• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Mapping stripe rust resistance genes by BSR-Seq:YrMM58 and YrHY1 on chromosome 2AS in Chinese wheat lines Mengmai 58 and Huaiyang 1 are Yr17

    2018-03-04 18:22:16ZhiyongLiu
    The Crop Journal 2018年1期

    *,Zhiyong Liu,*

    aCollege of Agronomy and Biotechnology,China Agricultural University,Beijing 100193,China

    bState Key Laboratory of Plant Cell and Chromosome Engineering,Institute of Genetics and Developmental Biology,Chinese Academy of Sciences,Beijing 100101,China

    cCollege of Life Science,Sichuan Agricultural University,Ya'an 625014,Sichuan,China

    dCollege of Horticulture,China Agricultural University,Beijing 100193,China

    eWheat Research Institute,Henan Academy of Agriculture Sciences,Zhengzhou 450002,Henan,China

    1.Introduction

    Common wheat is a major food crop and wheat production is continually challenged by several diseases,including stripe rust,stem rust,leaf rust,powdery mildew,and Fusarium head blight.Stripe rust,caused by Puccinia striiformis f.sp.tritici(PST),is one of the most severe of those diseases worldwide[1].Breeding stripe rust resistant cultivars by deployment of effective stripe rust resistance genes is the main strategy for control[2,3].More than 70 stripe rust resistance genes have been formally named and some of them have been widely used in breeding[4–6].However,new virulent pathogen races are a constant threat once resistance genes are deployed[7].For example,Yr9 on the 1RS.1BL translocation became ineffective following emergence of the virulent race CYR29 in the late 1990s[8],and the Yr24/Yr26/YrCH42 was recently overcome by race CYR34(V26)[9].Therefore discovery of effective stripe rust resistance genes and identification of closely linked markers to enable marker assisted selection are essential for continued resistance.

    Bulked segregant analysis (BSA) can rapidly identify molecular markers linked to traits of interest[10].Many genetic markers such as restriction fragment length polymorphisms(RFLPs),amplified fragment length polymorphisms(AFLPs),simple sequence repeats(SSRs),and sequence-tagged sites(STSs)linked to disease resistance genes have been used in BSA.However,all of these types of markers have limitations when working with large and highly repetitive plant genomes such as hexaploid wheat due to inadequate density and high levels of duplication.RNA-Seq is an extensively used next-generation sequencing(NGS)technology that not only detects differentially expressed transcripts but also numerous genomic variations in expressed exons,and is relatively inexpensive[11].With development of high-throughput sequencing technologies and protocols,BSR-Seq,an approach combining BSA and RNA-Seq has emerged as a new mapping strategy that offers the promise of rapid discovery of novel genes and genetic markers linked to target genes[12–14].This approach combines the advantages of high-throughput and cost-effectiveness in analysing large genomes.It can also be used to acquire gene expression data.Examples demonstrating the power of BSR-Seq include cloning of the maize glossy13 gene[12,15],mapping of stripe rust resistance gene Yr15 in hexaploid wheat[14],and mapping of high grain protein content gene GPC-B1[13]in tetraploid wheat.

    Comparative genomics analyses using genome sequences of Brachypodium,rice and sorghum and the physical map of Aegilops tauschii provide an effective method for gene mapping in wheat.The stripe rust resistance gene Yr18 was mapped in a<0.50 cM genetic interval using rice and Brachypodium genome sequences[16]and Yr36 was located to a 0.14 cM genetic interval between markers Xucw113 and Xucw111 using the rice collinear region sequences[17].These results thus facilitated map-based cloning and identification of the protein product of an ABC transporter(Yr18/Lr34/Pm38)[18]and a kinase-START(Yr36)protein[17].Using a similar approach,the stripe rust resistance gene Yr26 was located in a genomic interval orthologous to genomic regions Bradi3g28410 to Bradi3g29600 in Brachypodium and Os10g0470700 to Os10g0489800 in rice[19].Since the Ae.tauschii genome has a higher level of micro-collinearity with the wheat A and B subgenomes than any of Brachypodium,rice,and sorghum,Lu et al.[20]mapped the spot blotch resistance gene Sb3 on wheat chromosome 3BS to a 2.15 cM genetic interval using Ae.tauschii chromosome 3DS SNP marker sequences[21].

    Mengmai 58 and Huangyang 1 are recently bred wheat lines from the Huang-Huai River Valleys Winter Wheat Zone that are highly resistant to prevailing PST races CYR32,CYR33,and CYR34(V26).In this paper,we report the rapid mapping of stripe rust resistance genes YrMM58 and YrHY1 in bread wheat lines Mengmai 58 and Huaiyang 1 using BSR-Seq and comparative genomic analysis.

    2.Materials and methods

    2.1.Plant materials

    Stripe rust resistant wheat lines Mengmai 58 and Huaiyang 1 obtained from the Huang-Huai River Valleys Winter Wheat Zone were crossed with the highly susceptible wheat variety Nongda 399 and F2:3populations were used for genetic analysis.Mengmai 58 is a selection from Zhoumai 22 and Huaiyang 1 is a derivative of cross 951-99/Aikang 58.Wheat cultivar Jagger was used as a control possessing Yr17[5].

    Jagger,Mengmai 58,Huaiyang 1,Nongda 399,and 30 F1plants and more than 200 F2:3progenies from each cross,were evaluated for adult plant stage stripe rust resistance at Sichuan Agricultural University,Ya'an,Sichuan during the 2014–2015 growing season.PST race CYR34(V26)was used for inoculation.To ensure optimal disease responses the susceptible cultivars Nongda 399 and Taichung 29 were planted after every 20 rows as spreaders.About 30 seeds were planted in 1.5 m rows spaced 20 cm apart.

    Disease severities(DS)estimating the areas of sporulation on upper leaves were scored across the range of 0–100%[22].Infection types(ITs)were also recorded using a 0–9 scale previously described[23],where ITs 0–3,4–6,and 7–9 were considered to be resistant,intermediate resistant and susceptible,respectively.IT and DS were scored twice at 4-to 5-day intervals when DS on Nongda 399 and Taichung 29 reached approximately 90%–100%.

