劉 航,李 義,馮立強,
(1.遼寧工業(yè)大學(xué) 化學(xué)與環(huán)境工程學(xué)院, 錦州 121001; 2.遼寧工業(yè)大學(xué) 理學(xué)院, 錦州 121001)
強激光場與原子、分子相互作用可以產(chǎn)生許多非線性光學(xué)現(xiàn)象。高次諧波(high-order harmonic generation, HHG)作為其中一種非常重要的現(xiàn)象在探測原子、分子內(nèi)電子運動以及產(chǎn)生孤立阿秒脈沖中起到非常重要的作用并被廣泛研究[1-3]。
目前,高次諧波的輻射過程可由半經(jīng)典的三步模型[4]來描述。例如:束縛電子首先由隧道電離進入連續(xù)態(tài)(第1步:電離過程);隨后電子在激光場的作用下加速并遠離核子(第2步:加速過程);最后電子在激光場驅(qū)動下反向加速與核子發(fā)生碰撞并輻射高次諧波(第3步:回碰過程)。對于原子體系來說,三步模型可以很好地解釋諧波輻射過程。但對于分子體系,由于體系多出的核自由度,分子中電子的電離以及回碰與原子相比有很大的不同,進而導(dǎo)致一些分子諧波特有的現(xiàn)象。例如:多光子電離[5]、電荷共振增強電離[6]、離解態(tài)電離[7]在諧波輻射中的貢獻;多通道諧波輻射[8];諧波紅移[9];諧波藍移[10];諧波輻射的空間分布[11]等。
最近,隨著遠紫外(extreme ultraviolet, XUV)光源的發(fā)展,利用XUV 光源調(diào)控諧波過程得到了很多關(guān)注。例如:作者[12]利用超短XUV光源驅(qū)動He原子增強諧波強度,并獲得1個脈寬為43as的孤立阿秒脈沖。ZHANG等人[13]利用XUV光源與雙色激光場的組合場驅(qū)動He+離子獲得了一個47as脈沖。隨后,這種利用超短XUV光源增強諧波輻射強度的方案被TAKAHASHI等人[14]實驗證實。但是上述方法中都是用XUV光源驅(qū)動原子體系,并且都是用于控制三步模型中的電離過程,即利用XUV光源增大電離幾率,進而增強諧波輻射強度。
非玻恩-奧本海默近似含時薛定諤方程為[15-20]:
E(t)=E1exp[-4ln(2)(t/τ1)2]cos(ω1t)+
EXUVexp{-4ln(2)[(t-td)/τXUV]4}×
cos[ωXUV(t-td)](2)
式中,E1,ω1,τ1為紅外(infrared,IR)場振幅、頻率和半峰全寬;EXUV,ωXUV,τXUV為XUV光源的振幅、頻率和半峰全寬;td為兩束激光場的延遲時間。
高次諧波頻譜圖可表示為:
(3)
Fig.1 Harmonic spectra from H2+driven by single IR field and the combined field (IR+XUV)
圖2a~圖2c中給出H2+在單色IR場以及上述組合場下的電離幾率。T表示800nm激光場光學(xué)周期。由圖可知,XUV光源的加入對H2+電離影響很小。因此,多重諧波截止能量延伸不可能發(fā)生在電離過程。圖3a~圖3c是電子波包隨時間的演化圖。從圖中可知,在單色IR場下(見圖3a),電子加速最遠可以運動到35a.u.,這與經(jīng)典結(jié)果xmax=E1/ω12是一致的。隨著XUV光源的加入可見(見圖3b和圖3c),電子加速的最遠距離幾乎保持不變,這說明多重諧波截止能量的延伸不是在加速過程中產(chǎn)生的。由此可見,多重諧波截止能量的延伸只能產(chǎn)生于回碰過程。
Fig.2 Ionization probabilities of H2+
a—single IR field b—the combined field (IR+XUV) withIXUV=1.0×1014W/cm2c—the combined field (IR+XUV) withIXUV=1.0×1015W/cm2
Fig.3 Time-dependent electronic wave functions
a—single IR field b—the combined field (IR+XUV) withIXUV=1.0×1014W/cm2c—the combined field (IR+XUV) withIXUV=1.0×1015W/cm2
Fig.4 Time-dependent laser profile(a,e,i), harmonic order(b,f,j), R-dependent harmonic order (c,g,k) and time-dependent nuclear motiona~d—single IR field e~h—the combined field (IR+XUV) with IXUV=1.0×1014W/cm2 i~l—the combined field (IR+XUV) with IXUV=1.0×1015 W/cm2
a—on multi-harmonic cutoff extension b—on frequency modulation of harmonics
為了解釋上述現(xiàn)象,圖6是上述激光場的波形圖以及諧波輻射的時頻分析圖。由圖可知,當(dāng)延遲時間在td=-0.5T(見圖6c和圖6d)或td=0.5T時(見圖6e和圖6f),電子回碰的r1~5時刻或r2~7時刻依然可以被XUV光源的主體覆蓋,因此電子在回碰時依然可以吸收XUV光子,進而導(dǎo)致多重諧波截止能量的延伸。但當(dāng)延遲時間在td=-1.0T(見圖6a和圖6b)或td=1.0T(見圖6g和圖6h)時,XUV光源的主體只覆蓋激光包絡(luò)的上升區(qū)間(r1,r2)或下降區(qū)間(r5~7),因此電子在回碰過程r1,r2或r5~7時可以吸收XUV光子,進而導(dǎo)致諧波輻射過程P1,P2或P5~7的能量延伸。但是由于其延伸能量小于或只略大于經(jīng)典的諧波截止能量(Ip+3.17Up),因此在諧波光譜中多重諧波截止能量的現(xiàn)象消失了。由三步模型可知,在激光場的上升區(qū)間(dI(t)/dt>0),由于激光強度的持續(xù)增強,后電離的電子會獲得更多的能量,進而導(dǎo)致諧波光譜的藍移;相反在激光場的下降區(qū)間(dI(t)/dt<0),由于激光強度的持續(xù)減小,后電離的電子將獲得較低的能量,進而導(dǎo)致諧波光譜的紅移[9-10]。分析諧波輻射的時頻分析圖可知,當(dāng)td<0時,激光上升區(qū)間的諧波輻射強度增強,因此導(dǎo)致諧波光譜的藍移;當(dāng)td>0時,激光下降區(qū)間的諧波輻射強度增強,因此導(dǎo)致諧波光譜的紅移。
非常感謝中國科學(xué)院大連化學(xué)物理研究所韓克利研究員所提供的計算資源。
[1] WANG Ch, LIU H L, TIAN J Sh,etal. Analysis of intrinsic atomic phase in process of extreme ultraviolet attosecond pulse generation [J]. Laser Technology, 2012, 36(3): 342-345 (in Chinese).
