• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The properties of fl ax fi ber reinforced wood fl our/high density polyethylene composites

    2018-03-19 05:08:46JingfaZhangHaigangWangRongxianOuQingwenWang
    Journal of Forestry Research 2018年2期

    Jingfa Zhang?Haigang Wang?Rongxian Ou?Qingwen Wang,

    Introduction

    Due to their increasing application,wood-plastic composites(WPC)have received signi fi cant attention from both applied science and industry.WPC is widely utilized in decking,trays,fencing,windows and playground equipment due to several advantages over wood or plastic alone(Jiang and Kamdem 2004;Markarian 2002).However,applications of WPC for structural construction are still restricted due to its weak mechanical performance resulting from the inherent incompatibility between hydrophilic wood and hydrophobic polyole fi n matrix(Wu et al.2014).This in turn results in low impact toughness and creep strain(Lai et al.2003).

    In order to enhance the mechanical and physical performance of WPC,different physical processing methods(Rong et al.2001;Ou et al.2014;Ferreira et al.2014),as well as chemical modi fi cations(Wei et al.2013;Bledzki et al.2015;Dong et al.2014)have been utilized to treat wood fl our(Facca et al.2007;Aggarwal et al.2013).However,all current methods have shortcomings,such as complicated operation,high cost,or pollution,constraining their commercial development.Adding reinforcement was always an effective method to improve the mechanical properties of the resulting composites.Hybridization of wood fi ber with high-strength fi bers is suspected to significantly improve the mechanical properties of resulting composites.Reinforcing fi bers,such as carbon fi ber,glass fi ber,basalt fi ber,and synthetic fi ber are widely used(Rahmat and Hubert 2011;Zhao et al.2015;Yuan et al.2013).Adding glass fi ber has been reported to enhance fl exure properties and impact strength of WF/PE composites(Thwe and Liao 2002;Zolfaghari et al.2013;Jiang et al.2003).Incorporation of basalt fi ber produced similar results(Chen et al.2013).The addition of a small amount(2–3%)of Kevlar fi ber has been shown to simultaneously improve the strength and toughness of WF/PE composites(Ou et al.2010).In addition,carbon fi bers have been used in WPC,resulting in signi fi cant improvements of mechanical properties(Zhou et al.2014).However,all of these fi bers are derived from non-renewable resources and all of them are mixed with wood fl our or plastic prior to pelleting.

    With increasing environmental consciousness,the use of natural cellulosic- fi ber (NC-Fiber) as reinforcement increased with a special emphasis on the use of hemp.Mechanical properties of different NC-Fibers(hemp,jute,kenaf and paper fi ber)indicate that they have the potential to substitute glass fi ber as a reinforcement in a speci fi c state(Wambua et al.2003;Yang et al.2015).Hemp fi ber has been widely used in a reinforced plastics matrix(Bledzki et al.2015;Corrales et al.2007).Recently,hemp has been added into WPC,resulting in improved tensile properties of wood fl our/kenaf fi ber/polypropylene hybrid composites compared to composites without kenaf fi bers(Mirbagheri et al.2007).

    Flax fi ber(FF)is a natural plant fi ber with high strength due to high cellulose content(Zhang and Yu 2003).The global production of FF was 311,000 tons in 2014(Chyxx.com 2016).Most of the FF is usually used in the textile industry.Although the cost of FF is higher than wood- fl our,it is less expensive than the cost of synthetic materials and is increasingly used in WPC.

    This study was designed to determine the reinforcing effects of fl ax fi bers( fl ax is widely planted in northeastern China)and the properties of the resulting WPC,while the biomass material content remained the same.Subsequent to mixture extrusion,the fi bers were mixed with the WF/PE particles to lessen the damage to the fi bers.Mechanical properties,dynamic mechanical properties,creep resistance,and rheological behavior of the composites were analyzed.Interfacial adhesion and fl ax features were characterized via scanning electron microscopy.

    Materials and methods

    Materials

    Flax fi bers with an average diameter of 20 μm were commercially obtained and cut into lengths of 5–10 mm.The fl ax is grown in Heilongjiang province,China.HDPE pellets(5000 S)with a density of 0.954 g cm-3and a melt fl ow index of 0.7 g 10 min-1were purchased from Daqing Petrochemical Co.,Daqing,China.Wood fl our(WF)measuring 40–80 mesh wassupplied by the Harbin Yongxu Company.Poplar is used for the wood fl our and is grown in Heilongjiang.Maleic anhydride grafted polyethylene(MAPE)was supplied by the Shanghai Sunny New Technology Development Co.,Ltd.,with a MA grafting ratio of 0.9 wt%and a melt fl ow index of 2 g 10 min-1(190°C).

    Sample preparation

    In order to avoid fi ber damaging during pelletizing,FF was added into the WF/PE composite subsequent to the twinscrew granulation process.This is different from most previous preparing processes of fi ber reinforced WPC and was as follows:(1)WF and FF were dried at 103°C for 24 h and then stored in a sealed container for later use;(2)WF,HDPE and MAPE were mixed using a speci fi c ratio(Table 1)in a high-speed mixer for a total of 5 min;(3)subsequently transferred to a twin-screw extruder to produce WF/PE pellet particles.The temperature of the extruder ranged from 145 to 170°C,increasing by increments of 5°C,with a rotation speed of 50 rpm;(4)particles and FF were then blended in the high-speed mixer for 20 min and then extruded,resulting in a FF/WF/PE composite sheetwith a cross sectionaldimension of 40 mm×4 mm.The processing temperature for extrusion was 160 °C during the melting period and 170 °C during the die zone.Rotation speed of the single-screw was 20 rpm.