    2.2.BSR-Seq

    Leaf tissues from 20 homozygous resistant and 20 homozygous susceptible F2:3families from Nongda 399/Mengmai 58,and 40 homozygous resistant and 40 homozygous susceptible F2:3families from Nongda 399/Huaiyang 1,respectively,were collected from seedlings for preparation of resistant and susceptible RNA bulks.The RNA samples were sequenced on anIllumina HiSeq4000platform.Sequence quality was controlled using software Trimmomatic v0.32[24].RNA reads of the resistant and susceptible bulks were aligned to the draft assembly(IWGSC)of the wheat genome survey sequence(http://www.wheatgenome.org/)usingsoftware STAR v2.4.0j[25].SNP and Indels were called using software GATK v3.2-2 with its module “Haplotype Caller”applied[26].

    2.3.DNA isolation

    Genomic DNA was extracted from seedling leaf tissue from each F2:3family of the two crosses using the CTAB method[27].Based on infection type and disease severity data,20 homozygous resistant and 20 homozygous susceptible F2:3lines in each cross were used to construct resistant and susceptible DNA bulks for SNP marker validation.

    2.4.PCR amplification and electrophoresis

    PCR was performed in a Thermal Cycler(Bio-Rad)in 20 μL total volumes as follows:denaturation for 5 minat 94°C,followed by 35 cycles of 40 s at 94 °C,40 s at 60 °C,1 min at 72 °C and a final extension for 7 min at 72°C.The PCR products were sequenced either by the Sanger method to validate true polymorphisms or separated by electrophoresis on 8%non-denaturing polyacrylamide gels(39 acrylamide/1 bisacrylamide,w/w)to detect differences in band size using silver staining.

    2.5.SNP and STS markers development

    Single nucleotide polymorphisms(SNPs)associated with stripe rust resistance identified by BSR-Seq analysis were selected for marker development and validation.The flanking sequences of candidate SNPs were used as templates for PCR primer design using Primer3web(http://primer3.ut.ee/).

    Ae.tauschii extended SNP marker sequences homologous to the stripe rust resistant genetic region were used as queries for BLAST search of Chinese Spring contigs generated by the International Wheat Genome Sequencing Consortium(IWGSC,http://www.wheatgenome.org/)and 454 shotgun sequences[28].The sequences were used as templates to design sequence-tagged site (STS)primer pairs with Primer3web.

    The designed SNP and STS primers were screened for polymorphisms between the parental lines,as well as the resistant and susceptible DNA bulks.Polymorphic STS markers were used to genotype the segregating populations.

    2.6.Statistical analysis and genetic linkage map construction

    Chi-squared(χ2)tests were used to evaluate goodness-of-fit of observed and expected segregation ratios.The polymorphic SNP and STS markers were used to construct a genetic linkage map with the Map Draw 2.1 software[29].

    3.Results

    3.1.Genetic analyses of stripe rust resistances in Mengmai 58 and Huaiyang 1

    Jagger(Yr17),Mengmai 58,Huaiyang 1,and the F1plants were highly resistant(IT 0),whereas Nongda 399 and Taichung 29 were highly susceptible(IT 9)(Table 1).The data indicated that resistance in both crosses was conferred by single dominant genes,which were designated YrMM58 and YrHY1.

    3.2.BSR-Seq analysis

    The BSR-Seq approach was applied to map the stripe rust resistance genes YrMM58 and YrHY1.One hundred and fifty bp length mode RNA-Seq bulks of MM58R,MM58S,HY1R,and HY1S produced 40,488,082,40,562,867,52,941,318,and 40,869,720 raw reads pairs,respectively.Less than 1%of the raw reads pairs were filtered for each bulk after quality control.During read mapping,we found that 81%,72%,84%,and 85%of the filtered read pairs were uniquely mapped for bulks MM58R,MM58S,HY1R,and HY1S,respectively.Subsequent SNP calling identified 128,502 high-quality variants(SNPs and Indels)between bulks MM58R and MM58S,and 131,825 between bulks HY1R and HY1S.Finally,at the cut off of allele frequency difference(AFD)>0.8 and Fisher's Exact Test P-value<1e?10,19 SNPs were found to be associated with the YrMM58 resistance,and 24 SNPs were associated with YrHY1 resistance (Fig. 1). Twelve of the YrMM58-associated SNPs and 14 of the YrHY1-associated SNPs were located in 14.0 Mb and 15.9 Mb distal regions of chromosome 2AS,suggesting that YrMM58 and YrHY1 were located in that region.

    3.3.Candidate SNP validation and genetic mapping

    The YrMM58-and YrHY1-associated SNPs on 2AS were validated for polymorphisms between the parental lines as well as contrasting resistant and susceptible DNA bulks.Two SNP markers,WGGB191 and WGGB196 showed clear polymorphisms between the parental lines as well as the resistant and susceptible DNA bulks(Fig.2).SNP markers showing linkage with the rust resistance in 20 resistant and 20 susceptible F2:3families were then genotyped in the entire Nongda 399/Mengmai 58 and Nongda 399/Huangyang 1 F2:3families usingSanger sequencing to construct genetic linkage maps of stripe rust genes YrMM58 and YrHY1(Fig.3).Both YrMM58 and YrHY1 were located on the distal end of chromosome arm 2AS.

    Table 1–Stripe rust responses to PST race CYR34 of parents,F1and F2:3lines from crosses Nongda 399/Mengmai 58 and Nongda 399/Huaiyang 1.

    Fig.1–Distribution of candidate SNPs within wheat chromosomes.

    3.4.Comparative genomics analysis with Ae.tauschii and STS marker development

    The contig sequences of SNP markers WGGB191 and WGGB196 were used to search the Ae.tauschii SNP marker extended sequences database.WGGB191 and WGGB196 are orthologous to Ae.tauschii SNP markers AT2D1146 and AT2D1108,respectively.From the distal end of the chromosome to AT2D1108,there are 36 SNP markers(AT2D974 to AT2D1108)in the terminal region of Ae.tauschii chromosome arm 2DS.Low level synteny was observed for the corresponding genomic regions between Ae.tauschii and Brachypodium,rice and sorghum(Table 2).Therefore,only the Ae.tauschii sequence information was used for further comparative genomic analysis and marker development.

    The Ae.tauschii SNP marker(AT2D974 to AT2D1108)extended sequences were used to search the Chinese Spring IWGSC chromosome 2AS sequences (https://www.wheatgenome.org/)and Chinese Spring CS42 TGAC v1 WGS sequence assembly (https://wheatis.tgac.ac.uk/grassrootsportal/blast)to develop STS markers linked to the stripe rust resistance genes.Ten new polymorphic STS markers were developed and genotyped in the two F2:3populations to construct genetic linkage maps of YrMM58 and YrHY1(Table 3).Finally,YrMM58 and YrHY1 were located to the terminal region of wheat chromosome arm 2AS and were respectively 7.7 cM and 3.8 cM distal to STS marker WGGB148(Fig.3).

