pine plantation.a N concentration and15N/14N ratio over time,b N concentration excess and15N/14N ratio excess at different time intervals.Values are mean excess(n=4–5)with SE bars

    Variations and correlations between needle N%,δ 15N and15N/14N contents in distance

    At 1–3 m,pine needle δ15N was negatively correlated with that at 5–7,7–9 and 9–11 m;at 3–5 m,δ15N was also negatively correlated with that at 5–7,7–9,and 9–11 m,then they were not correlated.At 5–7 m,pine needle δ15N was a few signi fi cant positively correlated with that at 7–9 m,and that at 7–9 m with that at 9–11 m(P<0.05)(Table 1A).At 3–5 m,pineneedleNcontentwasnegativelycorrelatedwith 1–3 and 7–9 m,N at 9–11 and 7–9 m was negatively correlated;and the rest were positive correlations,then they were not correlated(Table 1B).For needle15N/14N content,signi fi cant positive correlations were found among all the distance groups(Kruskal–Wallis ANOVA,P<0.001 orP<0.01),but not between groups(one-way ANOVA,NS);forδ15NandN,thecorrelationwassigni fi cantamonggroups(one-way ANOVA,P<0.001 orP<0.01),some within the group were signi fi cant(δ15N of 1–3 and 3–5 m atP<0.001;%N of 5–7 m atP<0.01),some intragroup correlations were not(Table 2).

    Fig.3 Correlations between needle15N/14N ratios and distance from the injection point in a Mongolian Scotch pine plantation.The regressions at different times are:day 0,15N/14N(at.%)=0.36661+(-1.05E-5)×Distance(m),adjusted r2=0.05,P=0.22;day 2,15N/14N(at.%)=0.36685+(1.44E-5)×Distance(m),adjusted r2=0.08, P<0.05; day 6, 15N/14N (at.%)=0.36726+(-8.76E-6)×Distance(m),adjusted r2=0.15,P<0.0001;day 30, 15N/14N (at.%)=0.36766+(-2.35E-5)×Distance (m),adjusted r2=0.08,P<0.05

    Discussion

    Spatiotemporal patterns in EM networks

    EM networks are complex adaptive systems(Nave et al.2013),which have been modelled as adaptive dynamic networks of interacting parts where feedback and crossscale interactions lead to self-organization and emergent properties (Beiler etal.2010).Understanding the architecture of the EM networks in the fi eld(e.g.,the physical components,the spatial extent and their relationships)is a prerequisite to understanding how EM networks function and how they affect plant populations,communities,and dynamics in forests(Selosse et al.2006;Simard et al.2012).In this study,we showed that the stable isotope15N rapidly spread rather far away from the injection spots and appeared in the tree needles within 2 days(Fig.1)throughout the four study plots.This result indicated that effective EM networks were ubiquitous in this study plantation and might have a rather uniform distribution.Nitrogen and carbon are thought to travel through EM networks together as simple amino acids(Simard et al.2015).These molecules are transferred through the EM network rapidly,from donor plants to the fungal mycelium within 1 or 2 days and to the shoots of neighboring plants within 3 days(Wu et al.2002;Heaton et al.2012).The high dissimilarity of fungal assemblages at roots of the same genotypes at spatial distances of some meters was unexpected because the overall similarities of the fungal communities in the soil cores of the plot did not differ signi fi cantly;thereby,asymmetric competition between conspeci fi c neighbors can be avoided(Lang et al.2013).But Toju et al.(2016)reported that diverse root-associated fungi could coexist in highly compartmentalized networks within host roots and that the structure of the fungal symbiont communities could be partitioned into semi-discrete types even within a single host plant population.The largely uncorrelated relationships between the needle15N concentrations and distance to the injection points(Fig.3)indicated a rapid15N transfer with the networks.The accelerated increases of needle15N contents as thesampling period increased suggested the existence of longlasting effective EM networks in this Mongolian Scotch pine plantation(Fig.1).

    Table 1 Spearmen’s rank correlation coef fi cient(ρ)for pine needle δ 15N(‰)(A),N(%)(B),and15N/14N(at.%)(C)among distance groups in a Mongolian Scotch pine plantation

    Table 2 Effect of distance from N-loading points on needle N,δ15N and15N/14N ratios by Kruskal–Wallis ANOVA intragroup and one-way ANOVA intergroup in a Mongolian Scotch pine plantation