    Mechanical tests

    Specimens measuring 80 mm×13 mm×4 mm were cut from the FF/WF/PE sheet and tested under three-point bending using a universal mechanical machine with a 50 KN load cell(CMT5504,The MTS(China)Co.,Ltd.),according to ASTM D790-2004.A cross head speed of 2.0 mm min-1was used and fi ve replicates used for each formulation.

    Dumbbell-shaped tensile specimens measuring 165 mm×13 mm×4 mm were tested in accordance with ASTM D638-2004 using the same universal mechanical machine.A cross head speed of 5.0 mm min-1and a span length of 50 mm were used.Five parallel samples were tested.

    Unnotched charpy impact testing was conducted on standard samples with nominal dimensions of 80 mm×10 mm×4 mm using an impact instrument(CJ5,Chengde Testing Machine Co.,Ltd.China)inaccordance with ISO 179-2000.There were ten parallel samples in each group.

    Table 1 Formulations of the composites for extruding

    Dynamic mechanical analysis

    Dynamic mechanical properties of the composites were analyzed via a dynamic mechanical analyzer(DMA Q800,TA Instruments,New Castle,USA).Tests were performed using the single cantilever strain controlled mode with oscillating amplitude of 50 μm and a frequency of 1 Hz.The temperature ranged from-40 to 130°C at increasing intervals of 3°C min-1.Three specimens with dimensions of 35 mm×12 mm×3 mm were tested.

    Creep measurement

    The 24 h creep test of the composite sample 100 mm×17 mm×4 mm was performed using a RD-100 electronic creep testing instrument(Changchun Ke Xin Experimental Instrument Co.,Ltd,China)at 23°C.The span was 64 mm and the loading force 30 N(approximately 15% of the maximum load).

    Torque rheology

    Rheological behavior was evaluated using the Haake torque rheometer(Polylab OS,Thermo Scienti fi c,Germany)equipped with two counter rotating rotors.WF/PE particles and FF were quickly forced into the mixing chamber when the rotors began to rotate.The test was run at 175°C and 50 rpm for a total of 10 min and with a constant degree of fi lling of 70%.Three parallel samples were tested.

    Scanning electron microscopy(SEM)

    Cryo-fractured surfaces were produced by breaking of the FF/WF/PE composites under liquid nitrogen conditions and subsequent sputter coating with gold.The fractured surfaces were analyzed with a scanning electron microscope(FEI QUNGTA200,USA)at an accelerating voltage of 10 kV.

    Fig.1 Effects of FF content on fl exure and tensile properties of WF/FF/PE composites:a fl exural strength and modulus,b tensile strength and modulus.The error shows the standard deviation from the average value

    Results and discussion

    Mechanical properties of composites

    Fig.2 The un-notched impact strength of FF/WF/PE composites.Ten specimens were tested for each FF content.The error bars show the standard deviation from the average value

    Compared to WF/PE,the fl exural strength and modulus of WF/FF/PE-9 increased by 14.6 and 51.4%,respectively(Fig.1a).However,the results started to decrease for values above 9%FF content.Numerous small cracks would generate when the composite was subjected to external loads.With increasing force,these cracks extended until the material was damaged.However,FF crosses a crack and prevents further expansion.At material failure,FF bears the majority of the force.With further loading,increasing FF would be pulled out or off,consuming a large amount of energy.Therefore,adding FF into WF/PE composites increases the fl exural strength of WF/FF/PE.The modulus of FF was higher than that of WF(Cao et al.2014),resulting in the improvent of fl exual modulus.In addition,synergistic enhancement of physical interaction among WF,FF and PE was detected,limiting their respective deformation.The interaction hindered polyethylene molecular chain slippage.Consequently,the fl exual strength and modulus improved.However,FF may bunch up with increasing content.This was the reason for decreasing fl exural strength and modulus of FF/WF/PE-12.Increasing the content of fl ax fi ber resulted in an increase in both tensile strength and modulus of the resulting composites of 4.3 and 13.6%,respectively(Fig.1b).Compared to fl exural strength and modulus,the tensile strength showed no obvious changes.This is due to FF being too short to generate suf fi cient interfacial shear strength to bear the force.Most of the FF was arranged along the extrusion direction and therefore,the tensile force would easily extend along the interface.The improvement of tensile performance was suboptimal.

    Fig.3 The Storage modulus(G′)and loss modulus(G′)of FF/WF/HDPE composites.The curve was an average of three parallel samples.WF wood fl our;FF fl ax fi ber;PE polyethylene

    The unnotched impact strengths of the composites increased considerably when fl ax fi ber was added.The results of the impact strength study are depicted in Fig.2.With fl ax fi ber loading of 12 wt%,an increase of 26.5%in unnotched impact strength was obtained.

    The unnotched impact strength of composites is affected by crack initiation and propagation energy.When fl ax fi ber was loaded,the impact strength improved due to the loading being transferred to the FF by the shear forces between FF and the matrix.Therefore,FF bore the impact force until the fi bers were either pulled off or out.At the same time,wood fl our and fl ax fi bers twined with each other.Based on the crazing cut and fi ber crack resistance theory(Jia et al.2007)WPC produces numerous small cracks during early damage due to external forces.FF stretched across the cracks,thus arresting developing cracks.Consequently,adding fl ax fi bersigni fi cantly improved the impact properties of WPC.

