• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The landscape of molecular mechanisms for salt tolerance in wheat

    2018-03-04 18:22:56*
    The Crop Journal 2018年1期

    *

    aThe Key Laboratory of Plant Cell Engineering and Germplasm Innovation,Ministry of Education,School of Life Sciences,Shandong University,Jinan 250100,Shandong,China

    bState Key Laboratory of Soil and Sustainable Agriculture,Institute of Soil Science,Chinese Academy of Sciences,Nanjing 210008,Jiangsu,China

    1.Introduction

    Bread wheat(Triticum aestivum L.),one of the most important staple crops globally,provides most of the calories for approximately 30%of the world population[1].Increasing attention is being given to the mechanisms of abiotic stress response due to greater awareness of the threats of climate change,and loss of arable land during urbanization,and environmental degradation caused by pollution[2].Since more than 800 Mha(6%)of arable land are affected by salinity worldwide[3],soil salinity is a major constraint upon wheat grain yield[4].

    A direct consequence of soil salinity is the over-accumulation of intracellular sodium(Na+),resulting in serious ionic toxicity,especially in the leaves with direct inhibitory effects on photosynthesis.Moreover,salt stress can cause osmotic and oxidative stress,further disturbing metabolic processes and leading to DNA damage and even cell death[3].Therefore,understanding the mechanisms of response and adaptation to salt stress and then improving the salinity tolerance of crops are critical tasks for breeders and researchers.

    Although some mechanisms,such as osmotic adjustment,tissue tolerance processes,and K+retention,have been elaborated in other crops[5],these are greater challenges for bread wheat due to its large,complicated and hexaploid genome[6].Nevertheless,the mechanisms underlying salinity tolerance in wheat,including leaf Na+exclusion mediated by high-affinity K+transporters(HKTs)and reactive oxygen species (ROS)detoxification,have been addressed in long-term and subtle ways[5].Multiple components involved in crosstalk of salinity response with other environmental or developmental signals were identified.Notably,in line with the continuous releases of wheat whole genome information[7]and recently established wheat mutant libraries[8],more versatile approaches will be available for salt tolerance improvement.Therefore,this review will provide an outline of the mechanisms of wheat salinity tolerance,and present an outlook on prospective key research on this topic.

    2.HKT-type transporters confer wheat salinity tolerance by promoting sodium exclusion

    It has long been known that tetraploid wheat is less salt tolerant than bread wheat[9,10],and that a major factor behind this difference is that bread wheat is able to maintain a higher ratio of potassium concentration to sodium concentration in the leaves[11].This trait was shown to be governed by Kna1 on chromosome 4D[12].A genetic analysis,based on a population derived from a cross between a standard durum wheat genotype and a line containing introgressions from the A genome diploid ancestral wheat relative Triticum monococcum showing high Na+exclusion ability,revealed that two loci,Nax1 and Nax2,were involved in excluding sodium ions[13].

    Class 1 HKT genes are involved in regulating transport of Na+in higherplants[14].Several HKT1genes,includingHKT1;1/2-like,HKT1;3-like,HKT1;4-like,and HKT1;5-like,have been identified and mapped to wheat homoeologous chromosome groups2,6,2,and 4,respectively[15].Among these,Nax1 in chromosome arm 2AL co-segregated with sodium transporter gene HKT1;4-A2,which was shown to control Na+unloading from xylem in roots and sheaths and therefore was proposed as the functional candidate[16].Nax2 was mapped to the distal region of chromosome 5AL that is homoeologous to a region on chromosome 4DL containing Kna1.Based on synteny and phylogeny analysis with Nax2,TmHKT1;5-A was proposed to be the candidate of Nax2[17].In addition,field trials in saline soils demonstrated that the presence of TmHKT1;5-A significantly reduced leaf sodium content and increased durum wheat grain yield by 25%compared to lines without the Nax2 locus[18].Furthermore,decreased expression of TaHKT1;5-D,which is homoeologous to TmHKT1;5-A and underlies Kna1 locus in bread wheat,caused by target-specific RNA interference-induced silencing(RNAi),led to an accumulation of Na+in leaves[19],strongly suggesting that TaHKT1;5-D should be the candidate gene of Kna1.

    Na+exclusion mediated by HKT genes in leaves has been recognized as a major mechanism in salinity tolerance of wheat.However,some fundamental issues need to be further addressed.One is how these HKT genes respond to salt stress in wheat.For example,TaHKT1;5-D exhibited a transcriptional reprogramming from constitutive high basal expression in diploid Aegilops tauschii to salt-induced expression in a newly synthetic allohexaploid wheat[20],whilst Byrt et al.[19]discovered no detectable difference in TaHKT1;5-D expression when hexaploid wheat cv.Bobwhite was challenged by salt stress.Additionally,a reduction inTaHKT1;5-Dtranscripts was revealed after salt treatment in both hexaploid wheat cv.JN177 and its introgression line SR3[21].These contradictory results bring about an interesting question of whether the response of TaHKT1;5-D to salinity is accession-dependent(that is,is there an association between the response mode and tolerance to salt stress?),or tissue-specific(as TaHKT1;5-D was previously implied to be predominantly functional within the stele,particularly within xylem parenchyma and pericycle cells adjacent to the xylem vessels[19]).