    Fig.2–Sanger sequencing profiles of SNP markers WGGB191 and WGGB196 in homozygous resistant(R),homozygous susceptible(S),and heterozygous F2:3families(H).

    Fig.3–Comparative genetic linkage maps of YrMM58,YrHY1,and other stripe rust genes on chromosome 2AS.(a)Genetic linkage map of YrMM58;(b)genetic linkage map of YrHY1;(c)Ae.tauschii 2DS SNP linkage map corresponding to the YrMM58 and YrHY1 genetic region;(d)integrated genetic linkage map of stripe rust resistance genes Yr17,Yr69,YrR61,Yr56,and YrSph on wheat chromosome 2AS.

    4.Discussion

    Genetic analyses indicated that a single dominant gene was responsible for the stripe rust resistances in wheat lines Mengmai 58 and Huaiyang 1.In combination with BSR-Seq and comparative genomics analysis,both stripe rust resistance genes YrMM58 and YrHY1 were mapped to the distal end of wheat chromosome 2AS.Five STS markers,WGGB148,WGGB152,WGGB159,WGB171,and WGGB176,closely linked to YrMM58 and YrHY1 generated the same amplification patterns in Mengmai 58,Huangyang 1,and Jagger(Fig.4).However,two STS markers,WGGB179 and WGGB186,further away from YrMM58 and YrHY1 than the above five markers showed different amplification patterns between Mengmai 58,Huangyang 1 and Jagger(Fig.4).We also tested Yr17-linked SSR markers Xgwm636 and Xgwm359[30],and SSR markersXbarc124,Xbarc212,Xgwm512,andXgwm372locatedon chromosome arm 2AS on Mengmai 58,Huangyang 1 and Jagger.The same amplification patterns were obtained for all SSRs in the three genotypes.These results suggested that Mengmai 58,Huangyang 1,and Jagger might contain the same sequences from WGGGB176 to the distal end of chromosome 2AS.Since VPM 1 and its derivatives have been widely used in wheat breeding programs in China in recent years,and VPM 1 carries Yr17 in a wheat-Aegilops ventricosa translocation[31],stripe rust resistance genes YrMM58 and YrHY1 are most likely Yr17.

    Table 2–Comparative genomics analysis among Ae.tauschii extended SNP marker sequences,Brachypodium,rice,sorghum genome sequences and new STS markers.

    Table 3–SNP and STS markers developed for mapping YrMM58 and YrHY1.

    The 12 SNP and STS markers in the YrMM58 and YrHY1 genetic linkage maps on wheat chromosome 2AS showed the same order as their 11 corresponding orthologous SNP markers on Ae.tauschii chromosome 2DS,indicating a high level micro-collinearity between the two subgenomes(Fig.3).WGGB148,the STS marker most closely linked to YrMM58 and YrHY1,was developed from a Chinese Spring chromosome 2AS contig orthologous to a SNP marker AT2D974 extended sequence.However,the genetic distances between WGGB148 and stripe rust resistance genes YrMM58 and YrHY1,as well as the physical end position of AT2D974 on the Ae.tauschii chromosome 2DS physical map[21]reveals that the VPM 1 segment(Yr17)in wheat is probably an extension to the corresponding Ae.tauschii 2DS.This is in agreement with the VPM 1 chromosome segment translocation derived from Ae.ventricosa.

    The efficiency and power of BSR-Seq was recently demonstrated in mapping plant genes.This technology provides not only the chromosome position of a target gene but also many associated SNPs for marker development[14].In the present study about 60%of the stripe rust resistance-associated SNPs were located in a 14.0–15.9 Mb distal region of chromosome 2AS(Fig.1).Two SNP markers WGGB191 and WGGB196 linked to YrMM58 and YrHY1 were then developed using the associated SNPs.

    We used comparative genomics analysis of Ae.tauschii to develop 10 new STS markers to construct high-density genetic maps of YrMM58 and YrHY1.Our results also showed a consistent gene order between corresponding genetic regions of wheat chromosome 2AS and Ae.tauschii chromosome 2DS,suggesting a high level of micro-collinearity between the two subgenomes.Similar results were also reported when mapping powdery mildew resistance gene MlHLT[32]and spot blotch resistance gene Sb3[20].Thus,comparative genomics analysis using the high-density SNP Ae.tauschii linkage map and genomic sequences[21,33]may be more effective than using Brachypodium,rice and sorghum genomic resources to develop markers for high-density genetic linkage map construction in wheat.Prospectively,the most recently released IWGSC Chinese Spring WGS assemblies (http://www.wheatgenome.org/)will be increasingly informative for fine mapping and map-based cloning in wheat.

    5.Conclusions

    Combining BSR-Seq with comparative genomics analyses,stripe rust genes in wheat lines Mengmai 58 and Huaiyang 1 were precisely and rapidly mapped on the distal end of chromosome 2AS.The markers developed in the current research provide useful information for marker-assisted selection of stripe rust resistance genes YrMM58 and YrHY1 which proved to be Yr17.

    Fig.4–PCR amplification patterns of STS markers in Mengmai 58,Huaiyang 1,Nongda 399,and Jagger(Yr17).

    This work was financially supported by the National Key Research and Development Program of China(2016YFD0101802).

    [1]C.R.Wellings,Global status of stripe rust:a review of historical and current threats,Euphytica 179(2011)129–141.

    [2]X.M.Chen,Epidemiology and control of stripe rust[Puccinia striiformis f.sp.tritici]on wheat,Can.J.Plant Pathol.27(2005)314–337.

    [3]Z.J.Pu,G.Y.Chen,Y.M.Wei,W.Y.Yang,Z.H.Yan,Y.L.Zheng,Identification and molecular tagging of a stripe rust resistance gene in wheat line P81,Plant Breed.129(2010)53–57.

    [4]R.A.McIntosh,Y.Yamazaki,J.Dubcovsky,J.Rogers,C.Morris,R.Appels,X.C.Xia,Catalogue of gene symbols for wheat,Proc.12th Int.Wheat Genet.Symp.Yokohama,Japan,2013.