    Dynamic mechanical analysis

    Fig.4 The loss tangent(tanδ)of FF/WF/HDPE composites.WF wood fl our;FF fl ax fi ber;PE polyethylene

    The storage modulus of composites increased subsequent to adding FF(Fig.3),echoing the fl exure modulus.The storage modulus of FF/WF/PE composites decreased due to an increase in temperature and converged to a narrow range at high temperatures.The reduction of storage modulus(G′)with the temperature rise was due to matrix softening,and the G′of FF/WF/PE composites initiation of the relaxation process which is the natural character of polymers(Pothan et al.2003).The G′fi rst increased,but then decreased with increasing FF content.There are two reasons for this:on the one hand,the stiffness of FF is higher than that of WF(Cao et al.2014).Therefore,adding FF improves the modulus of composites.On the other hand,FF and WF interact and form a grid-like structure,embedded in the viscoelastic matrix(Huang and Terentjev 2012).However,as FF content increased to 12%,FF reunited,leading to a drop of the G′of FF/WF/PE.The loss modulus of the material is associated with either the viscous response or the dampening effect of the material.Figure 3 shows that the change in loss modulus(G′′)was similar to that of the storage modulus and peaked in the transition region at approximately 60°C.This relaxation peak is known as α-relaxation of HDPE,and is related to a complex multi-relaxation process associated with the molecular motion of the HDPE crystalline region.The temperature of α-relaxation increased with FF loading.However,it dropped back to initial levels when the content of FF was increased to 12 wt%.FF limited the movement of the HDPE molecules due to their three dimensional network structure(Fig.7e).However,the FF bunched up,disturbing the continuity of the matrix at relatively high contents of FF(12 wt%).

    Fig.5 Creep resistance behavior of WF/FF/PE composites.WF wood fl our;FF fl ax fi ber;PE polyethylene

    Fig.6 Effects of FF content on the mixing torque of the composites.The curve is an average of two parallel samples.WF wood fl our;FF fl ax fi ber;PE polyethylene

    The tanδ,which shows differences in the viscoelastic response of the composite,is a ratio between the loss modulus and the storage modulus.In a low temperature range,the content of FF had an obvious effect on the magnitude of tanδ(Fig.4).With increasing FF content,the FF/WF/PE showed a decreased value of tanδ as compared to WF/PE composites.This indicated that the FF/WF/PE composites had more elastic character than typical curves.

    Creep measurement

    Adding FF improved creep resistance(Fig.5)and with increasing content,the value gradually decreased.This indicates that a small amount of FF could improve creep resistance and a content of 9%FF was found to be optimal,resulting in effective creep reduction.Further increases of FF content may cause poor dispersion of FF within the matrix,a negative factor for properties such as creep value and tensile strength.Wang et al.(2015)reported that with increasing size of wood fi bers,the creep strain was reduced.This phenomenon was attributed to the large fi ber aspect ratio which can lead to improved creep resistance.Compared to WF,there were more friction forces between FF and plastic due to the larger surface area of a single FF fi ber compared to a WF particle.In addition,the interaction between FF,WF,and HDPE was enhanced with increasing FF content,restraining matrix deformation.

    Fig.7 The SEM micrographs of the fractured surfaces of WPCs(a),FF/FF/PE-3(b and c),FF/FF/PE-6(d),FF/FF/PE-9(e),and FF/FF/PE-12(f)

    Rheological properties during processing

    The balance torque and temperature of the composite melts increased with increasing FF content(Fig.6).This may be attributed to the interaction among FF,WF,and HDPE inhibiting the thermal mobility of the HDPE chains.Moreover,adding FF increased the internal friction of the composites and improved shear heat.This led to a rise in melt temperature.

    Micrographic analysis of fracture surface

    Most wood particles in the HDPE matrix were well-bonded as a result of coupling.However,the interface was noticeable(Fig.7a).Furthermore,the interface between FF and HDPE was similar to that of the WF/PE composites(Fig.7b).Figure 7c indicates that fi ber pullout was the dominant mode of failure for the WF/FF/PE composites.In a general way,the failure modes of fi ber-reinforced polymers included interface de-bonding, fi ber fracture, fi brillation,and buckling under different test conditions(Yue and Padmanabhab 1999).

    With increasing FF content,the complicated con fi guration ofFF becomesincreasingly bene fi cialto the mechanical interlocking among FF,wood- fl our,and the resin matrix forming a three-dimensional network structure(Fig.7e).This can lead to a more ef fi cient stress transfer between the FF and matrix,thereby producing a composite with superior strength and toughness as compared to that of WPCs.Figure 7f shows FF agglomeration present in the composite when the content was as high as 12%.This furtherdestroyed the continuity ofthe matrix and decreased the fl exural and tensile strength(Fig.1).

    Conclusions

    The incorporation of FF as a reinforcement material plays a vital role in WF/PE composites,improving mechanical properties and dynamic modulus without changing the content of biomass fi bers.This has mainly been attributed to the high strength of the fl ax fi ber and its excellent compatibility with both wood- fl our and HDPE matrix.Adding fl ax fi bers can improve toughness and creep resistance of WPC.However,the processing performance of WF/FF/PE declined.