    Another question is how these wheat HKT genes are regulated.The sole HKT gene in Arabidopsis,AtHKT1,is regulated by small RNA and DNA methylation[22].Moreover,DNA methylation also participated in the response of TaHKT1;5s to salt stress in wheat cv.JN177 and SR3[21].Intriguingly,the transcript levels of TaHKT1;5-B1 and TaHKT1;5-B2 were extremely low compared with that of TaHKT1;5-D[19].Epigenetics plays an important role in the dosage effect of homeologous transcription[7].Therefore,the contribution of epigenetics to the lower expressions of TaHKT1;5-B1 and TaHKT1;5-B2 should be further studied.Moreover,transcription factors,such as AtABI4[23]and OsMYBc[24],were shown to regulate HKT genes in plants,offering more candidate targets for enhancing salinity tolerance.However,an up-stream regulator(s)of wheat HKT genes is still unidentified possibly due to the complexity of the hexaploid wheat genome.

    3.ROS homeostasis involved in salinity tolerance of a somatic hybrid introgression line

    Wild relatives and related species often carry specific traits with potential for improvement of common wheat[25].For example,tall wheat grass(Thinopyrum ponticum),a species that normally grows in barren areas,exhibits tolerance to abiotic stress[26]and is therefore a valuable genetic resource for wheat improvement.However,hybrids between potentially beneficial species and common wheat may be restricted by the “recombination barrier”[27].Asymmetric somatic hybridization is a viable alternative to introgression,especially where inter-specific crosses are not possible[28].Utilizing this approach,the salinity-tolerant bread wheat cultivar Shanrong No.3(SR3)was generated as a derivative of a somatic hybrid between bread wheat and tall wheatgrass[29].This novel cultivar is not only an elite line for breeding,but also a valuable genetic resource to uncover mechanisms underlying salt tolerance.

    Transcriptomic,proteomic and metabolomic comparisons of SR3 with its wild type cv.Jinan 177(JN177)wheat parent suggested that reactive oxygen species homeostasis was the major biochemical basis for the salt tolerance of cv.SR3[30].A mapping analysis localized a tolerance QTL on chromosome arm 5AL,at a position containing TaSRO1,a gene encoding a poly(ADP ribose)polymerase(PARP)domain protein.PARP proteins have been implicated in modulation of redox homeostasis.Sequence variation between the TaSRO1 alleles present in cv.SR3 and cv.JN177 was predicted to affect PARP catalytic activity that is significant for DNA repair under oxidative stress.The transgenic constitutive expression of the allele from cv.JN17,a sensitive cultivar,enhanced the levels of salinity and ROS tolerance,while RNAi-induced knock--down of the gene in cv.SR3 compromised the level of tolerance.Thus TaSRO1 was considered to be a strong candidate for the salt tolerance QTL in cv.SR3[31].

    ADP-ribosylation is a kind of protein modification involved in signal transduction,DNA repair,and stress response[32].PARP-like genes are present in many eukaryotes,and the PARP catalytic domain is the major ADP ribosylation factor in mammalian cells[33].In Arabidopsis,AtRCD1 and six AtSRO genes(similar to RCD One)belong to the PARP subfamily,but intriguingly,none of these members exhibited PARP catalytic activity,even though they were implicated in stress response[34].You et al.showed that OsSRO1c had dual roles in drought and oxidative stress tolerance in rice by modulating stomatal closure and H2O2accumulation,but also had no PARP catalytic activity[35].In contrast,wheat TaSRO1 is unique in being the first SRO1 protein found to possess PARP catalytic activity in plants, and the higher PARP catalytic activity of the TaSRO1 allele in SR3 accounted for the stronger DNA repair capability under stress conditions.This at least partly contributed to the vigorous growth and stress tolerance of SR3[31].Moreover,TaSRO1 contained an RST (for RCD-SRO-TAF4) domain that functions in protein-protein interactions[34].It is meaningful to further identify TaSRO1-interacting proteins,and examine whether TaSRO1 ADP-ribosylates the interacting proteins and therefore contributes to the superior capacity of ROS homeostasis maintenance in SR3.

    Somatic hybridization introduces a minimum of exogenous chromatin into a recipient genome, but causes genomic shock that induces high frequencies of both point mutations and indels(insertions and deletions)in coding sequences,and is thus capable of generating elite alleles[36].Genetic analysis indicated the remarkable salinity tolerance of SR3 by modulation of ROS homeostasis that was accomplished by a polygene effect.A zinc finger transcription factor,TaCHP,was activated in SR3 with much higher transcript abundance than in JN177[37].TaCHP facilitated salinity tolerance in wheat through improved leaf peroxidase(POD)activity to enhance ROS scavenging ability.Another example is the wheat oxophytodienoate reductase gene TaOPR1,whose expression was induced in roots by salt treatment with higher induction in SR3 than in JN177[38].TaOPR1 enhanced salt tolerance by triggering transcription of ROS homeostasis associated genes,consequently reducing malondialdehyde and ROS levels in an ABA-pathway dependent manner[38].