    Nitrogen transfer models

    He et al.(2005)showed that nitrogen transfer was enhanced by mycorrhiza formation and that transfer rates were greatest in the mycorrhizal treatment.Our results demonstrated a rapid transfer of nitrogen through the EM networks to the pine tree,but the amount of nitrogen transferred was rather small,as indicated by the increments of15N in fractions of a percentage.Does this result mean that the CMNs are not effective in nitrogen transfer?We consider that more evidence is still needed;the few studies on interplant transfer of nutrients through CMNs focused mainly on transfer from N2- fi xing plants to non fi xing ones at more local scales(He et al.2005;Moyer-Henry et al.2006).Our data might be the result of several factors:(1)A dilution effect as the element spread from the injection points;however,the weak correlations between needle15N contents and distance(Fig.3)did not support such an effect.(2)Nutrient transfer capability of CMNs may be limited;however,the needle15N content in some of the closer trees(1–3 m)was very high.Some may argue that there might be another channel to transfer15N to these trees,but we do not have data for or against this idea,and more studies are needed.(3)High turnover rates in the tree-CMN connection may disturb the N transfer function of CMN.Ectomycorrhizal hyphae turnover is estimated at 46 days,rhizomorphs at 11 months,and EM root tips from 1 year to 6 years(Bledsoe et al.2014).(4)Needles in N-loaded plots became enriched in15N,re fl ecting decreased N retention by mycorrhizal fungi and isotopic discrimination against15N during loss of N.Needles in N-limited(control)plots became depleted in15N,re fl ecting high retention of15N by mycorrhizal fungi(Ho gberg et al.2011).Stronger15N retention of ectomycorrhizal fungi resulted in a consequently transfer of15N-depleted N to their tree hosts(Ho gberg et al.1999;Hobbie and Colpaert 2003;Hobbie et al.2008;Mayor et al.2012).(5)Nitrogen immobilization from soil organisms may also affect the transfer effectiveness of N and15N.Net N transfer was much greater when N was supplied as15NH4+than15NO3-(He et al.2005).Kranabetter et al.(2015)found ammonium uptake was greatest in the spring at medium-N and rich-N sites and averaged over 190 nmol m-2s-1forTomentellaspecies, and nitrate uptake was only 8.3 nmol m-2s-1.The cation NH4+is bound to negatively charged sites on clay lattices in soil,reducing mobility and leading to reduced availability(Brady and Weil 2002).Nitrogen additions led to expected increases in foliar N/P ratios,reductions in δ15Nfungi-plantvalues,and15N enrichment of soil nitrate(Mayor et al.2015a,b).None of these potential factors could be ruled out by the unexpected results of our study,which raised more questions to examine in future research.

    Application of network theory to potential EM networks

    Network theory provides a useful framework for describing the structure,function and ecology of EM networks(Southworth et al.2005;Selosse et al.2006;Beiler et al.2015).Southworth et al.(2005)viewed trees as nodes and fungi as links(the so-called phytocentric perspective)and considered that the distribution of potential mycorrhizal links was random with a short tail,implying that all the individuals trees are more or less equal in linking fungi into a potential network.However,from a mycocentric point of view that fungi are nodes and trees are links,certain fungus may act as hubs with frequent connections to the network.Our study supports the phytocentric point;the ECM network was not patchily distributed(Tables 1,2;Figs.1 and 3),but ubiquitous and might be evenly distributed.This fi nding indicates that CMNs are random networks and that all nodes have the same probability of being attached to a link.Our data revealed CMNs were random networks,though rather indirectly,through signi fi cant interdistance correlations of needle15N contents,but insigni fi cant needle15N content differences among distance groups(Tables 1,2).Pickles et al.(2012)reported similar results.Beiler et al.(2010)found that most trees in a multicohort old-growth forest were linked in a scale-free EM network,where large trees served as hubs.Beiler et al.(2015)also found that large mature trees acted as network hubs with a signi ficantly higher node degree compared with smaller trees in Douglas- fi r forests.

    Conclusions

    In natural ecosystem,resource transfers through EM networks are highly complex,the networked fungi and plants interact to govern the magnitude,direction,fate and consequences of resource transfers,which have important consequences for plant communities and may in fl uence plant establishment or growth,intra-and interspeci fi c competition or facilitation,and stand dynamics and succession(Nara 2006;Simard et al.2012,2015;Koide et al.2014).Tracing studies based on15N external labelling and15N natural abundance techniques consistently have found that the direction and magnitude of N transfer is from N2-fi xing,N-fertilized or N-enriched source plants to non-N2fi xing,unfertilized or N-depleted sink plants(He et al.2005,2007;Moyer-Henry et al.2006);however,the net N transfer in EM networks and the spatial distribution of EM networks were not found to be deterministic in most of the studies.We used stable isotope15N labeling method to study the EM networks in a monoculture pine plantation and characterize the spatial patterns of the networks and N transfer among the trees via the network.We concluded that EM networks were ubiquitous and uniformly distributed in the Mongolian pine plantation,the N transfer ef fi ciency was very high and N fractionation was found.Deeply understanding the N transfer model and spatial pattern is important not only analyzing N dynamics and distribution in N-limited ecosystems,but also the role of N in regulating N and C transfers through networks.Because the potential bene fi ts of N transfer mediated by EM networks are great in agricultural and forest systems,more research is warranted on this type of N transfer in the fi eld.