    Aggarwal PK,Chauhan S,Raghu N,Karmarkar S,Shashidhar GM(2013)Mechanical properties of bio- fi bers reinforced high density polyethylene composites:effect of coupling agents and bio- fi llers.J Reinf Plast Compos 32:1722–1732

    Bledzki AK,Mamun AA,Jaszkiewicz A,Erdmann K(2015)Polypropylene biocomposites reinforced with softwood,abaca,jute,and kenaf fi bers.Ind Crop Prod 70:91–99

    Cao Y,Wang WH,Wang QW(2014)Application of mechanical model for natural fi bre reinforced polymer composites.Mater Res Innov 18:354–357

    Chen JX,Wang Y,Gu CL,Liu JX,Liu YF,Li M,Lu Y(2013)Enhancement of the mechanical properties of basalt fi ber-woodplastic composites via maleic anhydride grafted high-density polyethylene(mape)addition.Materials 6:2483–2487

    CNII(2016)The analysis of the regional distribution and production of fl ax fi ber and fi ber bundle in the world in 2014,China.http://www.chyxx.com/industry/201602/388177.html

    Corrales F,Vilaseca F,Llop M,Girones J,Mendez JA,Mutje P(2007)Chemical modi fi cation of jute fi bers for the production of green-composites.J Hazard Mater 144:730–735

    Dong AX,Yu YY,Yuan JG,Wang Q,Fan XR(2014)Hydrophobic modi fi cation of jute fi ber used for composite reinforcement via laccase-mediated grafting.Appl Surf Sci 301:418–427

    Facca AG,Kortschot MT,Yan N(2007)Predicting the tensile strength of natural fi bre reinforced thermoplastics.Compos Sci Technol 67:2454–2466

    Ferreira MS,Sartori MN,Oliveira RR,Guven O,Moura EA(2014)Short vegetal- fi ber reinforced HDPE—A study of electron-beam radiation treatment effects on mechanical and morphological properties.Appl Surf Sci 310:325–330

    Huang YY,Terentjev EM(2012)Dispersion of carbon nanotubes:mixing,sonication,stabilization,and composite properties.Polymers 4:275–295

    Jia Z,Jiang B,Cheng GX,Yang XB(2007)Research progress of fi bers reinforced cement based composites.Mater Adminicle 8:65–68

    Jiang HH,Kamdem DP(2004)Development of poly(vinyl chloride)/wood composites.A literature review.J Vinyl Addit Technol 10:59–69

    Jiang HH,Pascal Kamdem D,Bezubic B,Ruede P(2003)Mechanical properties of poly(vinyl chloride)/wood fl our/glass fi ber hybrid composites.J Vinyl Addit Technol 9:138–145

    Lai SM,Yeh FC,Wang Y,Chan HC,Shen HF(2003)Comparative study of maleated polyole fi ns as compatibilizers for polyethylene/wood fl our composites.J Appl Polym Sci 87:487–496

    Markarian J(2002)Additive developments aid growth in woodplastic composites.Plast Addit Compd 4:18–21

    Mirbagheri J,Tajvidi M,Hermanson JC,Ghasemi I(2007)ensile properties of wood fl our/kenaf fi ber polypropylene hybrid composites.J Appl Polym Sci 105:3054–3059

    Ou RX,Zhao H,Sui SJ,Song YM,Wang QW(2010)Reinforcing effects of kevlar fi ber on the mechanical properties of woodfl our/high-density-polyethylene composites.Compos A Appl Sci Manuf 41:1272–1278

    Ou RX,Xie YJ,Wang QW,Sui SJ,Wolcott MP(2014)Effects of ionic liquid on the rheological properties of wood fl our/high density polyethylene composites.Compos Part a Appl Sci Manuf 61:134–140

    Pothan LA,Oommen Z,Thomas S(2003)Dynamic mechanical analysis of banana fi ber reinforced polyester composites.Compos Sci Technol 63:283–293

    Rahmat M,Hubert P(2011)Carbon nanotube–polymer interactions in nanocomposites:a review.Compos Sci Technol 72:72–84

    Rong MZ,Zhang MQ,Liu Y,Yang GC,Zeng HM(2001)The effect of fi ber treatment on the mechanical properties of unidirectional sisal-reinforced epoxy composites.Compos SciTechnol 61:1437–1447

    Thwe MM,Liao K(2002)Effects of environmental aging on the mechanical properties of bamboo–glass fi ber reinforced polymer matrix hybrid composites.Compos A Appl Sci Manuf 33:43–52

    Wambua P,Ivens J,Verpoest I(2003)Natural fi bres:can they replace glassin fi bre reinforced plastics.ComposSciTechnol 63:1259–1264

    Wang WH,Huang HB,Du HH,Wang H(2015)Effects of fi ber size on short-term creep behavior of wood fi ber/HDPE composites.Polym Eng Sci 55:693–700

    Wei LQ,McDonald AG,Freitag C,Morrell JJ(2013)Effects of wood fi ber esteri fi cation on properties,weatherability and biodurability of wood plastic composites.Polym Degrad Stab 98:1348–1361

    Wu QL,Chi K,Wu YQ,Lee S(2014)Mechanical,thermal expansion,and fl ammability properties of co-extruded wood polymer composites with basalt fi ber reinforced shells.Mater Des 60:334–342

    Yang XH,Zhang XQ,Wang WH,Huang HB,Sui SJ(2015)Properties of paper mill sludge–wood fi ber–HDPE composites after exposure to xenon-arc weathering.J For Res 26(2):509–515

    Yuan FP,Ou RX,Xi?e YJ,Wang QW(2013)Reinforcing effects of modi fi ed Kevlar fi ber on the mechanical properties of wood fl our/polypropylene composites.J For Res 24:149–153

    Yue CY,Padmanabhab K(1999)Interfacial studies on surface modi fi ed kevlar fi bre/epoxy matrix composites.Compos B Eng 30:205–217

    Zhang YM,Yu WD(2003)Study on the physical and chemical properties of fl ax fi bers.Plant Fiber Prod 25:130–134