    [5]R.A.McIntosh,J.Dubcovsky,J.Rogers,C.Morris,R.Appels,X.C.Xia,Catalogue of gene symbols for wheat:2013–2014 supplement,Komugi-wheat Genetic Resources Database,http://shigen.nig.ac.jp/wheat/komugi/genes/macgene/supplement 2013.pdf 2014.

    [6]R.A.McIntosh,J.Dubcovsky,J.Rogers,C.Morris,X.C.Xia,Catalogue of gene symbols for wheat:2017 supplement,Komugi-wheat Genetic Resources Database,http://shigen.nig.ac.jp/wheat/komugi/genes/macgene/supplement2017.pdf 2017.

    [7]H.S.Bariana,N.Parry,I.R.Barclay,R.Loughman,R.J.McLean,M.Shankar,R.E.Wilson,N.J.Willey,M.Francki,Identification and characterization of stripe rust resistance gene Yr34 in common wheat,Theor.Appl.Genet.112(2006)1143–1148.

    [8]W.Q.Chen,L.R.Wu,T.G.Liu,S.C.Xu,Race dynamics,diversity,and virulence evolution in Puccinia striiformis f.sp.tritici,the causal agent of wheat stripe rust in China from 2003 to 2007,Plant Dis.93(2009)1093–1101.

    [9]D.J.Han,Q.L.Wang,X.M.Chen,Q.D.Zeng,J.H.Wu,W.B.Xue,G.M.Zhan,L.L.Huang,Z.S.Kang,Emerging Yr26-virulent races of Puccinia striiformis f.tritici are threatening wheat production in the Sichuan Basin,China,Plant Dis.99(2015)754–760.

    [10]R.W.Michelmore,I.Paran,R.V.Kesseli,Identification of markers linked to disease-resistance genes by bulked segregant analysis:a rapid method to detect markers in specific genomic regions by using segregating populations,Proc.Natl.Acad.Sci.U.S.A.88(1991)9828–9832.

    [11]I.Chepelev,G.Wei,Q.Tang,K.Zhao,Detection of single nucleotide variations in expressed exons of the human genome using RNA-Seq,Nucleic Acids Res.37(2009),e106..

    [12]S.Z.Liu,C.T.Yeh,H.M.Tang,D.Nettleton,P.S.Schnable,Gene mapping via bulked segregant RNA-Seq(BSR-Seq),PLoS One 7(2012),e36406..

    [13]S.Pearce,F.Tabbita,D.Cantu,V.Buffalo,R.Avni,H.Vazquez-Gross,R.Zhao,C.J.Conley,A.Distelfeld,J.Dubcovksy,Regulation of Zn and Fe transporters by the GPC1 gene during early wheat monocarpic senescence,BMC Plant Biol.14(2014)368.

    [14]R.H.Ramirez Gonzalez,V.Segovia,N.Bird,P.Fenwick,S.Holdgate,S.Berry,P.Jack,M.Caccamo,C.Uauy,RNA-Seq bulked segregant analysis enables the identification of highresolution genetic markers for breeding in hexaploid wheat,Plant Biotechnol.J.13(2015)613–624.

    [15]L.Li,D.L.Li,S.Z.Liu,X.L.Ma,C.R.Dietrich,H.C.Hu,G.S.Zhang,Z.Y.Liu,J.Zheng,G.Y.Wang,P.S.Schnable,The maize glossy13 gene,cloned via BSR-Seq and Seq-Walking encodes a putative ABC transporter required for the normal accumulation of epicuticular waxes,PLoS One 8(2013),e82333..

    [16]W.Spielmeyer,R.P.Singh,H.McFadden,C.R.Wellings,J.Huerta-Espino,X.Kong,R.Appels,E.S.Lagudah,Fine scale genetic and physical mapping using interstitial deletion mutants of Lr34/Yr18:a disease resistance locus effective against multiple pathogens in wheat,Theor.Appl.Genet.116(2008)481–490.

    [17]D.L.Fu,C.Uauy,A.Distelfeld,A.Blechl,L.Epstein,X.M.Chen,H.Sela,T.Fahima,J.Dubcovsky,A kinase-START gene confers temperature-dependent resistance to wheat stripe rust,Science 323(2009)1357–1360.

    [18]S.G.Krattinger,E.S.Lagudah,W.Spielmeyer,R.P.Singh,J.Huerta-Espino,H.McFadden,E.Bossolini,L.L.Selter,B.Keller,A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat,Science 323(2009)1360–1363.

    [19]X.J.Zhang,D.J.Han,Q.D.Zeng,Y.H.Duan,F.P.Yuan,J.D.Shi,Q.L.Wang,J.H.Wu,L.L.Huang,Z.S.Kang,Fine mapping of wheat stripe rust resistance gene Yr26 based on collinearity of wheat with Brachypodium distachyon and rice,PLoS One 8(2013),e57885..

    [20]P.Lu,Y.Liang,D.L.Li,Z.Z.Wang,W.B.Li,G.X.Wang,Y.Wang,S.H.Zhou,Q.H.Wu,J.Z.Xie,D.Y.Zhang,Y.X.Chen,M.M.Li,Y.Zhang,Q.X.Sun,C.G.Han,Z.Y.Liu,Fine genetic mapping of spot blotch resistance gene Sb3 in wheat(Triticum aestivum),Theor.Appl.Genet.129(2016)577–589.

    [21]M.C.Luo,Y.Q.Gu,F.M.You,K.R.Deal,Y.Q.Ma,Y.Q.Hu,N.X.Huo,Y.Wang,J.R.Wang,S.Y.Chen,C.M.Jorgensen,Y.Zhang,P.E.McGuire,S.Pasternak,J.C.Stein,D.Ware,M.Kramer,W.R.McCombie,S.F.Kianian,M.M.Martis,K.F.X.Mayer,S.K.Sehgal,W.L.Li,B.S.Gill,M.W.Bevan,H.Simkova,J.Dolezel,W.N.Song,G.R.Lazo,O.D.Anderson,J.Dvorak,A 4-gigabase physical map unlocks the structure and evolution of the complex genome of Aegilops tauschii,the wheat D-genome progenitor,Proc.Natl.Acad.Sci.U.S.A.110(2013)7940–7945.

    [22]X.M.Chen,R.F.Line,Gene action in wheat cultivars for durable,high-temperature,adult-plant resistance and interaction with race-specific,seedling resistance to Puccinia striiformis,Phytopathology 85(1995)567–572.