    “Genomic shock”during the process of somatic hybridization also causes massive epigenetic reprogramming[39].A topic of increasing interest is the role of epigenetic variation in controlling gene expression.Observed differences in transcript abundances of TaFLS1,TaWRSI1,and TaTIP2;2 between JN177 and SR3 that could not be explained by differences in either the promoter or the coding sequences,were shown to vary with respect to DNA methylation level[21].In animals,the status of DNA methylation is affected by the level of ROS content[40].It is essential to determine whether the divergence of ROS accumulation and ROS homeostasis maintenance between SR3 and JN177 is associated with DNA methylation,and its effect on expression patterns of salt-stress responsive genes.

    4.Genes involved in crosstalk between salinity response and other environmental or developmental signals in wheat

    When plants are confronted with high salinity,complex physiological responses such as phytohormone signaling pathways and developmental signals are triggered to cope with or adapt to the stress[41].Therefore,it is essential to identify the node(s)linking salinity response and other environmental or developmental signals.An attempt to do this in wheat was firstly performed by looking at phytohormones,as most phytohormones are regulatory factors of both developmental processes and stress response.For example,the wheat gene TaAOC1,encoding an allene oxide cyclase involved in jasmonic acid(JA)synthesis,was induced by high salinity[42].Constitutive expression of TaAOC1 in both wheat and Arabidopsis restricted root growth,but enhanced salt tolerance and JA content.The evidence indicates JA was involved in the orchestration of salt stress response and developmental processes.Moreover,TaAOC1 and TaOPR1 encode two key enzymes of the α-linolenic acid metabolic pathway,catalyzing JA synthesis and OPRI branches,respectively.In line with the data of TaAOC1 and TaOPR1[37,41],we determined that these two branches provide salt tolerance via both the JA-and ABA-dependent pathways to promote expression of MYC2,a crucial component of the abiotic stress response-signaling pathway.These findings firstly indicate that different branches of a metabolic pathway participate in a single process but controlled by different mechanisms.Importantly,variation in TaAOC1 and TaOPR1 alleles could be exploitable in molecular breeding.

    Another example is TaBASS2 that transports pyruvic acid from the cytoplasm into the chloroplasts,where it can be used as the precursor of ABA and other compounds.Overexpres-sion of TaBASS2 improved salinity tolerance and reactive oxygen species scavenging in wheat and Arabidops is through repression of ABI4 expression,indicating that ABA signaling and plastid retrograde signaling pathways were involved in the performance of TaBASS2[43].

    Light is a basic factor that positively affects the growth and development of plants.TaGBF1,a blue light-specific responsive G-box binding factor,was induced after exposure to salt[44].TaGBF1 caused salt sensitivity and promoted blue light mediated photomorphogenesis,showing that it was a common component of the blue light-and salt stress-responsive signaling pathways.Interestingly,genetic analysis suggested that the role of TaGBF1 in response to salt relied on ABI5,a key component of the ABA signaling pathway,rather than light.

    In summary,only fragmentary information has been mined on crosstalk between response to salinity and other environmental or developmental stimuli in wheat.Along with the enrichment of genomic data and other omics data forming a network(see next section),more key components embedded in the machinery will be dissected for wheat improvement.

    5.New trends in functional genomic studies of salinity tolerance in wheat

    5.1.Omics networks

    Along with the recent advances in wheat whole genome sequencing,a new epoch for wheat research is emerging[7].Rapidly increasing information on genomics and other omics approaches,including transcriptomics, proteomics, epigenomics,metabolomics and phenomics, will accelerate the rate of gene discovery in wheat.

    In earlier studies,subtraction hybridization[37]and cDNA microarrays[45]between salt-susceptible and tolerant wheat lines were performed to identify the molecular basis in salinity tolerance.For example, TaCHP,which was expressed at extremely low levels in JN177 but at high levels in SR3 was isolated by subtraction hybridization between JN177 and SR3[37].However,there were numerous omissions in prediction of candidate genes because of the low throughput and low resolution of the approach,especially in the absence of a whole genome sequence for wheat.More recently,high-throughput transcriptome sequencing profiles using wheat cultivarswith contrasting levels of salt tolerance enabled global gene expression reprogramming involving 36,804 genes following salt stress[46].Moreover,as the assembly and annotation of the transcripts were based on information from wheat genome survey sequences,the resolution was sufficiently high to permit expression partitioning of homologs and tandem duplications contributing to the variation in salt tolerance.

    The rapidly improving technical capacity of next generation sequencing(NGS)and genomic enrichment information for wheat will also enable identification of the role of epigenomics in salinity tolerance.A preliminary DNA methylome analysis of salt stress differences between SR3 and JN177 revealed that multiple salt stress responsive genes were regulated by DNA methylation[21].Recently,genome-wide DNA methylation was measured in wheat under different temperature conditions,using the whole genome sequence to distinguish sub-genome-specific methylation[47].A similar high-resolution DNA methylome analysis following salinity treatment has not yet been reported.Furthermore,bulks of small RNAs in response to salt stress were discovered through miRNome analysis[48,49].However,functional validations of these candidate small RNAs and their putative targeted genes were rarely performed and need further study.The first functional noncoding mi RNA screened from high-resolution omics data was involved in wheat β-diketone wax metabolism[50].Such studies will facilitate the functional study of wheat small RNAs in response to salt stress.

    The rapid accumulation of omics data from multiple tissues and temporal developmental time-courses,and various stress conditions in wheat has encouraged the building of a pan-omics database[51].That omics network will greatly promote the exploitation of functional genes,and give us a more comprehensive understanding ofsalinity tolerance.Moreover,co-/multi-regulatory genetic bases of salinity tolerance together with other environmental or developmental stimuli will be easily identified from the network intersections.