    Zhao ZZ,Chen X,Wang X(2015)Deformation behavior of woven glass/epoxy composite substrate under thermo-mechanical loading.Mater Des 82:130–135

    Zhou ZF,Xu M,Yang ZZ,Li XX,Shao DW(2014)Effect of maleic anhydride grafted polyethylene on the properties of chopped carbon fi ber/wood plastic composites.J Reinf Plast Compos 33:1216–1225

    Zolfaghari A,Behravesh AH,Adli A(2013)Continuous glass fi ber reinforced wood plastic composite in extrusion process:mechanical properties.Mater Des 51:701–708

    亚洲精品乱码久久久v下载方式 | 97碰自拍视频| 亚洲av美国av| 18禁美女被吸乳视频| 香蕉国产在线看| 婷婷丁香在线五月| 国产伦一二天堂av在线观看| 亚洲欧美日韩无卡精品| 嫩草影院精品99| 99精品久久久久人妻精品| 久久人妻av系列| 婷婷亚洲欧美| 午夜a级毛片| 一个人免费在线观看电影 | 五月伊人婷婷丁香| 免费人成视频x8x8入口观看| 三级毛片av免费| 怎么达到女性高潮| 12—13女人毛片做爰片一| 国产精品一及| 久久精品91无色码中文字幕| 久久伊人香网站| 欧美日韩瑟瑟在线播放| 久久人人精品亚洲av| a级毛片a级免费在线| 夜夜爽天天搞| 伦理电影免费视频| 精品一区二区三区视频在线观看免费| 老汉色av国产亚洲站长工具| 日韩有码中文字幕| 免费一级毛片在线播放高清视频| 此物有八面人人有两片| 舔av片在线| 熟女人妻精品中文字幕| 中文字幕高清在线视频| 最好的美女福利视频网| 国产精品女同一区二区软件 | 亚洲国产精品sss在线观看| 久久久精品欧美日韩精品| 啪啪无遮挡十八禁网站| 一本久久中文字幕| 亚洲欧美日韩高清专用| 亚洲成人久久爱视频| 国产日本99.免费观看| 亚洲国产中文字幕在线视频| 九色国产91popny在线| 亚洲人成网站高清观看| 在线国产一区二区在线| 一个人看的www免费观看视频| 国内少妇人妻偷人精品xxx网站 | 中出人妻视频一区二区| 国产高清videossex| 免费观看精品视频网站| 无限看片的www在线观看| 人人妻,人人澡人人爽秒播| 色综合站精品国产| 国产成人av教育| 日日摸夜夜添夜夜添小说| 免费在线观看影片大全网站| 色综合站精品国产| 亚洲人成伊人成综合网2020| 搞女人的毛片| 久久精品aⅴ一区二区三区四区| 国产成人精品久久二区二区91| 精品久久蜜臀av无| 一二三四在线观看免费中文在| 男女下面进入的视频免费午夜| 69av精品久久久久久| 精品日产1卡2卡| 少妇熟女aⅴ在线视频| 男女午夜视频在线观看| 日韩欧美一区二区三区在线观看| 日韩精品青青久久久久久| 无限看片的www在线观看| 亚洲自偷自拍图片 自拍| 欧美激情久久久久久爽电影| 日日夜夜操网爽| 国产成人精品久久二区二区免费| 男女那种视频在线观看| 欧美日韩国产亚洲二区| 亚洲最大成人中文| 一进一出抽搐gif免费好疼| 国产精品香港三级国产av潘金莲| 哪里可以看免费的av片| 国产成人精品久久二区二区91| 精品熟女少妇八av免费久了| 丰满人妻熟妇乱又伦精品不卡| 欧美高清成人免费视频www| 中文亚洲av片在线观看爽| 久久精品国产亚洲av香蕉五月| 最近最新免费中文字幕在线| 亚洲欧美日韩高清在线视频| 亚洲av成人不卡在线观看播放网| 18禁美女被吸乳视频| 欧美极品一区二区三区四区| 亚洲熟女毛片儿| 亚洲av美国av| 亚洲欧美激情综合另类| 国产精品99久久99久久久不卡| 久久精品aⅴ一区二区三区四区| 国产精品久久久久久人妻精品电影| 校园春色视频在线观看| 欧美三级亚洲精品| 女生性感内裤真人,穿戴方法视频| 亚洲自偷自拍图片 自拍| 久久人人精品亚洲av| 日本a在线网址| 99久国产av精品| 国内精品一区二区在线观看| 国产伦精品一区二区三区视频9 | 18禁黄网站禁片午夜丰满| 波多野结衣巨乳人妻| 日韩精品青青久久久久久| 国产精品精品国产色婷婷| 国产亚洲欧美98| 亚洲一区二区三区不卡视频| 国产精品av视频在线免费观看| 久久久久国内视频| 99国产精品99久久久久| 在线观看一区二区三区| 国产亚洲精品久久久com| 99热精品在线国产| av国产免费在线观看| 