    [23]R.F.Line,A.Qayoum,Virulence,aggressiveness,evolution and distribution of races of Puccinia striiformis(the cause of stripe rust of wheat)in North America,1968–87,Agriculture Research Service,United States Department of Agriculture,Tech.Bull.1788(1992).

    [24]A.M.Bolger,M.Lohse,B.Usadel,Trimmomatic:a flexible trimmer for Illumina sequence data,Bioinformatics 30(2014)2114–2120.

    [25]A.Dobin,C.A.Davis,F.Schlesinger,J.Drenkow,C.Zaleski,S.Jha,P.Batut,M.Chaisson,T.R.Gingeras,STAR:ultrafast universal RNA-seq aligner,Bioinformatics 29(2013)15–21.

    [26]A.McKenna,M.Hanna,E.Banks,A.Sivachenko,K.Cibulskis,A.Kernytsky,K.Garimella,D.Altshuler,S.Gabriel,M.Daly,M.A.DePristo,The Genome Analysis Toolkit:a MapReduce framework for analyzing next-generation DNA sequencing data,Genome Res.20(2010)1297–1303.

    [27]M.A.Saghai-Maroof,K.M.Soliman,R.A.Jorgensen,R.W.Allard,Ribosomal DNA spacer-length polymorphisms in barley:Mendelian inheritance,chromosomal location,and population dynamics,Proc.Natl.Acad.Sci.U.S.A.81(1984)8014–8018.

    [28]R.Brenchley,M.Spannagl,M.Pfeifer,G.L.A.Barker,R.D'Amore,A.M.Allen,N.McKenzie,M.Kramer,A.Kerhornou,D.Bolser,S.Kay,D.Waite,M.Trick,I.Bancroft,Y.Gu,N.X.Huo,M.C.Luo,S.Sehgal,B.Gill,S.Kianian,O.Anderson,P.Kersey,J.Dvorak,W.R.McCombie,A.Hall,K.F.X.Mayer,K.J.Edwards,M.W.Bevan,N.Hall,Analysis of the bread wheat genome using whole-genome shotgun sequencing,Nature 491(2012)705–710.

    [29]R.H.Liu,J.L.Meng,MapDraw:a microsoft excel macro for drawing genetic linkage maps based on given genetic linkage data,Hereditas 25(2003)317–321.

    [30]J.Q.Jia,G.R.Li,C.Liu,M.P.Lei,Z.J.Yang,Characterization of wheat yellow rust resistance gene Yr17 using EST-SSR and rice syntenic region,Cereal Res.Commun.39(2011)88–99.

    [31]S.Seah,H.Bariana,J.Jahier,K.Sivasithamparam,E.S.Lagudah,The introgressed segment carrying rust resistance genes Yr17,Lr37 and Sr38 in wheat can be assayed by a cloned disease resistance gene-like sequence,Theor.Appl.Genet.102(2001)600–605.

    [32]Z.Z.Wang,H.W.Li,D.Y.Zhang,L.Guo,J.J.Chen,Y.X.Chen,Q.H.Wu,J.Z.Xie,Y.Zhang,Q.X.Sun,J.Dvorak,M.C.Luo,Z.Y.Liu,Genetic and physical mapping of powdery mildew resistance gene MlHLT in Chinese wheat landrace Hulutou,Theor.Appl.Genet.128(2015)365–373.

    [33]J.Z.Jia,S.C.Zhao,X.Y.Kong,Y.R.Li,G.Y.Zhao,W.M.He,R.Appels,M.Pfeifer,Y.Tao,X.Y.Zhang,R.L.Jing,C.Zhang,Y.Z.Ma,L.F.Gao,C.Gao,M.Spannagl,K.F.X.Mayer,D.Li,S.K.Pan,F.Y.Zheng,Q.Hu,X.C.Xia,J.W.Li,Q.S.Liang,J.Chen,T.Wicker,C.Y.Gou,H.H.Kuang,G.Y.He,Y.D.Luo,B.Keller,Q.J.Xia,P.Lu,J.Y.Wang,H.F.Zou,R.Z.Zhang,J.Y.Xu,J.L.Gao,C.Middleton,Z.W.Quan,G.M.Liu,J.Wang,International Wheat Genome Sequencing Consortium,H.M.Yang,X.Liu,Z.H.He,L.Mao,J.Wang,Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation,Nature 496(2013)91–95.