    Albarracín MV,Six J,Houlton BZ,Bledsoe CS(2013)A nitrogen fertilization fi eld study of carbon-13 and nitrogen-15 transfers in ectomycorrhizas ofPinus sabiniana.Oecologia 173:1439–1450

    Bahram M,Harend H,Tedersoo L(2014)Network perspectives of ectomycorrhizal associations.Fungal Ecol 7:70–77

    Barto EK,Monika H,Frank M,Mohney BK,Weidenhamer JD,Rillig MC(2011)The fungal fast lane:common mycorrhizal networks extend bioactive zones of allelochemicals in soils.PLoS ONE 6:e27195

    Barto EK,Weidenhamer JD,Cipollini D,Rillig MC(2012)Fungal superhighways:do common mycorrhizal networks enhance below ground communication?Trends Plant Sci 17:633–637

    Beiler KJ,Durall DM,Simard SW,Maxwell SA,Kretzer AM(2010)Architecture of the wood-wide web:Rhizopogon spp.genets link multiple Douglas- fi r cohorts.New Phytol 185:543–553

    Beiler KJ,Simard SW,Durall DM(2015)Topology of tree–mycorrhizal fungus interaction networks in xeric and mesic Douglas- fir forests.J Ecol 103:616–628

    Bledsoe C,Allen MF,Southworth D(2014)Beyond Mutualism:Complex Mycorrhizal Interactions.In:Lüttge U,Beyschlag W,Cushman J(eds)Progress in Botany,vol 75.Springer,Berlin,pp 311–334

    Booth MG(2004)Mycorrhizal networks mediate overstorey-understorey competition in a temperate forest.Ecol Lett 7:538–546

    Brady NC,Weil RR(2002)The nature and properties of soils,13th edn.Prentice Hall,Upper Saddle River

    Callesen I,Nilsson L,Schmidt I,Vesterdal L,Ambus P,Christiansen J,Ho gbergP Gundersen P(2013)The natural abundance of15N in litter and soil pro fi les under six temperate tree species:N cycling depends on tree species traits and site fertility.Plant Soil 368:375–392

    Cheng CX,Li J,Sun PF(2010)Analyses of the climate change tendency and abrupt climate change in Wuying,Xiaoxing’an Mountain in recent 49 years.Heilongjiang Meteotol 4:9–12

    Corre?a A,Strasser RJ,Martins-Louc??o MA(2008)Response of plants to ectomycorrhizae in N-limited conditions:which factors determine its variation?Mycorrhiza 18:413–427

    Dawson TE,Mambelli S,Plamboeck AH,Templer PH,Tu KP(2002)Stable isotopesin plantecology.Annu Rev EcolSyst 33:507–559

    Fry B(2006)Stable isotope ecology.Springer,New York

    He XH,Critchley C,Bledsoe CS(2003)Nitrogen transfer within and between plants through common mycorrhizal networks(CMNs).Crit Rev Plant Sci 22:531–567

    He XH,Critchley C,Ng H,Bledsoe CS(2005)Nodulated N2- fi xingCasuarina cunninghamianais the sink for net N transfer from non-N2- fi xingEucalyptus maculatavia an ectomycorrhizal

    fungusPisolithussp.usingsupplied as

    ammonium nitrate.New Phytol 167:897–912

    He XH,Horwath WR,Zasoski RJ,Aanderud Z,Bledsoe CS(2007)Nitrogen sink strength of ectomycorrhizal morphotypes ofQuercus douglasii,Q.garryana,andQ.agrifoliaseedlings grown in a northern California oak woodland.Mycorrhiza 18:33–41

    Heaton LLM,López E,Maini PK,Fricker MD,Jones NS(2012)Advection,diffusion and delivery over a network.Phys Rev E Stat Nonlinear Soft Matter Phys 86:021905–021905

    Heijden MGAVD,Horton TR(2009)Socialism in soil?The importance of mycorrhizal fungal networks for facilitation in natural ecosystems.J Ecol 97:1139–1150

    Hobbie EA,Colpaert JV(2003)Nitrogen availability and colonization by mycorrhizal fungi correlate with nitrogen isotope patterns in plants.New Phytol 157:115–126

    Hobbie E,Colpaert J,White M,Ouimette A,Macko S(2008)Nitrogen form,availability,and mycorrhizal colonization affect biomass and nitrogen isotope patterns inPinus sylvestris.Plant Soil 310:121–136

    Hobbie EA,van Diepen LTA,Lilleskov EA,Ouimette AP,Finzi AC,Hofmockel KS(2014)Fungal functioning in a pine forest:evidence from a15N-labeled global change experiment.New Phytol 201:1431–1439

    Ho gberg P,Ho gberg MN,Quist ME,Ekblad ALF,Na sholm T(1999)Nitrogen isotope fractionation during nitrogen uptake by ectomycorrhizal and non-mycorrhizalPinus sylvestris.New Phytol 142:569–576

    Ho gbergP,JohannissonC,YarwoodS,Callesen I,Na sholmT,Myrold DD,Ho gberg MN(2011)Recovery of ectomycorrhiza after‘nitrogen saturation’of a conifer forest.New Phytol 189:515–525

    Knowles RR,Blackburn TH(1993)Nitrogen isotope techniques.Academic Press,San Diego