精品免费久久久久久久清纯| 欧美大码av| 成人av一区二区三区在线看| 日本a在线网址| 久久伊人香网站| 午夜福利在线观看免费完整高清在 | 最近在线观看免费完整版| 国产伦精品一区二区三区四那| 国产精品久久久久久亚洲av鲁大| 亚洲黑人精品在线| 国产欧美日韩精品一区二区| 丁香欧美五月| 成年人黄色毛片网站| 一级毛片精品| 在线视频色国产色| 色精品久久人妻99蜜桃| 一区二区三区国产精品乱码| 国产精品香港三级国产av潘金莲| 久9热在线精品视频| 在线国产一区二区在线| 色综合亚洲欧美另类图片| 美女cb高潮喷水在线观看 | 亚洲九九香蕉| 制服人妻中文乱码| av天堂在线播放| 欧美成人性av电影在线观看| 亚洲欧美日韩高清在线视频| 美女免费视频网站| 国产真实乱freesex| 亚洲午夜理论影院| 1024香蕉在线观看| 夜夜夜夜夜久久久久| 国产精品国产高清国产av| 久久精品国产清高在天天线| 欧美色欧美亚洲另类二区| 成年版毛片免费区| 琪琪午夜伦伦电影理论片6080| 性欧美人与动物交配| 网址你懂的国产日韩在线| 久久精品国产亚洲av香蕉五月| 香蕉国产在线看| netflix在线观看网站| avwww免费| 久久九九热精品免费| 少妇的逼水好多| 91av网一区二区| 18美女黄网站色大片免费观看| 精品国内亚洲2022精品成人| 国产一区二区在线观看日韩 | 日本a在线网址| 亚洲国产欧美一区二区综合| 桃色一区二区三区在线观看| 久久久久久久久中文| 国产精品综合久久久久久久免费| 狠狠狠狠99中文字幕| 最新美女视频免费是黄的| 久久久久久九九精品二区国产| 亚洲九九香蕉| 日韩大尺度精品在线看网址| 搡老岳熟女国产| 一本久久中文字幕| 欧美精品啪啪一区二区三区| 麻豆国产97在线/欧美| 亚洲精品456在线播放app | av女优亚洲男人天堂 | 性色avwww在线观看| 美女被艹到高潮喷水动态| 搡老岳熟女国产| 国产亚洲精品久久久com| 在线观看舔阴道视频| 久久这里只有精品中国| aaaaa片日本免费| 成年版毛片免费区| 久久中文字幕人妻熟女| 91老司机精品| 日本 av在线| 欧美色视频一区免费| 国产伦一二天堂av在线观看| 99热只有精品国产| 成人无遮挡网站| 日本黄色片子视频| 麻豆一二三区av精品| 精品国产超薄肉色丝袜足j| 搡老岳熟女国产| 俄罗斯特黄特色一大片| 熟女人妻精品中文字幕| 国产1区2区3区精品| 大型黄色视频在线免费观看| 欧美一区二区国产精品久久精品| 最近在线观看免费完整版| 美女被艹到高潮喷水动态| 久99久视频精品免费| 狂野欧美白嫩少妇大欣赏| 久久久久久久久免费视频了| 女同久久另类99精品国产91| 美女大奶头视频| 国产一区二区在线av高清观看| 午夜免费激情av| 欧美丝袜亚洲另类 | 极品教师在线免费播放| 熟女人妻精品中文字幕| 麻豆一二三区av精品| 97碰自拍视频| 天天添夜夜摸| 色视频www国产| 亚洲av中文字字幕乱码综合| 欧美又色又爽又黄视频| 淫秽高清视频在线观看| 老司机午夜十八禁免费视频| 亚洲午夜理论影院| 亚洲专区中文字幕在线| 国产成人aa在线观看| 亚洲精品456在线播放app | 男女床上黄色一级片免费看| 一级作爱视频免费观看| 国产日本99.免费观看| 不卡av一区二区三区| 男女做爰动态图高潮gif福利片| bbb黄色大片| 成年版毛片免费区| 嫩草影院精品99| 两个人看的免费小视频| 久久精品夜夜夜夜夜久久蜜豆| 欧美日韩福利视频一区二区| 国产亚洲精品久久久久久毛片| 国产精品精品国产色婷婷| 国产高清三级在线| 久久精品国产亚洲av香蕉五月| 免费在线观看亚洲国产| 999精品在线视频| 欧美激情在线99| 少妇的逼水好多| 色吧在线观看| 亚洲男人的天堂狠狠| 国产精品久久久久久亚洲av鲁大| 午夜精品久久久久久毛片777| 日韩精品中文字幕看吧| 成人特级av手机在线观看| 黄色丝袜av网址大全| 国产三级在线视频| 女警被强在线播放| 每晚都被弄得嗷嗷叫到高潮| 十八禁人妻一区二区| 99国产精品一区二区三区| 哪里可以看免费的av片| 男女那种视频在线观看| 亚洲片人在线观看| 老司机福利观看| 国产精品久久久久久亚洲av鲁大| 99在线视频只有这里精品首页| 国内精品一区二区在线观看| 日本免费a在线| 亚洲人成网站高清观看| 国产三级在线视频| 丝袜人妻中文字幕| 国产亚洲精品av在线| 美女高潮喷水抽搐中文字幕| 精品久久久久久久久久久久久| 国产成人系列免费观看| 国产精品久久视频播放| 人妻丰满熟妇av一区二区三区| 久99久视频精品免费| 99热精品在线国产| 午夜福利高清视频| 国产精品自产拍在线观看55亚洲| 国内精品久久久久久久电影| 一个人看视频在线观看www免费 | 一a级毛片在线观看| 