[2] LIU H, FENG L Q. Mid-infrared field phase measurement and attosecond pulse generation [J]. Laser Technology, 2017, 41(2): 151-158 (in Chinese).
[3] GOULIELMAKIS E, SCHULTZE M, HOFSTETTER M,etal. Single-cycle nonlinear optics [J]. Science, 2008, 320(5883): 1614-1617.
[4] CORKUM P B. Plasma perspective on strong field multiphoton ionization [J]. Physical Review Letters, 1993, 71(13): 1994-1997.
[5] STAUDTE A, COCKE C L, PRIOR M H,etal. Observation of a nearly isotropic high-energy Coulomb explosion group in the fragmentation of D2by short laser pulses [J]. Physical Review, 2002, A65(2): 020703.
[6] ZUO T, CHELKOWSKI S, BANDRAUK A D. Harmonic generation by the H2+molecular ion in intense laser fields [J]. Physical Review, 1993, A48(5): 3837-3844.
[7] CHELKOWSKI S, FOISY C, BANDRAUK A D. Electron-nuclear dynamics of multiphoton H2+dissociative ionization in intense laser fields [J]. Physical Review, 1998, A57(2): 1176-1185.
[8] BIAN X B, BANDRAUK A D. Multichannel molecular high-order harmonic generation from asymmetric diatomic molecules [J]. Physical Review Letters, 2010, 105(9): 093903.
[9] BIAN X B, BANDRAUK A D. Probing nuclear motion by frequency modulation of molecular high-order harmonic generation [J]. Physical Review Letters, 2014, 113(19): 193901.
[10] LI M Z, JIA G R, BIAN X B. Alignment dependent ultrafast electron-nuclear dynamics in molecular high-order harmonic generation [J]. The Journal of Chemical Physics, 2017, 146(8): 084305.
[11] ZHANG J, GE X L, WANG T,etal. Spatial distribution on high-order-harmonic generation of an molecule in intense laser fields [J]. Physical Review, 2015, A92(1): 013418.
[12] FENG L Q, LIU H. Ultrashort ultraviolet source assisted enhancement of the attosecond pulse intensity [J]. Journal of Atomic and Molecular Physics, 2015, 32(4): 616-620 (in Chinese).
[13] ZHANG G T, LIU X S. Generation of an extreme ultraviolet supercontinuum and isolated sub-50as pulse in a two-colour laser field [J]. Journal of Physics, 2009, B42(12): 125603.
[14] TAKAHASHI E J, KANAI T, ISHIKAWA K L,etal. Dramatic enhancement of high-order harmonic generation [J]. Physical Review Letters, 2007, 99(5): 053904.
[15] LU R F, ZHANG P Y, HAN K L. Attosecond-resolution quantum dynamics calculations for atoms and molecules in strong laser fields [J]. Physical Review, 2008, E77(6): 066701.
[17] FENG L Q, CHU T S. Generation of an isolated sub-40as pulse using two-color laser pulses: Combined chirp effects [J]. Physical Review, 2011, A84(5): 053853.
[19] LIU Sh Sh, MIAO X Y. Enhancement of high-order harmonic emission by using a coherent superposition in a two-color laser field [J]. Journal of Atomic and Molecular Physics, 2012, 29(5): 881-885 (in Chinese).
[21] BURNETT K, REED V C, COOPER J,etal. Calculation of the background emitted during high-harmonic generation [J]. Physical Review, 1992, A45(5): 3347-3349.
[22] ANTOINE P, PIRAUX B, MAQUET A. Time profile of harmonics generated by a single atom in a strong electromagnetic field [J]. Physical Review, 1995, A51(3):R1750-R1753.