    Koide RT,Fernandez C,Malcolm G(2014)Determining place and process:functional traits of ectomycorrhizal fungi that affect both community structure and ecosystem function.New Phytol 201:433–439

    Kranabetter JM,Hawkins BJ,Jones MD,Robbins S,Dyer T,Li T(2015)Species turnover(β-diversity)in ectomycorrhizal fungi linked to NH4+uptake capacity.Mol Ecol 24:5992–6005

    Lang C,Finkeldey R,Polle A(2013)Spatial patterns of ectomycorrhizal assemblages in a monospeci fi c forest in relation to host tree genotype.Front Plant Sci 4:103

    Leake JR,Johnson D,Donnelly DP,Muckle GE,Boddy L,Read DJ(2004)Networks of power and in fl uence:the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning.Can J Bot 82:1016–1045

    Mayor J,Schuur EG,Mack M,Hollingsworth T,Ba?a?th E(2012)Nitrogen isotope patterns in Alaskan black spruce re fl ect organic nitrogen sources and the activity of ectomycorrhizal fungi.Ecosystems 15:819–831

    Mayor JR,Mack MC,Schuur EAG(2015a)Decoupled stoichiometric,isotopic,and fungal responses of an ectomycorrhizal black spruce forest to nitrogen and phosphorus additions.Soil Biol Biochem 88:247–256

    Mayor J,Bahram M,Henkel T,Buegger F,Pritsch K,Tedersoo L(2015b)Ectomycorrhizal impacts on plant nitrogen nutrition:emerging isotopic patterns,latitudinal variation and hidden mechanisms.Ecol Lett 18:96–107

    McGuireKL(2007)Commonectomycorrhizalnetworksmaymaintain monodominance in a tropical rain forest.Ecology 88:567–574

    Moyer-Henry KA,Burton JW,Israel DW,Rufty TW(2006)Nitrogen transfer between plants:A15N natural abundance study with crop and weed species.Plant Soil 282:7–20

    Nara K(2006)Ectomycorrhizal networks and seedling establishment during early primary succession.New Phytol 169:169–178

    Nave LE,Nadelhoffer KJ,Moine JM,Diepen LTA,Cooch JK,Dyke NJ(2013)Nitrogen uptake by trees and mycorrhizal fungi in a successional northern temperate forest:insights from multiple isotopic methods.Ecosystems 16:590–603

    Pena R,Polle A(2014)Attributing functions to ectomycorrhizal fungal identities in assemblages for nitrogen acquisition under stress.ISME J 8:321–330

    Pickles BJ,Genney DR,Anderson IC,Alexander IJ(2012)Spatial analysis of ectomycorrhizal fungi reveals that root tip communities are structuredbycompetitive interactions.MolEcol21:5110–5123

    Selosse MA,Richard F,He XH,Simard SW(2006)Mycorrhizal networks:desliaisonsdangereuses?TrendsEcolEvol21:621–628

    Simard SW,Beiler KJ,Bingham MA,Deslippe JR,Philip LJ,Teste FP(2012)Mycorrhizal networks:mechanisms,ecology and modelling.Fungal Biol Rev 26:39–60

    Simard S,Asay A,Beiler K,Bingham M,Deslippe J,He XH,Philip L,Song YY,Teste F(2015)Resource transfer between plants through ectomycorrhizal fungal networks.In:Horton RT(ed)Mycorrhizal networks.Springer,Dordrecht,pp 133–176

    Southworth D,He XH,Swenson W,Bledsoe CS,Horwath WR(2005)Application of network theory to potential mycorrhizal networks.Mycorrhiza 15:589–595

    Teste FP,Simard SW,Durall DM,Guy RD,Jones MD,Schoonmaker AL(2009)Access to mycorrhizal networks and roots of trees:importance for seedling survival and resource transfer.Ecology 90:2808–2822

    Toju H,Yamamoto S,Tanabe AS,Hayakawa T,Ishii HS(2016)Network modules and hubs in plant-root fungal biomes.J R Soc Interface 13(116):20151097.doi:10.1098/rsif.2015.1097

    Wu BY,Nara K,Hogetsu T(2002)Spatiotemporal transfer of carbon-14-labelled photosynthate from ectomycorrhizalPinus densi fl oraseedlings to extraradical mycelia.Mycorrhiza 12:83–88