    国产综合精华液| 尾随美女入室| 丝瓜视频免费看黄片| 黑人猛操日本美女一级片| 两个人免费观看高清视频| 久久精品国产鲁丝片午夜精品| 国产日韩欧美在线精品| 午夜精品国产一区二区电影| 久久久国产欧美日韩av| kizo精华| 五月开心婷婷网| 欧美激情高清一区二区三区 | 国产 精品1| 老司机影院成人| 国产老妇伦熟女老妇高清| 又粗又硬又长又爽又黄的视频| xxxhd国产人妻xxx| 视频区图区小说| 男女边摸边吃奶| 天堂中文最新版在线下载| 香蕉丝袜av| 久久久久久久久久久免费av| 中文字幕人妻丝袜一区二区 | 一级毛片我不卡| 中文字幕最新亚洲高清| av网站在线播放免费| 日韩av在线免费看完整版不卡| 成人免费观看视频高清| 最近中文字幕2019免费版| 国产成人精品无人区| 麻豆av在线久日| 91aial.com中文字幕在线观看| av在线观看视频网站免费| 青春草视频在线免费观看| 中文精品一卡2卡3卡4更新| 黄片无遮挡物在线观看| 国产极品天堂在线| 日韩精品有码人妻一区| 欧美中文综合在线视频| 国产精品亚洲av一区麻豆 | 最近最新中文字幕大全免费视频 | 中文乱码字字幕精品一区二区三区| 人妻人人澡人人爽人人| 久久青草综合色| 国产片内射在线| 校园人妻丝袜中文字幕| 日韩成人av中文字幕在线观看| 日本av手机在线免费观看| 精品少妇久久久久久888优播| 国产人伦9x9x在线观看 | 高清视频免费观看一区二区| 国产精品二区激情视频| 国产在线免费精品| 亚洲欧美一区二区三区黑人 | www日本在线高清视频| 一边摸一边做爽爽视频免费| 中文字幕亚洲精品专区| 国产xxxxx性猛交| 国产毛片在线视频| 成人亚洲精品一区在线观看| 国产av精品麻豆| 丝瓜视频免费看黄片| 高清av免费在线| xxx大片免费视频| 一级毛片电影观看| 毛片一级片免费看久久久久| 色婷婷久久久亚洲欧美| 少妇人妻精品综合一区二区| 蜜桃国产av成人99| 久久久久久久亚洲中文字幕| 黄色一级大片看看| 久久99精品国语久久久| 国产精品亚洲av一区麻豆 | 日韩av不卡免费在线播放| 国产女主播在线喷水免费视频网站| 亚洲第一区二区三区不卡| 午夜av观看不卡| 性少妇av在线| 少妇的丰满在线观看| 国产欧美亚洲国产| 熟女电影av网| 日韩av不卡免费在线播放| 免费人妻精品一区二区三区视频| 国产黄频视频在线观看| 久久99精品国语久久久| 又大又黄又爽视频免费| 可以免费在线观看a视频的电影网站 | 亚洲国产最新在线播放| 亚洲国产精品成人久久小说| 久久精品久久久久久久性| 伊人久久国产一区二区| 午夜福利一区二区在线看| 国产探花极品一区二区| 欧美日韩综合久久久久久| 午夜福利网站1000一区二区三区| 97在线视频观看| 亚洲欧美精品综合一区二区三区 | 极品人妻少妇av视频| 好男人视频免费观看在线| 亚洲少妇的诱惑av| 欧美日韩一区二区视频在线观看视频在线| 欧美少妇被猛烈插入视频| 日韩 亚洲 欧美在线| 18+在线观看网站| 汤姆久久久久久久影院中文字幕| 亚洲精品久久午夜乱码| 精品人妻一区二区三区麻豆| 在线看a的网站| 一级片'在线观看视频| 亚洲一区中文字幕在线| 人人妻人人爽人人添夜夜欢视频| 一区二区av电影网| 国产老妇伦熟女老妇高清| h视频一区二区三区| 中文字幕另类日韩欧美亚洲嫩草| 欧美精品一区二区免费开放| 波多野结衣av一区二区av| 成人午夜精彩视频在线观看| 欧美日本中文国产一区发布| 成人毛片a级毛片在线播放| 国产极品粉嫩免费观看在线| 亚洲精品国产一区二区精华液| 亚洲精品av麻豆狂野| 人妻人人澡人人爽人人| 少妇熟女欧美另类| 黄色 视频免费看| 国产成人精品一,二区| 成年人免费黄色播放视频| 国产女主播在线喷水免费视频网站| 亚洲一级一片aⅴ在线观看| 亚洲精品国产色婷婷电影| 久久国内精品自在自线图片| 飞空精品影院首页| 欧美av亚洲av综合av国产av | 久久久久久久大尺度免费视频| av在线老鸭窝| 亚洲男人天堂网一区| 在线天堂最新版资源| 日韩av不卡免费在线播放| 国产高清国产精品国产三级| 纯流量卡能插随身wifi吗| 国产免费现黄频在线看| 国产激情久久老熟女| 人妻系列 视频| 亚洲国产日韩一区二区| 自拍欧美九色日韩亚洲蝌蚪91| 水蜜桃什么品种好| 成人免费观看视频高清| 亚洲欧洲日产国产| 国产精品久久久久久精品古装| 黄色配什么色好看| 高清av免费在线| 韩国av在线不卡| 在线精品无人区一区二区三| 免费播放大片免费观看视频在线观看| 老司机影院成人| 1024香蕉在线观看| 哪个播放器可以免费观看大片| 国产精品 欧美亚洲| 成人国语在线视频| 十八禁网站网址无遮挡| 永久网站在线| 国产精品 国内视频| 日本av免费视频播放| 成人国产av品久久久| 久久久久久久国产电影| 久久久久精品人妻al黑| freevideosex欧美| 亚洲av电影在线观看一区二区三区| 国产黄色视频一区二区在线观看| 涩涩av久久男人的天堂| av.在线天堂| 亚洲av.av天堂| 成人18禁高潮啪啪吃奶动态图| 久久久久精品性色| 国产又爽黄色视频| 中文字幕另类日韩欧美亚洲嫩草| 亚洲国产av新网站| 最近中文字幕高清免费大全6| 另类精品久久| 五月开心婷婷网| 国产国语露脸激情在线看| 亚洲精品av麻豆狂野| 亚洲国产成人一精品久久久| 欧美日本中文国产一区发布| 在线观看免费日韩欧美大片| 高清av免费在线| 欧美精品亚洲一区二区| 午夜福利乱码中文字幕| 久久久亚洲精品成人影院| 夫妻午夜视频| 久久精品夜色国产| 日韩一区二区视频免费看| 男女下面插进去视频免费观看| 国产亚洲欧美精品永久| 中文字幕精品免费在线观看视频| 欧美精品高潮呻吟av久久| 亚洲国产精品一区二区三区在线| 爱豆传媒免费全集在线观看| 在线 av 中文字幕| 成年动漫av网址| 性高湖久久久久久久久免费观看| 亚洲人成电影观看| 69精品国产乱码久久久| 在线观看免费视频网站a站| 国产熟女欧美一区二区| 日韩不卡一区二区三区视频在线| 亚洲精品久久午夜乱码| 激情视频va一区二区三区| 高清视频免费观看一区二区| 成人毛片a级毛片在线播放| 在线观看人妻少妇| videosex国产| 日本av免费视频播放| 91久久精品国产一区二区三区| 中文乱码字字幕精品一区二区三区| 国产免费又黄又爽又色| 国产熟女欧美一区二区| 欧美日韩视频精品一区| av天堂久久9| 下体分泌物呈黄色| 精品人妻在线不人妻| 日韩av在线免费看完整版不卡| 欧美少妇被猛烈插入视频| 一级a爱视频在线免费观看| 男女无遮挡免费网站观看| av.