国产欧美日韩一区二区精品| 香蕉久久夜色| 村上凉子中文字幕在线| 夜夜爽天天搞| 国产高清三级在线| 91字幕亚洲| 免费看美女性在线毛片视频| svipshipincom国产片| 两个人的视频大全免费| 亚洲中文av在线| 亚洲精品456在线播放app | 美女大奶头视频| 性色avwww在线观看| 国产激情偷乱视频一区二区| 精品久久久久久,| 日本一二三区视频观看| 国产伦精品一区二区三区四那| 美女午夜性视频免费| 欧美成狂野欧美在线观看| 人人妻人人看人人澡| 久久精品aⅴ一区二区三区四区| 香蕉国产在线看| 在线a可以看的网站| 欧美激情在线99| 欧美乱色亚洲激情| 日本免费a在线| 亚洲午夜理论影院| 久久久精品欧美日韩精品| 丁香六月欧美| 床上黄色一级片| 国产精品一区二区免费欧美| 99热只有精品国产| 精品一区二区三区av网在线观看| 精品国产美女av久久久久小说| 午夜福利成人在线免费观看| 巨乳人妻的诱惑在线观看| 久久久久性生活片| 婷婷精品国产亚洲av在线| 最近在线观看免费完整版| 亚洲国产高清在线一区二区三| 最近最新免费中文字幕在线| 麻豆成人av在线观看| 国产精品久久久久久人妻精品电影| 免费在线观看视频国产中文字幕亚洲| 一个人免费在线观看电影 | 国模一区二区三区四区视频 | 亚洲色图 男人天堂 中文字幕| 国产亚洲av高清不卡| 69av精品久久久久久| 天天一区二区日本电影三级| а√天堂www在线а√下载| 久久精品亚洲精品国产色婷小说| 国产黄色小视频在线观看| 黑人操中国人逼视频| 丰满的人妻完整版| 真人一进一出gif抽搐免费| 熟妇人妻久久中文字幕3abv| 亚洲熟妇中文字幕五十中出| 色综合欧美亚洲国产小说| 国产三级在线视频| 欧美黄色淫秽网站| 亚洲成人中文字幕在线播放| 成熟少妇高潮喷水视频| 少妇丰满av| 人妻久久中文字幕网| av国产免费在线观看| 久久久久国产一级毛片高清牌| 日本与韩国留学比较| 非洲黑人性xxxx精品又粗又长| 国产亚洲av高清不卡| 中文字幕熟女人妻在线| 中文字幕久久专区| 1024香蕉在线观看| 精品午夜福利视频在线观看一区| 熟女电影av网| 精品国产美女av久久久久小说| 久久久久性生活片| 黄色日韩在线| 九九久久精品国产亚洲av麻豆 | 又黄又爽又免费观看的视频| 99精品欧美一区二区三区四区| 欧美中文综合在线视频| 999久久久国产精品视频| a级毛片在线看网站| netflix在线观看网站| 变态另类丝袜制服| 国产av一区在线观看免费| 最好的美女福利视频网| 久久天躁狠狠躁夜夜2o2o| 亚洲中文日韩欧美视频| 色综合亚洲欧美另类图片| 97超级碰碰碰精品色视频在线观看| 又紧又爽又黄一区二区| 久久中文字幕一级| 久久久精品大字幕| 五月伊人婷婷丁香| 亚洲人成电影免费在线| 老熟妇乱子伦视频在线观看| 亚洲美女黄片视频| 又大又爽又粗| 不卡av一区二区三区| 综合色av麻豆| 日韩欧美国产在线观看| 午夜福利18| 操出白浆在线播放| 国产精品久久久久久亚洲av鲁大| 首页视频小说图片口味搜索| 欧美在线黄色| 日本在线视频免费播放| 久久婷婷人人爽人人干人人爱| 黄色丝袜av网址大全| 色吧在线观看| 国产激情欧美一区二区| 国产精品爽爽va在线观看网站| 国产成人精品久久二区二区免费| 免费观看人在逋| 免费在线观看视频国产中文字幕亚洲| 一个人观看的视频www高清免费观看 | 久久久久国产精品人妻aⅴ院| 日日干狠狠操夜夜爽| 欧美激情久久久久久爽电影| 成人无遮挡网站| 久久精品91蜜桃| 午夜精品在线福利| 18禁观看日本| 亚洲一区高清亚洲精品| 国产不卡一卡二| 成人18禁在线播放| 亚洲国产欧洲综合997久久,| 国产av麻豆久久久久久久| 欧美一区二区国产精品久久精品| 久久精品亚洲精品国产色婷小说| 啪啪无遮挡十八禁网站| 亚洲电影在线观看av| 别揉我奶头~嗯~啊~动态视频| 999久久久国产精品视频| 很黄的视频免费| 天天躁狠狠躁夜夜躁狠狠躁| 蜜桃久久精品国产亚洲av| 一进一出好大好爽视频| 成人一区二区视频在线观看| 亚洲九九香蕉| 国产精品99久久99久久久不卡| 国产成人影院久久av| 国产精品久久久久久久电影 | 日韩大尺度精品在线看网址| 女生性感内裤真人,穿戴方法视频| 日韩欧美在线乱码| 久久久水蜜桃国产精品网| 少妇的逼水好多| 在线观看美女被高潮喷水网站 | 欧美日韩亚洲国产一区二区在线观看| 久久亚洲精品不卡| 最近最新中文字幕大全电影3| 国产欧美日韩精品亚洲av| 国产成人精品久久二区二区免费| 免费大片18禁| 手机成人av网站| 久久久久国内视频| 人妻夜夜爽99麻豆av| bbb黄色大片| 精品久久久久久,| 蜜桃久久精品国产亚洲av| 久久中文看片网| 国产欧美日韩精品一区二区| 