    不卡视频在线观看欧美| 亚洲一级一片aⅴ在线观看| 人人妻人人添人人爽欧美一区卜| 午夜激情av网站| 丝瓜视频免费看黄片| 91精品三级在线观看| 男女下面插进去视频免费观看 | 日韩电影二区| 纵有疾风起免费观看全集完整版| 国产精品国产三级国产av玫瑰| 国产激情久久老熟女| 桃花免费在线播放| 精品国产乱码久久久久久小说| 国产熟女午夜一区二区三区| 久久久亚洲精品成人影院| 免费人妻精品一区二区三区视频| 男女啪啪激烈高潮av片| 91国产中文字幕| 欧美bdsm另类| 色吧在线观看| 欧美国产精品一级二级三级| 国产成人av激情在线播放| 国产成人免费无遮挡视频| 国产精品三级大全| av国产精品久久久久影院| 人妻少妇偷人精品九色| 久久狼人影院| 纵有疾风起免费观看全集完整版| 久久ye,这里只有精品| 人妻少妇偷人精品九色| 国产又色又爽无遮挡免| 大香蕉久久成人网| 中文字幕最新亚洲高清| 欧美成人午夜精品| 18+在线观看网站| 22中文网久久字幕| 国产亚洲最大av| 国产成人aa在线观看| 日韩视频在线欧美| 亚洲一区二区三区欧美精品| 黄色怎么调成土黄色| 久久精品久久久久久久性| 熟女av电影| 欧美亚洲 丝袜 人妻 在线| 免费av中文字幕在线| 久久av网站| av网站免费在线观看视频| 精品久久蜜臀av无| 老司机亚洲免费影院| 乱码一卡2卡4卡精品| 在线天堂最新版资源| 亚洲国产精品专区欧美| 国产精品久久久久久av不卡| 欧美成人午夜免费资源| 香蕉丝袜av| 99热网站在线观看| 国产老妇伦熟女老妇高清| 丝袜喷水一区| 天天操日日干夜夜撸| 午夜久久久在线观看| 女性被躁到高潮视频| 天天影视国产精品| 男女免费视频国产| 狂野欧美激情性xxxx在线观看| 2021少妇久久久久久久久久久| 乱码一卡2卡4卡精品| 欧美日韩一区二区视频在线观看视频在线| 午夜激情久久久久久久| 久久精品夜色国产| 少妇的逼水好多| 日韩人妻精品一区2区三区| 一边亲一边摸免费视频| 日韩一区二区三区影片| 欧美人与善性xxx| 欧美精品一区二区免费开放| 午夜免费鲁丝| 狠狠精品人妻久久久久久综合| 黄色配什么色好看| 国产一区亚洲一区在线观看| 久久久久国产精品人妻一区二区| 久久久久久久久久成人| 亚洲国产av影院在线观看| 精品卡一卡二卡四卡免费| 亚洲伊人色综图| 精品国产一区二区三区久久久樱花| 国产成人91sexporn| 一级毛片我不卡| 国产色爽女视频免费观看| 精品熟女少妇av免费看| 色哟哟·www| 最近2019中文字幕mv第一页| 亚洲在久久综合| 亚洲天堂av无毛| 卡戴珊不雅视频在线播放| 久久久久久人妻| 欧美最新免费一区二区三区| 国产国拍精品亚洲av在线观看| 97人妻天天添夜夜摸| 久久毛片免费看一区二区三区| 大香蕉久久成人网| 成人无遮挡网站| 国产色爽女视频免费观看| 亚洲一码二码三码区别大吗| 青青草视频在线视频观看| 国产精品一二三区在线看| 欧美成人午夜免费资源| 欧美精品一区二区大全| 一级a做视频免费观看| 97精品久久久久久久久久精品| kizo精华| 日韩制服骚丝袜av| 国产精品一区www在线观看| 午夜免费男女啪啪视频观看| 26uuu在线亚洲综合色| 久久午夜福利片| 久久久国产欧美日韩av| 亚洲精品视频女| 久久人人爽av亚洲精品天堂| 国产亚洲精品第一综合不卡 | 亚洲国产色片| 亚洲,欧美,日韩| 国产 一区精品| 少妇猛男粗大的猛烈进出视频| 亚洲图色成人| 国产女主播在线喷水免费视频网站| 免费av中文字幕在线| 另类精品久久| 精品熟女少妇av免费看| 日韩成人av中文字幕在线观看| 自线自在国产av| 九九在线视频观看精品| 久久午夜综合久久蜜桃| 国产乱人偷精品视频| 永久网站在线| 观看美女的网站| 国产爽快片一区二区三区| 中文字幕另类日韩欧美亚洲嫩草| 亚洲欧洲日产国产| 男人舔女人的私密视频| 日本-黄色视频高清免费观看| 夫妻午夜视频| 久久午夜福利片| 久久久精品区二区三区| 亚洲国产成人一精品久久久| 欧美成人午夜免费资源| 久久av网站| 插逼视频在线观看| 街头女战士在线观看网站| 黑人高潮一二区| 卡戴珊不雅视频在线播放| 国产黄色视频一区二区在线观看| 在线观看人妻少妇| av有码第一页| 成人手机av| 少妇的逼好多水| 一区二区三区乱码不卡18| 午夜精品国产一区二区电影| 欧美变态另类bdsm刘玥| 