在线天堂| 一本—道久久a久久精品蜜桃钙片| 亚洲婷婷狠狠爱综合网| 久久精品国产鲁丝片午夜精品| 亚洲成色77777| 亚洲av男天堂| 性色avwww在线观看| 国产爽快片一区二区三区| 亚洲中文av在线| 视频区图区小说| 9191精品国产免费久久| 久久人人97超碰香蕉20202| 日韩熟女老妇一区二区性免费视频| 如日韩欧美国产精品一区二区三区| 国产片内射在线| 麻豆精品久久久久久蜜桃| 日韩欧美一区视频在线观看| 成年美女黄网站色视频大全免费| av片东京热男人的天堂| 9191精品国产免费久久| 精品99又大又爽又粗少妇毛片| 伦精品一区二区三区| 国产精品久久久久久精品电影小说| 高清不卡的av网站| 韩国高清视频一区二区三区| 久久精品aⅴ一区二区三区四区 | 久久久欧美国产精品| 高清黄色对白视频在线免费看| 一区二区av电影网| 观看美女的网站| 水蜜桃什么品种好| 日韩电影二区| 亚洲经典国产精华液单| 久久精品久久久久久噜噜老黄| 一级毛片我不卡| 久久狼人影院| 国产熟女欧美一区二区| 久久精品国产自在天天线| 国产亚洲最大av| 国产精品熟女久久久久浪| 亚洲av综合色区一区| 1024香蕉在线观看| 亚洲一区二区三区欧美精品| 国产高清国产精品国产三级| 性色av一级| 寂寞人妻少妇视频99o| 久久99热这里只频精品6学生| 国产免费又黄又爽又色| 国产成人免费观看mmmm| 精品99又大又爽又粗少妇毛片| 婷婷色麻豆天堂久久| 国产在视频线精品| 欧美激情 高清一区二区三区| 日韩制服骚丝袜av| 美女视频免费永久观看网站| 超色免费av| 老司机亚洲免费影院| www.av在线官网国产| 久久久精品94久久精品| videos熟女内射| 国产熟女午夜一区二区三区| 日韩中文字幕欧美一区二区 | 欧美+日韩+精品| 啦啦啦在线观看免费高清www| 日韩制服丝袜自拍偷拍| 欧美日韩精品成人综合77777| 亚洲欧美日韩另类电影网站| 欧美精品一区二区大全| 99久国产av精品国产电影| 亚洲国产日韩一区二区| 亚洲精品国产色婷婷电影| 欧美 日韩 精品 国产| 人人妻人人澡人人爽人人夜夜| 91aial.com中文字幕在线观看| 亚洲欧洲日产国产| 狠狠精品人妻久久久久久综合| 久久女婷五月综合色啪小说| 各种免费的搞黄视频| 99九九在线精品视频| 亚洲伊人色综图| 日本免费在线观看一区| 精品久久蜜臀av无| 国产老妇伦熟女老妇高清| 极品少妇高潮喷水抽搐| 久久精品国产亚洲av高清一级| √禁漫天堂资源中文www| 最近的中文字幕免费完整| 精品国产一区二区三区久久久樱花| 天堂8中文在线网| 秋霞伦理黄片| 午夜久久久在线观看| av在线老鸭窝| 一本色道久久久久久精品综合| 在线亚洲精品国产二区图片欧美| 日本av免费视频播放| 97精品久久久久久久久久精品| 中文字幕人妻丝袜制服| 色播在线永久视频| 波野结衣二区三区在线| 中文字幕av电影在线播放| 国产毛片在线视频| 美女xxoo啪啪120秒动态图| 一区福利在线观看| 久久久精品国产亚洲av高清涩受| 亚洲精品国产av蜜桃| 国产黄频视频在线观看| 激情视频va一区二区三区| 久久免费观看电影| 九色亚洲精品在线播放| 亚洲av欧美aⅴ国产| 日韩免费高清中文字幕av| 久久久久久久久久久免费av| 午夜福利视频精品| 国产一区二区激情短视频 | 伦精品一区二区三区| 欧美精品av麻豆av| 亚洲欧美成人精品一区二区| 中国国产av一级| 两个人免费观看高清视频| 精品一区二区免费观看| 黑人巨大精品欧美一区二区蜜桃| 亚洲欧美成人综合另类久久久| 黄色 视频免费看| 国产精品偷伦视频观看了| 少妇 在线观看| 久久99一区二区三区| 一本大道久久a久久精品| 大陆偷拍与自拍| 91精品伊人久久大香线蕉| 精品少妇黑人巨大在线播放| 久久青草综合色| 深夜精品福利| 日韩成人av中文字幕在线观看| 黄片小视频在线播放| 亚洲欧洲精品一区二区精品久久久 | 一本大道久久a久久精品| 成人亚洲欧美一区二区av| 嫩草影院入口| 亚洲成人av在线免费| 啦啦啦视频在线资源免费观看| 深夜精品福利| 最近中文字幕高清免费大全6| 亚洲男人天堂网一区| 青春草亚洲视频在线观看| 亚洲人成网站在线观看播放| 国产精品一区二区在线不卡| 久久亚洲国产成人精品v| 91久久精品国产一区二区三区| 人妻 亚洲 视频| 一边亲一边摸免费视频| 少妇被粗大的猛进出69影院| 中文字幕最新亚洲高清| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 麻豆精品久久久久久蜜桃| 婷婷色麻豆天堂久久| 亚洲精品成人av观看孕妇| a级毛片在线看网站| 九色亚洲精品在线播放| 日产精品乱码卡一卡2卡三| 狂野欧美激情性bbbbbb| 亚洲激情五月婷婷啪啪| 人妻系列 视频| 这个男人来自地球电影免费观看 | 国产av一区二区精品久久| av网站在线播放免费| 亚洲三级黄色毛片| 黑人猛操日本美女一级片| 赤兔流量卡办理| 国产精品 欧美亚洲| 考比视频在线观看| 9色porny在线观看| 深夜精品福利| 亚洲精品av麻豆狂野| 五月开心婷婷网| 精品少妇内射三级| 欧美日韩一区二区视频在线观看视频在线| www日本在线高清视频| 