    5.2.Salt-resistant germ plasm

    Specific germplasms,including the diploid ancestral wheat relative T.monococcum and the somatic hybrid introgression,were fundamental in elaborating two major mechanisms(ionic and ROS homeostasis)of wheat salinity tolerance.More elegant systems need to be applied to generate novel salt-resistant germplasms for gene discovery and breeding.A further example is the salt-tolerant wheat germplasm RH8706049,a mutant derived from anther culture,EMS induction and selection for salt tolerance,from which several salt-responsive genes were identified.Preliminary functional analyses of these genes were made in Arabidopsis[52,53].Further analyses of the genes in transgenic wheat are needed.Moreover,multiple approaches such as that in SR3 using multiple omics,population genetics and salt-tolerant QTL analysis are essential for further investigation of RH8706049.

    Another recent trend in functional genomics is the establishment of comprehensive EMS mutant libraries of tetraploid wheat and hexaploid wheat[8].Mutant sites were sequenced and cataloged using the next-generation sequenc-ing and exome capture platform.Based on phenotype screening,novel genes involving salinity tolerance will be easily identified from these potentially informative libraries.Moreover,selected mutants can be used to validate the functions of salt stress responsive genes,hopefully avoiding the tedious process of wheat transformation.

    6.Conclusions

    Fig.1–Pathways involved in wheat salinity tolerance.ROS,reactive oxygen species;NOX,NADPH oxidase;AOX,alternative oxidase;ABA,abscisic acid;wheat genes(Ta),including TaAOC1,an allene oxide cyclase gene;TaBASS2,a pyruvic acid transporter gene;TaGBF1,a G-box binding factor gene;TaCHP,a zinc finger transcription factor gene;TaOPR1,an oxophytodienoate reductase gene;TaSRO1,a similar to RCD One gene;TaHKTs,high-affinity potassium transporter genes.

    Despite the complexity of the wheat genome,two major pathways,namely HKT genes that mediate Na+exclusion and the SRO gene that regulates ROS homeostasis,are pivotal in wheat salinity tolerance(Fig.1).The issues of regulation of HKT genes and the interaction protein from the SRO gene need to be further addressed.The discovery of the two pathways was greatly assisted by the use of specific germplasms(such as the diploid ancestral wheat relative T.monococcum and the somatic hybrid introgression line SR3).With the emergence of NGS and wheat whole genome information,functional genomics studies of salinity tolerance will be accelerated in wheat.Recent advances in the development of wheat EMS mutant libraries and genome editing will hasten validation and exploitation of salt stress responsive genes.More genes conferring salinity tolerance are likely to be identified and used in wheat improvement.

    This study was supported by the National Key Research and Development Project(2016YFD0101004),NationalNatural Science Foundation of China(31430060,31601306),and China Postdoctoral Science Foundation(2016M601161).

    R E F E R E N C E S

    [1]Food and Agriculture Organization of the United Nations,www.fao.org/worldfoodsituation/csdb/en/.

    [2]International Wheat Genome Sequencing Consortium(IWGSC),A chromosome-based draft sequence of the hexaploid bread wheat(Triticum aestivum)genome,Science 345(2014)1251788.

    [3]R.Munns,M.Tester,Mechanisms of salinity tolerance,Annu.Rev.Plant Biol.59(2008)651–681.

    [4]D.B.Lobell,W.Schlenker,J.Costa-Roberts,Climate trends and global crop production since 1980,Science 333(2011)616–620.

    [5]R.Munns,M.Gilliham,Salinity tolerance of crops–what is the cost?New Phytol.208(2015)668–673.

    [6]T.Marcussen,S.R.Sandve,L.Heier,M.Spannagl,M.Pfeifer,K.S.Jakobsen,B.B.Wulff,B.Steuernagel,K.F.Mayer,O.A.Olsen,Ancient hybridizations among the ancestral genomes of bread wheat,Science 345(2014)1250092.

    [7]M.Wang,S.B.Wang,G.M.Xia,From genome to gene:a new epoch for wheat research?Trends Plant Sci.20(2015)380–387.

    [8]K.V.Krasileva,H.A.Vasquez-Gross,T.Howell,P.Bailey,F.Paraiso,L.Clissold,J.Simmonds,R.H.Ramirez-Gonzalez,X.D.Wang,P.Borrill,C.Foskerc,S.Aylingc,A.L.Phillips,C.Uauy,J.Dubcovsky,Uncovering hidden variation in polyploid wheat,Proc.Natl.Acad.Sci.U.S.A.114(2017)201619268.

    [9]L.Francois,E.Maas,T.Donovan,V.Youngs,Effect of salinity on grain yield and quality,vegetative growth,and germination of semi-dwarf and durum wheat,Agron.J.78(1986)1053–1058.

    [10]H.Rawson,R.Richards,R.Munns,An examination of selection criteria for salt tolerance in wheat,barley and triticale genotypes,Aust.J.Agric.Res.39(1988)759–772.

    [11]J.Gorham,R.G.W.Jones,A.Bristol,Partial characterization of the trait for enhanced K+–Na+discrimination in the D genome of wheat,Planta 180(1990)590–597.