免费观看在线日韩| 国产成人91sexporn| 国产精品久久久久久av不卡| 国产高清三级在线| 国产精品一国产av| 国产精品熟女久久久久浪| 国产又色又爽无遮挡免| 我的女老师完整版在线观看| 日韩一区二区三区影片| 国产白丝娇喘喷水9色精品| 国产精品人妻久久久影院| 久久人人爽人人片av| videosex国产| 青春草亚洲视频在线观看| 欧美 日韩 精品 国产| 熟女电影av网| 综合色丁香网| 国产淫语在线视频| 日本av免费视频播放| 午夜福利影视在线免费观看| 亚洲精品美女久久久久99蜜臀 | 日韩电影二区| 一二三四中文在线观看免费高清| 一级爰片在线观看| 久久精品久久久久久噜噜老黄| 国产精品久久久久成人av| 亚洲人成网站在线观看播放| 99久久中文字幕三级久久日本| 少妇人妻精品综合一区二区| 99国产综合亚洲精品| 精品久久国产蜜桃| 久久精品国产鲁丝片午夜精品| 22中文网久久字幕| 少妇猛男粗大的猛烈进出视频| 男女无遮挡免费网站观看| 一区在线观看完整版| 亚洲精品国产av成人精品| 国产又色又爽无遮挡免| 大码成人一级视频| 成年av动漫网址| 亚洲av欧美aⅴ国产| 久久青草综合色| 一级爰片在线观看| 精品国产一区二区久久| 国产精品国产三级国产专区5o| 国产av精品麻豆| www.熟女人妻精品国产 | 九色成人免费人妻av| 亚洲精品中文字幕在线视频| 日韩一本色道免费dvd| 大片免费播放器 马上看| 久久毛片免费看一区二区三区| 欧美bdsm另类| 国产精品一二三区在线看| 国产有黄有色有爽视频| 色视频在线一区二区三区| 国产一区有黄有色的免费视频| 91aial.com中文字幕在线观看| 久久精品国产综合久久久 | 亚洲成人手机| 亚洲,欧美精品.| av免费在线看不卡| 中文字幕免费在线视频6| 纵有疾风起免费观看全集完整版| 美女内射精品一级片tv| 亚洲在久久综合| 一级片'在线观看视频| 欧美亚洲日本最大视频资源| 久久久亚洲精品成人影院| 精品少妇内射三级| 在线精品无人区一区二区三| 多毛熟女@视频| 老熟女久久久| 观看av在线不卡| 午夜激情av网站| 亚洲av电影在线进入| 制服人妻中文乱码| 亚洲国产看品久久| 我的女老师完整版在线观看| 成年av动漫网址| freevideosex欧美| 国产 精品1| 久久女婷五月综合色啪小说| 天堂8中文在线网| 天天影视国产精品| 日日撸夜夜添| 国产深夜福利视频在线观看| 国产精品无大码| 男人爽女人下面视频在线观看| 伦理电影大哥的女人| 精品一区在线观看国产| 国产免费又黄又爽又色| 我的女老师完整版在线观看| 久久人人97超碰香蕉20202| 汤姆久久久久久久影院中文字幕| 亚洲国产色片| 99精国产麻豆久久婷婷| 日日爽夜夜爽网站| 亚洲国产精品999| 在线观看三级黄色| 九九爱精品视频在线观看| 欧美日韩成人在线一区二区| 亚洲欧美中文字幕日韩二区| 一级毛片黄色毛片免费观看视频| 99久久综合免费| 高清视频免费观看一区二区| 日韩av免费高清视频| 丝瓜视频免费看黄片| 一区二区三区精品91| av不卡在线播放| 欧美激情极品国产一区二区三区 | 免费大片黄手机在线观看| 国产亚洲午夜精品一区二区久久| 亚洲第一av免费看| 人人妻人人添人人爽欧美一区卜| 晚上一个人看的免费电影| 亚洲国产日韩一区二区| 久久久久久伊人网av| 国产69精品久久久久777片| 国产福利在线免费观看视频| 国语对白做爰xxxⅹ性视频网站| 亚洲成av片中文字幕在线观看 | 国产男女内射视频| 又黄又爽又刺激的免费视频.| 69精品国产乱码久久久| 妹子高潮喷水视频| 亚洲精品久久久久久婷婷小说| 色婷婷久久久亚洲欧美| 永久网站在线| 成人18禁高潮啪啪吃奶动态图| 韩国av在线不卡| 国产又色又爽无遮挡免| 大香蕉久久成人网| 午夜福利视频精品| 日日啪夜夜爽| 国产有黄有色有爽视频| 精品久久蜜臀av无| 97人妻天天添夜夜摸| 午夜视频国产福利| 成人毛片60女人毛片免费| 少妇人妻久久综合中文| 老司机影院成人| av视频免费观看在线观看| 日本与韩国留学比较| 久久精品久久精品一区二区三区| 黑人巨大精品欧美一区二区蜜桃 | 99久久精品国产国产毛片| 成人免费观看视频高清| 久久97久久精品| 免费在线观看完整版高清| 有码 亚洲区| 国产一区有黄有色的免费视频| 亚洲国产av影院在线观看| 如何舔出高潮| 欧美日韩成人在线一区二区| 建设人人有责人人尽责人人享有的| 母亲3免费完整高清在线观看 | 建设人人有责人人尽责人人享有的| 成人毛片a级毛片在线播放| 日韩欧美精品免费久久| 亚洲成人av在线免费| 啦啦啦视频在线资源免费观看| 尾随美女入室| 亚洲国产精品一区三区| 亚洲,欧美精品.