男女免费视频国产| 9热在线视频观看99| 伊人亚洲综合成人网| 久久久久国产精品人妻一区二区| 2022亚洲国产成人精品| 老汉色∧v一级毛片| 国产精品一国产av| 国产爽快片一区二区三区| 久久久精品国产亚洲av高清涩受| 午夜福利视频在线观看免费| 大码成人一级视频| 午夜福利一区二区在线看| 国产精品欧美亚洲77777| 国产午夜精品一二区理论片| 美女xxoo啪啪120秒动态图| 99re6热这里在线精品视频| 搡老乐熟女国产| 久久亚洲国产成人精品v| 观看美女的网站| 黄色配什么色好看| 午夜老司机福利剧场| 免费观看在线日韩| 国产黄色视频一区二区在线观看| 成人手机av| 国产精品蜜桃在线观看| 极品人妻少妇av视频| 丁香六月天网| av网站在线播放免费| 成人午夜精彩视频在线观看| 人人澡人人妻人| 欧美激情极品国产一区二区三区| 日韩欧美精品免费久久| 亚洲精品aⅴ在线观看| 狂野欧美激情性bbbbbb| 午夜av观看不卡| 久久久久久久国产电影| 最近最新中文字幕免费大全7| 欧美精品高潮呻吟av久久| 国产男女内射视频| 免费在线观看完整版高清| 亚洲成人av在线免费| 日韩欧美精品免费久久| 亚洲精品aⅴ在线观看| 在线免费观看不下载黄p国产| 青草久久国产| 九九爱精品视频在线观看| 久久久久久伊人网av| 国产又爽黄色视频| 久久久久人妻精品一区果冻| 岛国毛片在线播放| 日韩免费高清中文字幕av| 国产女主播在线喷水免费视频网站| 免费黄色在线免费观看| 欧美日韩精品成人综合77777| 亚洲国产精品国产精品| 高清av免费在线| 亚洲欧美成人精品一区二区| 亚洲,一卡二卡三卡| 99精国产麻豆久久婷婷| 久久久久精品性色| 香蕉国产在线看| 亚洲精品国产av蜜桃| 成人国产av品久久久| 亚洲视频免费观看视频| 国精品久久久久久国模美| 亚洲经典国产精华液单| 午夜老司机福利剧场| 亚洲中文av在线| 免费观看性生交大片5| 免费高清在线观看日韩| 午夜老司机福利剧场| 成人免费观看视频高清| 99久久综合免费| 在线看a的网站| 人妻系列 视频| 26uuu在线亚洲综合色| 日韩制服丝袜自拍偷拍| 大片电影免费在线观看免费| 久久亚洲国产成人精品v| 国产成人免费无遮挡视频| 丝袜美腿诱惑在线| 狂野欧美激情性bbbbbb| 最黄视频免费看| 国产日韩欧美亚洲二区| 国产激情久久老熟女| 高清视频免费观看一区二区| 亚洲欧美一区二区三区久久| 母亲3免费完整高清在线观看 | 电影成人av| 婷婷成人精品国产| av片东京热男人的天堂| av视频免费观看在线观看| 欧美日韩视频高清一区二区三区二| 日韩熟女老妇一区二区性免费视频| 久久国内精品自在自线图片| 超色免费av| 欧美成人午夜免费资源| 国产激情久久老熟女| 精品少妇黑人巨大在线播放| 婷婷色综合www| 亚洲av国产av综合av卡| 日韩制服丝袜自拍偷拍| 有码 亚洲区| 亚洲久久久国产精品| 精品久久久精品久久久| 亚洲内射少妇av| 亚洲成av片中文字幕在线观看 | 99国产精品免费福利视频| 亚洲婷婷狠狠爱综合网| 男的添女的下面高潮视频| 性色av一级| 七月丁香在线播放| 亚洲精华国产精华液的使用体验| 少妇猛男粗大的猛烈进出视频| 久久99一区二区三区| 另类精品久久| 亚洲精品乱久久久久久| 人妻一区二区av| 一级毛片我不卡| 视频在线观看一区二区三区| 伊人久久大香线蕉亚洲五| 大片电影免费在线观看免费| 国产在线视频一区二区| 色婷婷久久久亚洲欧美| 免费观看a级毛片全部| av在线老鸭窝| 久久人人爽av亚洲精品天堂| 国产有黄有色有爽视频| 国产精品一二三区在线看| 99热网站在线观看| 日韩一区二区视频免费看| 日日爽夜夜爽网站| 精品福利永久在线观看| 中文字幕亚洲精品专区| 日本猛色少妇xxxxx猛交久久| 国产一区二区三区综合在线观看| 在现免费观看毛片| 日本午夜av视频| 国产成人精品一,二区| 两个人看的免费小视频| 欧美日韩综合久久久久久| 亚洲精品第二区| 精品久久久久久电影网| 日韩欧美一区视频在线观看| 91精品伊人久久大香线蕉| 精品人妻偷拍中文字幕| 久久精品国产亚洲av天美| 欧美少妇被猛烈插入视频| 90打野战视频偷拍视频| 亚洲五月色婷婷综合| 日本vs欧美在线观看视频| 久久久欧美国产精品| 9191精品国产免费久久| 欧美亚洲 丝袜 人妻 在线| 久久精品国产a三级三级三级| 国产片内射在线| 国产男女超爽视频在线观看| 国产乱来视频区| av免费在线看不卡| 高清视频免费观看一区二区| 不卡av一区二区三区| 亚洲天堂av无毛| 国产免费又黄又爽又色| 中文字幕av电影在线播放| 美女大奶头黄色视频| 三上悠亚av全集在线观看| 亚洲内射少妇av| 日韩熟女老妇一区二区性免费视频| 国产成人aa在线观看| 日韩制服骚丝袜av| 黄片小视频在线播放| 欧美人与性动交α欧美软件| 一区在线观看完整版| 国产淫语在线视频| av卡一久久| 亚洲人成电影观看| 久久久久久久亚洲中文字幕| av国产精品久久久久影院| 在线看a的网站| 久久久久久久国产电影| 男女高潮啪啪啪动态图| 最近中文字幕2019免费版| 国产日韩欧美视频二区| 各种免费的搞黄视频| 捣出白浆h1v1| 水蜜桃什么品种好| 亚洲综合色惰| 99国产精品免费福利视频| 亚洲国产色片| 亚洲美女视频黄频| 久久亚洲国产成人精品v| 日本欧美国产在线视频| 香蕉国产在线看| 乱人伦中国视频| 一级片'在线观看视频| 亚洲精品美女久久av网站| 9热在线视频观看99| 看非洲黑人一级黄片| 美女午夜性视频免费| 国产成人a∨麻豆精品| 欧美亚洲 丝袜 人妻 在线| 乱人伦中国视频| 一边亲一边摸免费视频| 尾随美女入室| 高清欧美精品videossex| 99香蕉大伊视频| 精品国产一区二区三区四区第35| 久久久久人妻精品一区果冻| 国产一区二区激情短视频 | 最新的欧美精品一区二区| 国产一区有黄有色的免费视频| 免费观看无遮挡的男女|