极品教师在线免费播放| 国内精品一区二区在线观看| 这个男人来自地球电影免费观看| 全区人妻精品视频| 在线观看免费午夜福利视频| 亚洲专区字幕在线| 欧美性猛交黑人性爽| 香蕉久久夜色| 69av精品久久久久久| 国产精品久久久久久久电影 | 真实男女啪啪啪动态图| 亚洲精品国产精品久久久不卡| 欧美日本视频| 欧美成人性av电影在线观看| 天天一区二区日本电影三级| 一边摸一边抽搐一进一小说| 99久久久亚洲精品蜜臀av| 两人在一起打扑克的视频| 91av网一区二区| 天堂影院成人在线观看| 国产午夜精品久久久久久| 9191精品国产免费久久| 欧美日韩中文字幕国产精品一区二区三区| 国产高清三级在线| 欧美日韩中文字幕国产精品一区二区三区| 特级一级黄色大片| 国产精品 国内视频| 人妻夜夜爽99麻豆av| 成年免费大片在线观看| 男女做爰动态图高潮gif福利片| 午夜精品一区二区三区免费看| 国产精品自产拍在线观看55亚洲| 成年版毛片免费区| 好男人在线观看高清免费视频| 最好的美女福利视频网| 法律面前人人平等表现在哪些方面| 欧美黑人欧美精品刺激| 色综合婷婷激情| 国产精品久久久久久人妻精品电影| 国产一区二区三区视频了| 国内精品久久久久久久电影| avwww免费| 怎么达到女性高潮| 91av网站免费观看| 亚洲欧美精品综合一区二区三区| 精品欧美国产一区二区三| 国内少妇人妻偷人精品xxx网站 | 97超视频在线观看视频| 在线国产一区二区在线| 一个人观看的视频www高清免费观看 | 黄片小视频在线播放| 日韩欧美在线乱码| 男女视频在线观看网站免费| av在线蜜桃| 国产视频内射| 九九久久精品国产亚洲av麻豆 | 在线免费观看的www视频| 少妇的逼水好多| 亚洲国产精品成人综合色| 国产一级毛片七仙女欲春2| 欧美色欧美亚洲另类二区| 久久99热这里只有精品18| 看片在线看免费视频| 91久久精品国产一区二区成人 | 日韩欧美精品v在线| 国产av一区在线观看免费| 欧美一区二区国产精品久久精品| 激情在线观看视频在线高清| 亚洲五月婷婷丁香| 国产野战对白在线观看| 欧美大码av| 欧美性猛交╳xxx乱大交人| 小说图片视频综合网站| 午夜激情欧美在线| 男人舔女人下体高潮全视频| 欧美最黄视频在线播放免费| 欧美成人性av电影在线观看| 人妻夜夜爽99麻豆av| 99久久综合精品五月天人人| 亚洲熟妇中文字幕五十中出| 免费在线观看视频国产中文字幕亚洲| 久久性视频一级片| 色在线成人网| 国产高清三级在线| 日本免费a在线| 国产99白浆流出| 亚洲精品456在线播放app | 国产亚洲精品一区二区www| 国产成人影院久久av| 女人高潮潮喷娇喘18禁视频| 丰满人妻熟妇乱又伦精品不卡| 亚洲中文av在线| 国语自产精品视频在线第100页| 一进一出抽搐动态| 99久久精品热视频| 亚洲av成人一区二区三| 在线观看午夜福利视频| 免费看a级黄色片| 久久热在线av| 男女之事视频高清在线观看| 在线观看舔阴道视频| 一边摸一边抽搐一进一小说| 免费看a级黄色片| 日本一本二区三区精品| 男女之事视频高清在线观看| 1000部很黄的大片| 美女扒开内裤让男人捅视频| 欧美日韩中文字幕国产精品一区二区三区| 亚洲欧美精品综合一区二区三区| 亚洲欧美激情综合另类| 精品乱码久久久久久99久播| 99国产精品一区二区三区| 精品一区二区三区视频在线 | 国产精品久久久久久人妻精品电影| 亚洲专区中文字幕在线| 日本在线视频免费播放| 最近视频中文字幕2019在线8| 亚洲成人免费电影在线观看| 国产精品亚洲av一区麻豆| 欧美黄色片欧美黄色片| 亚洲最大成人中文| 国产美女午夜福利| 久久天堂一区二区三区四区| 天堂av国产一区二区熟女人妻| 欧美xxxx黑人xx丫x性爽| 最好的美女福利视频网| 午夜精品一区二区三区免费看| 69av精品久久久久久| 成人国产一区最新在线观看| 国内久久婷婷六月综合欲色啪| 精品久久久久久久毛片微露脸| 日韩中文字幕欧美一区二区| 成人鲁丝片一二三区免费| 一二三四社区在线视频社区8| 成年版毛片免费区| 日本撒尿小便嘘嘘汇集6| 中文字幕人妻丝袜一区二区| 亚洲va日本ⅴa欧美va伊人久久| 久99久视频精品免费| 久久天堂一区二区三区四区| 免费在线观看视频国产中文字幕亚洲| 在线观看日韩欧美| 丰满的人妻完整版| 99国产精品一区二区三区| 女警被强在线播放| 美女黄网站色视频| 又黄又爽又免费观看的视频| 亚洲人成伊人成综合网2020| 美女高潮喷水抽搐中文字幕| 手机成人av网站| 国产视频内射| 国产精品免费一区二区三区在线| 国产免费男女视频| 欧美日韩一级在线毛片| 91麻豆精品激情在线观看国产| 少妇熟女aⅴ在线视频| 无人区码免费观看不卡| 久久中文看片网| 激情在线观看视频在线高清|