| www.熟女人妻精品国产 | 亚洲精品久久午夜乱码| 99re6热这里在线精品视频| av一本久久久久| 精品一品国产午夜福利视频| 一级片'在线观看视频| 又黄又爽又刺激的免费视频.| 亚洲伊人久久精品综合| 国产av国产精品国产| 中国美白少妇内射xxxbb| www.熟女人妻精品国产 | 亚洲 欧美一区二区三区| 亚洲精品一二三| 精品久久国产蜜桃| 少妇被粗大的猛进出69影院 | 日日啪夜夜爽| 我的女老师完整版在线观看| 国产高清三级在线| 中文精品一卡2卡3卡4更新| 高清在线视频一区二区三区| 少妇人妻久久综合中文| 国产亚洲精品第一综合不卡 | av视频免费观看在线观看| 九色成人免费人妻av| 久久国产精品男人的天堂亚洲 | 免费在线观看完整版高清| 欧美精品av麻豆av| 亚洲欧美成人精品一区二区| 午夜久久久在线观看| 青春草视频在线免费观看| 五月玫瑰六月丁香| 日韩精品免费视频一区二区三区 | av线在线观看网站| 美女国产视频在线观看| 国产亚洲精品第一综合不卡 | 国产成人午夜福利电影在线观看| 亚洲av电影在线观看一区二区三区| 国产又色又爽无遮挡免| 国产精品女同一区二区软件| 日本黄色日本黄色录像| 亚洲 欧美一区二区三区| 亚洲精品美女久久av网站| 黄色怎么调成土黄色| 精品少妇黑人巨大在线播放| xxxhd国产人妻xxx| 十八禁网站网址无遮挡| 美女福利国产在线| 国产av码专区亚洲av| 亚洲综合精品二区| 成年美女黄网站色视频大全免费| 久久久久网色| 国产精品 国内视频| 午夜激情av网站| 美女大奶头黄色视频| av女优亚洲男人天堂| 午夜福利网站1000一区二区三区| 国产精品一区www在线观看| 天天操日日干夜夜撸| 人妻少妇偷人精品九色| 国产极品天堂在线| 婷婷色av中文字幕| 成人国产麻豆网| 男人舔女人的私密视频| 日日撸夜夜添| 国产色婷婷99| 一级毛片电影观看| 免费在线观看完整版高清| 天堂8中文在线网| 国产一区二区三区综合在线观看 | 亚洲第一区二区三区不卡| 99久国产av精品国产电影| 国产免费一级a男人的天堂| 女性被躁到高潮视频| 成人毛片a级毛片在线播放| 九色亚洲精品在线播放| 免费高清在线观看视频在线观看| 天堂俺去俺来也www色官网| 亚洲精品,欧美精品| 激情视频va一区二区三区| 亚洲熟女精品中文字幕| 丝瓜视频免费看黄片| 日日撸夜夜添| 精品视频人人做人人爽| 青春草亚洲视频在线观看| 亚洲性久久影院| 丰满迷人的少妇在线观看| 久久婷婷青草| 成人国语在线视频| 国产亚洲精品久久久com| 国产精品99久久99久久久不卡 | 欧美精品av麻豆av| 丁香六月天网| 极品人妻少妇av视频| 国产欧美日韩一区二区三区在线| 汤姆久久久久久久影院中文字幕| 久久精品夜色国产| a级毛片在线看网站| 97人妻天天添夜夜摸| 亚洲一码二码三码区别大吗| 色婷婷久久久亚洲欧美| 中文字幕人妻丝袜制服| 久久午夜福利片| 亚洲经典国产精华液单| 日日爽夜夜爽网站| 亚洲中文av在线| xxxhd国产人妻xxx| 91精品三级在线观看| 黑人欧美特级aaaaaa片| 考比视频在线观看| 国产精品免费大片| 精品国产一区二区三区四区第35| 又大又黄又爽视频免费| 久久久久久久国产电影| 亚洲av中文av极速乱| av女优亚洲男人天堂| 成人亚洲欧美一区二区av| 国产av国产精品国产| 亚洲性久久影院| 有码 亚洲区| 成年av动漫网址| 久久精品国产自在天天线| 欧美 日韩 精品 国产| 欧美bdsm另类| 三上悠亚av全集在线观看| 一区在线观看完整版| 亚洲成人一二三区av| a级毛片在线看网站| 亚洲精品日本国产第一区| 欧美xxⅹ黑人| 老司机亚洲免费影院| 狠狠婷婷综合久久久久久88av| 亚洲精品久久午夜乱码| 日韩在线高清观看一区二区三区| 国产一区亚洲一区在线观看| 欧美成人午夜免费资源| 制服诱惑二区| 免费黄色在线免费观看| 夫妻性生交免费视频一级片| 亚洲情色 制服丝袜| 亚洲人成网站在线观看播放| 国产一区亚洲一区在线观看| av黄色大香蕉| 