    [12]J.Dubcovsky,G.Santa Maria,E.Epstein,M.C.Luo,J.Dvo?ák,Mapping of the K+/Na+discrimination locus Kna1 in wheat,Theor.Appl.Genet.92(1996)448–454.

    [13]R.Munns,R.Hare,R.James,G.Rebetzke,Genetic variation for improving the salt tolerance of durum wheat,Aust.J.Agric.Res.51(2000)69–74.

    [14]T.Horie,F.Hauser,J.I.Schroeder,HKT transporter-mediated salinity resistance mechanisms in Arabidopsis and monocot crop plants,Trends Plant Sci.14(2009)660–668.

    [15]S.B.Huang,W.Spielmeyer,E.S.Lagudah,R.Munns,Comparative mapping of HKT genes in wheat,barley,and rice,key determinants of Na+transport,and salt tolerance,J.Exp.Bot.59(2008)927–937.

    [16]S.B.Huang,W.Spielmeyer,E.S.Lagudah,R.A.James,J.D.Platten,E.S.Dennis,R.Munns,A sodium transporter(HKT7)is a candidate for Nax1,a gene for salt tolerance in durum wheat,Plant Physiol.142(2006)1718–1727.

    [17]C.S.Byrt,J.D.Platten,W.Spielmeyer,R.A.James,E.S.Lagudah,E.S.Dennis,M.Tester,R.Munns,HKT1;5-like cation transporters linked to Na+exclusion loci in wheat,Nax2 and Kna1,Plant Physiol.143(2007)1918–1928.

    [18]R.Munns,R.A.James,B.Xu,A.Athman,S.J.Conn,C.Jordans,C.S.Byrt,R.A.Hare,S.D.Tyerman,M.Tester,M.Gilliham,Wheat grain yield on saline soils is improved by an ancestral Na+transporter gene,Nat.Biotechnol.30(2012)360–364.

    [19]C.S.Byrt,B.Xu,M.Krishnan,D.J.Lightfoot,A.Athman,A.K.Jacobs,N.S.Watson-Haigh,D.Plett,R.Munns,M.Tester,M.Gilliham,The Na+transporter,TaHKT1;5–D,limits shoot Na+accumulation in bread wheat,Plant J.80(2014)516–526.

    [20]C.W.Yang,L.Zhao,H.K.Zhang,Z.Z.Yang,H.Wang,S.S.Wen,C.Y.Zhang,S.Rustgi,D.von Wettstein,B.Liu,Evolution of physiological responses to salt stress in hexaploid wheat,Proc.Natl.Acad.Sci.U.S.A.111(2014)11882–11887.

    [21]M.Wang,L.M.Qin,C.Xie,W.Li,J.R.Yuan,L.N.Kong,W.L.Yu,G.M.Xia,S.W.Liu,Induced and constitutive DNA methylation in a salinity tolerant wheat introgression line,Plant Cell Physiol.(2014)1354–1365.

    [22]D.Baek,J.Jiang,J.S.Chung,B.Wang,J.Chen,Z.Xin,H.Shi,Regulated AtHKT1 gene expression by a distal enhancer element and DNA methylation in the promoter plays an important role in salt tolerance,Plant Cell Physiol.52(2011)149–161.

    [23]D.Shkolnik-Inbar,G.Adler,D.Bar-Zvi,ABI4 downregulates expression of the sodium transporter HKT1;1 in Arabidopsis roots and affects salt tolerance,Plant J.73(2013)993–1005.

    [24]R.Wang,W.Jing,L.Y.Xiao,Y.K.Jin,L.Shen,W.H.Zhang,The rice high-affinity potassium transporter1;1 is involved in salt tolerance and regulated by an MYB-type transcription factor,Plant Physiol.168(2015)1076–1090.

    [25]T.Cox,Deepening the wheat gene pool,J.Crop.Prod.1(1997)1–25.

    [26]T.D.Colmer,T.J.Flowers,R.Munns,Use of wild relatives to improve salt tolerance in wheat,J.Exp.Bot.57(2006)1059–1078.

    [27]C.Feuillet,P.Langridge,R.Waugh,Cereal breeding takes a walk on the wild side,Trends Genet.24(2008)24–32.

    [28]G.M.Xia,Progress of chromosome engineering mediated by asymmetric somatic hybridization,J.Genet.Genomics 36(2009)547–556.

    [29]G.M.Xia,F.N.Xiang,A.F.Zhou,H.Wang,H.M.Chen,Asymmetric somatic hybridization between wheat(Triticum aestivum L.)and Agropyron elongatum(Host)Nevishi,Theor.Appl.Genet.107(2003)299–305.

    [30]Z.Y.Peng,M.C.Wang,F.Li,H.J.Lv,C.L.Li,G.M.Xia,A proteomic study of the response to salinity and drought stress in an introgression strain of bread wheat,Mol.Cell.Proteomics 8(2009)2676–2686.

    [31]S.T.Liu,S.W.Liu,M.Wang,T.D.Wei,C.Meng,M.Wang,G.M.Xia,A wheat SIMILAR TO RCD-ONE gene enhances seedling growth and abiotic stress resistance by modulating redox homeostasis and maintaining genomic integrity,Plant Cell 26(2014)164–180.

    [32]R.Gupte,Z.Y.Liu,W.L.Kraus,PARPs and ADP-ribosylation:recent advances linking molecular functions to biological outcomes,Genes Dev.31(2017)101–126.

    [33]W.L.Kraus,PARPs and ADP-ribosylation:50 years…and counting,Mol.Cell 58(2015)902–910.

    [34]S.Kangasj?rvi,J.Kangasj?rvi,Towards understanding extracellular ROS sensory and signaling systems in plants,Adv.Bot.2014(2014)538946.

    [35]J.You,W.Zong,X.K.Li,J.Ning,H.H.Hu,X.H.Li,J.H.Xiao,L.Z.Xiong,The SNAC1-targeted gene OsSRO1c modulates stomatal closure and oxidative stress tolerance by regulating hydrogen peroxide in rice,J.Exp.Bot.64(2012)569–583.

    [36]M.C.Wang,C.Liu,T.Xing,Y.X.Wang,G.M.Xia,Asymmetric somatic hybridization induces point mutations and indels in wheat,BMC Genomics 16(2015)807.

    [37]C.L.Li,J.Lv,X.Zhao,X.H.Ai,X.L.Zhu,M.C.Wang,S.Y.Zhao,G.M.Xia,TaCHP:a wheat zinc finger protein gene downregulated by abscisic acid and salinity stress plays a positive role in stress tolerance,Plant Physiol.154(2010)211–221.

    [38]W.Dong,M.C.Wang,F.Xu,T.Y.Quan,K.Q.Peng,L.T.Xiao,G.M.Xia,Wheat oxophytodienoate reductase gene TaOPR1 confers salinity tolerance via enhancement of abscisic acid signaling and reactive oxygen species scavenging,Plant Physiol.161(2013)1217–1228.

    [39]S.W.Liu,F.Li,L.N.Kong,Y.Sun,L.M.Qin,S.Y.Chen,H.F.Cui,Y.H.Huang,G.M.Xia,Genetic and epigenetic changes in somatic hybrid introgression lines between wheat and tall wheat grass,Genetics 199(2015)1035–1045.

    [40]Q.H.Wu,X.H.Ni,ROS-mediated DNA methylation pattern alterations in carcinogenesis,Curr.Drug Targets 16(2015)13–19.

    [41]D.Golldack,C.Li,H.Mohan,N.Probst,Tolerance to drought and salt stress in plants:unraveling the signaling networks,Front.Plant Sci.5(2014)151.

    [42]Y.Zhao,W.Dong,N.B.Zhang,X.H.Ai,M.C.Wang,Z.G.Huang,L.T.Xiao,G.M.Xia,A wheat allene oxide cyclase gene enhances salinity tolerance via jasmonate signaling,Plant Physiol.164(2014)1068–1076.

    [43]Y.Zhao,X.H.Ai,M.C.Wang,L.T.Xiao,G.M.Xia,A putative pyruvate transporter TaBASS2 positively regulates salinity tolerance in wheat via modulation of ABI4 expression,BMC Plant Biol.16(2016)109.

    [44]Y.Sun,W.Xu,Y.B.Jia,M.C.Wang,G.M.Xia,The wheat TaGBF1 gene is involved in the blue-light response and salt tolerance,Plant J.84(2015)1219–1230.

    [45]C.Liu,S.Li,M.C.Wang,G.M.Xia,A transcriptomic analysis reveals the nature of salinity tolerance of a wheat introgression line,Plant Mol.Biol.78(2012)159–169.

    [46]Y.M.Zhang,Z.S.Liu,A.A.Khan,Q.Lin,Y.Han,P.Mu,Y.G.Liu,H.S.Zhang,L.Y.Li,X.H.Meng,Z.F.Ni,M.M.Xin,Expression partitioning of homeologs and tandem duplications contribute to salt tolerance in wheat(Triticum aestivum L.),Sci Rep 6(2016)21476.

    [47]L.J.Gardiner,M.Quinton-Tulloch,L.Olohan,J.Price,N.Hall,A.Hall,A genome-wide survey of DNA methylation in hexaploid wheat,Genome Biol.16(2015)273.

    [48]H.Eren,M.Pekmezci,S.Okay,M.Turktas,B.Inal,E.Ilhan,M.Atak,M.Erayman,T.Unver,Hexaploid wheat(Triticum aestivum)root miRNome analysis in response to salt stress,Ann.Appl.Biol.167(2015)208–216.

    [49]B.Wang,Y.F.Sun,N.Song,J.P.Wei,X.J.Wang,H.Feng,Z.Y.Yin,Z.S.Kang,Micro RNAs involving in cold,wounding and salt stresses in Triticum aestivum L.Plant Physiol.Biochem.80(2014)90–96.

    [50]D.Q.Huang,J.A.Feurtado,M.A.Smith,L.K.Flatman,C.Koh,A.J.Cutler,Long noncoding mi RNA gene represses wheat βdiketone waxes,Proc.Natl.Acad.Sci.U.S.A.114(2017)E3149–E3158.

    [51]C.Uauy,Wheat genomics comes of age,Curr.Opin.Plant Biol.36(2017)142–148.

    [52]Z.X.Gao,X.L.He,B.C.Zhao,C.J.Zhou,Y.Z.Liang,R.C.Ge,Y.S.Shen,Z.J.Huang,Overexpressing a putative aquaporin gene from wheat,TaNIP,enhances salt tolerance in transgenic Arabidopsis,Plant Cell Physiol.51(2010)767–775.