国产国语露脸激情在线看| 成人二区视频| 一区二区三区精品91| 最近2019中文字幕mv第一页| 满18在线观看网站| 国产精品久久久久成人av| 国产精品一区二区在线观看99| 最近中文字幕高清免费大全6| 中文乱码字字幕精品一区二区三区| 女人被躁到高潮嗷嗷叫费观| 久久99一区二区三区| 精品久久久精品久久久| 你懂的网址亚洲精品在线观看| 精品卡一卡二卡四卡免费| 亚洲国产日韩一区二区| 一区二区三区四区激情视频| 精品少妇黑人巨大在线播放| 91在线精品国自产拍蜜月| 欧美激情国产日韩精品一区| 中文字幕最新亚洲高清| 国产精品人妻久久久久久| 色哟哟·www| 蜜桃在线观看..| 一级毛片电影观看| 亚洲精品久久成人aⅴ小说| 高清av免费在线| 日韩精品免费视频一区二区三区 | www日本在线高清视频| 日本-黄色视频高清免费观看| 成年人午夜在线观看视频| 亚洲欧美精品自产自拍| 毛片一级片免费看久久久久| 亚洲人成77777在线视频| 中文字幕亚洲精品专区| 波多野结衣一区麻豆| 婷婷色av中文字幕| 久久精品国产自在天天线| 欧美亚洲日本最大视频资源| 亚洲精品,欧美精品| 热re99久久精品国产66热6| 午夜av观看不卡| 熟妇人妻不卡中文字幕| 亚洲av成人精品一二三区| 日本91视频免费播放| 久久久久视频综合| 国产xxxxx性猛交| 日韩av免费高清视频| 久久毛片免费看一区二区三区| 成人漫画全彩无遮挡| 免费在线观看完整版高清| 一区二区三区四区激情视频| 国产白丝娇喘喷水9色精品| 国产1区2区3区精品| 久久久国产精品麻豆| 亚洲国产最新在线播放| 精品国产露脸久久av麻豆| 婷婷色综合www| 成人毛片60女人毛片免费| 亚洲人与动物交配视频| 街头女战士在线观看网站| 亚洲精品国产av蜜桃| 日本vs欧美在线观看视频| 又黄又爽又刺激的免费视频.| 亚洲av男天堂| 97在线人人人人妻| 少妇人妻久久综合中文| 久久久久久人妻| 两性夫妻黄色片 | 18禁国产床啪视频网站| www.熟女人妻精品国产 | 九色成人免费人妻av| 日本欧美视频一区| 少妇的丰满在线观看| 国产成人精品一,二区| 国产成人精品婷婷| 国产又爽黄色视频| 少妇的丰满在线观看| 亚洲欧美色中文字幕在线| 亚洲一级一片aⅴ在线观看| 国产在线一区二区三区精| 中文欧美无线码| 国产精品久久久久久精品电影小说| 大陆偷拍与自拍| 亚洲精品av麻豆狂野| 亚洲中文av在线| 国产1区2区3区精品| 十八禁网站网址无遮挡| 人人澡人人妻人| 久久亚洲国产成人精品v| av天堂久久9| 国产午夜精品一二区理论片| 国产精品免费大片| 在线观看免费视频网站a站| 一级a做视频免费观看| 国产av一区二区精品久久| 一级毛片电影观看| 蜜桃在线观看..| 亚洲精品久久午夜乱码| 欧美激情极品国产一区二区三区 | 亚洲国产看品久久| 伊人久久国产一区二区| 日韩av在线免费看完整版不卡| 99热这里只有是精品在线观看| 少妇被粗大猛烈的视频| 精品亚洲成国产av| 亚洲国产欧美在线一区| h视频一区二区三区| 欧美性感艳星| 亚洲国产日韩一区二区| 欧美日韩国产mv在线观看视频| 满18在线观看网站| 国产日韩欧美视频二区| av福利片在线| 老女人水多毛片| 国产精品欧美亚洲77777| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 人成视频在线观看免费观看| 黄网站色视频无遮挡免费观看| 一区在线观看完整版| 中文字幕制服av| 亚洲国产精品专区欧美| 久热这里只有精品99| 中文字幕av电影在线播放| 国产男女超爽视频在线观看| 亚洲四区av| 最新的欧美精品一区二区| 欧美日韩亚洲高清精品| 国产麻豆69| 亚洲三级黄色毛片| 美女xxoo啪啪120秒动态图| 十八禁网站网址无遮挡| 九色成人免费人妻av| 欧美激情 高清一区二区三区| 91精品国产国语对白视频| 在线天堂最新版资源| 97人妻天天添夜夜摸| av免费观看日本| 又黄又爽又刺激的免费视频.| 欧美精品av麻豆av| 女人久久www免费人成看片| 欧美国产精品va在线观看不卡| 国产精品国产三级专区第一集| 免费黄网站久久成人精品| 欧美精品国产亚洲| 亚洲成av片中文字幕在线观看 | 欧美性感艳星| 免费高清在线观看日韩| 黄色视频在线播放观看不卡| 69精品国产乱码久久久| 亚洲第一av免费看|