    [53]X.Huang,Y.Zhang,B.Jiao,G.P.Chen,S.H.Huang,F.Guo,Y.Z.Shen,Z.J.Huang,B.C.Zhao,Overexpression of the wheat salt tolerance-related gene TaSC enhances salt tolerance in Arabidopsis,J.Exp.Bot.63(2012)5463–5473.

    欧美乱妇无乱码| 国产精品98久久久久久宅男小说| 亚洲欧美色中文字幕在线| 久久中文看片网| 亚洲av日韩在线播放| 亚洲免费av在线视频| 亚洲色图综合在线观看| 精品少妇一区二区三区视频日本电影| 丰满饥渴人妻一区二区三| videos熟女内射| 久久精品国产a三级三级三级| 热99久久久久精品小说推荐| 国产成人精品久久二区二区91| 久久精品亚洲av国产电影网| 老司机午夜十八禁免费视频| 精品卡一卡二卡四卡免费| 欧美激情久久久久久爽电影 | 久久久国产成人精品二区 | 操美女的视频在线观看| 久久精品国产综合久久久| 久久香蕉精品热| avwww免费| 一个人免费在线观看的高清视频| 制服诱惑二区| 窝窝影院91人妻| 欧美日韩av久久| 国产成人欧美| 久久精品人人爽人人爽视色| 欧美成狂野欧美在线观看| 欧美精品av麻豆av| 亚洲第一av免费看| 欧美老熟妇乱子伦牲交| 日本a在线网址| 夜夜爽天天搞| 国产高清国产精品国产三级| 无限看片的www在线观看| 久久久久久久国产电影| 亚洲精品一二三| 中文字幕另类日韩欧美亚洲嫩草| 18禁裸乳无遮挡动漫免费视频| 精品国内亚洲2022精品成人 | 大香蕉久久网| 男人的好看免费观看在线视频 | 女警被强在线播放| 丁香六月欧美| 香蕉久久夜色| av在线播放免费不卡| 久久精品人人爽人人爽视色| 欧美成狂野欧美在线观看| 黑人欧美特级aaaaaa片| 中文字幕av电影在线播放| 又黄又爽又免费观看的视频| 80岁老熟妇乱子伦牲交| 久久久久久久精品吃奶| 国产高清国产精品国产三级| 欧美国产精品va在线观看不卡| 热re99久久精品国产66热6| 在线永久观看黄色视频| 国内毛片毛片毛片毛片毛片| 视频区图区小说| 91精品国产国语对白视频| 一级黄色大片毛片| 亚洲久久久国产精品| 免费人成视频x8x8入口观看| 精品午夜福利视频在线观看一区| 热99国产精品久久久久久7| 中文字幕制服av| 久热这里只有精品99| 精品福利永久在线观看| 亚洲国产中文字幕在线视频| 亚洲三区欧美一区| 亚洲成人国产一区在线观看| 嫁个100分男人电影在线观看| 欧美大码av| 在线十欧美十亚洲十日本专区| 欧美+亚洲+日韩+国产| 久久精品人人爽人人爽视色| av福利片在线| 窝窝影院91人妻| 大型黄色视频在线免费观看| 19禁男女啪啪无遮挡网站| 免费看十八禁软件| 亚洲精品av麻豆狂野| 午夜两性在线视频| 亚洲少妇的诱惑av| 夜夜爽天天搞| 亚洲精品国产色婷婷电影| 亚洲精品成人av观看孕妇| 日本欧美视频一区| 免费高清在线观看日韩| 两人在一起打扑克的视频| 国精品久久久久久国模美| 欧美 亚洲 国产 日韩一| 久久久国产欧美日韩av| 精品国产乱码久久久久久男人| 免费在线观看亚洲国产| 精品久久久精品久久久| 天天躁狠狠躁夜夜躁狠狠躁| 麻豆av在线久日| 一级片'在线观看视频| 精品高清国产在线一区| 99国产极品粉嫩在线观看| 亚洲久久久国产精品| av福利片在线| 热re99久久国产66热| 麻豆成人av在线观看| 宅男免费午夜| 国产精品成人在线| 午夜久久久在线观看| 亚洲专区中文字幕在线| 天堂中文最新版在线下载| 亚洲欧美激情综合另类| 91在线观看av| 巨乳人妻的诱惑在线观看| 国产精品.久久久| tocl精华| 亚洲va日本ⅴa欧美va伊人久久| 乱人伦中国视频| 欧美日韩亚洲综合一区二区三区_| 在线观看免费午夜福利视频| 亚洲午夜理论影院| 国产真人三级小视频在线观看| 热99久久久久精品小说推荐| 亚洲九九香蕉| 青草久久国产| 成年女人毛片免费观看观看9 | 亚洲欧美色中文字幕在线| 亚洲av欧美aⅴ国产| 亚洲成a人片在线一区二区| 黄色毛片三级朝国网站| 国产又爽黄色视频| 国产精品 国内视频| 伦理电影免费视频| 日韩中文字幕欧美一区二区| 另类亚洲欧美激情| 午夜精品在线福利| 美女福利国产在线| 免费少妇av软件| 天堂中文最新版在线下载| 最新在线观看一区二区三区| 欧美成人午夜精品| 亚洲熟妇中文字幕五十中出 | 午夜免费观看网址| 久久久久久久精品吃奶| 久久影院123| 久久久久国产精品人妻aⅴ院 | 黄色片一级片一级黄色片| 欧美日韩国产mv在线观看视频| 99久久人妻综合| 大香蕉久久网| 两人在一起打扑克的视频| 色播在线永久视频| 久热这里只有精品99| 久久精品91无色码中文字幕| av一本久久久久| 亚洲国产欧美日韩在线播放| 一二三四社区在线视频社区8| 别揉我奶头~嗯~啊~动态视频| 国产精品电影一区二区三区 | 黄色片一级片一级黄色片| 日日夜夜操网爽| 飞空精品影院首页| 精品国产一区二区三区久久久樱花| 男人的好看免费观看在线视频 | aaaaa片日本免费| 亚洲精品av麻豆狂野| 在线视频色国产色| 69av精品久久久久久| 老司机午夜福利在线观看视频| 亚洲欧美日韩另类电影网站| 亚洲成av片中文字幕在线观看| 精品一区二区三区四区五区乱码| 久久精品国产综合久久久| 久久人人97超碰香蕉20202| 男女免费视频国产| 国产精品一区二区在线不卡| 婷婷精品国产亚洲av在线 | 王馨瑶露胸无遮挡在线观看| 国产又爽黄色视频| 亚洲五月婷婷丁香| 欧美日韩瑟瑟在线播放| 精品国产美女av久久久久小说| 一级作爱视频免费观看| 精品久久久精品久久久| 欧美黑人欧美精品刺激| 国产亚洲欧美98| 男男h啪啪无遮挡| 精品一区二区三卡| 久久九九热精品免费| 色播在线永久视频| 亚洲片人在线观看| 99热网站在线观看| 成年人午夜在线观看视频| av欧美777| 久久久国产成人免费| 国产精品电影一区二区三区 | 国产精品亚洲av一区麻豆| 亚洲自偷自拍图片 自拍| 18禁国产床啪视频网站| 99热国产这里只有精品6| 亚洲国产精品合色在线| 亚洲片人在线观看| 日韩大码丰满熟妇| 一本综合久久免费| 丰满的人妻完整版| 国产成人av教育| 欧美乱码精品一区二区三区| 亚洲av美国av| 免费不卡黄色视频| 亚洲一区二区三区不卡视频| 亚洲国产欧美日韩在线播放| 午夜亚洲福利在线播放| www.精华液| 国产亚洲av高清不卡| 另类亚洲欧美激情| 国产区一区二久久| 岛国在线观看网站| 国产一区二区激情短视频| 热99re8久久精品国产| 久久国产亚洲av麻豆专区| 日韩 欧美 亚洲 中文字幕| 满18在线观看网站| 精品卡一卡二卡四卡免费| 天天影视国产精品| 黄片大片在线免费观看| 美女国产高潮福利片在线看| 久久久久精品人妻al黑| 亚洲国产中文字幕在线视频| 国产高清视频在线播放一区| av网站免费在线观看视频| 国产高清国产精品国产三级| 纯流量卡能插随身wifi吗| 一级片免费观看大全| 精品久久久久久久久久免费视频 | 老熟妇乱子伦视频在线观看| 美女高潮喷水抽搐中文字幕| 777米奇影视久久| 一级a爱视频在线免费观看| 1024香蕉在线观看| 午夜久久久在线观看| 久久久久久免费高清国产稀缺| 亚洲精品中文字幕一二三四区| 夫妻午夜视频| 久久婷婷成人综合色麻豆| 久久99一区二区三区| 国产成人免费无遮挡视频| 国产精品久久久人人做人人爽| 一区在线观看完整版| 欧美日韩av久久| 亚洲成av片中文字幕在线观看| 一进一出抽搐动态| 999久久久精品免费观看国产| 成人免费观看视频高清| 色尼玛亚洲综合影院| 一进一出抽搐gif免费好疼 | 在线观看免费午夜福利视频| 亚洲午夜精品一区,二区,三区| 成人免费观看视频高清| 国产精品免费大片| 欧美精品高潮呻吟av久久| 亚洲黑人精品在线| 亚洲精品国产一区二区精华液| 成人国产一区最新在线观看| 亚洲五月天丁香| 久久精品国产综合久久久| 亚洲片人在线观看| 十分钟在线观看高清视频www| 757午夜福利合集在线观看| 国产欧美日韩一区二区三| 亚洲免费av在线视频| 变态另类成人亚洲欧美熟女 | 妹子高潮喷水视频| 国产精品av久久久久免费| 最新在线观看一区二区三区| 三上悠亚av全集在线观看| 日韩欧美免费精品| 日日摸夜夜添夜夜添小说| 亚洲美女黄片视频| 久久精品成人免费网站| 老司机深夜福利视频在线观看| 他把我摸到了高潮在线观看| 色精品久久人妻99蜜桃| 热re99久久国产66热| 国产真人三级小视频在线观看| 中亚洲国语对白在线视频| 啦啦啦在线免费观看视频4| 精品人妻1区二区| 欧美日韩视频精品一区| 欧美国产精品va在线观看不卡| 色94色欧美一区二区| 成熟少妇高潮喷水视频| 无遮挡黄片免费观看| 久久久久国内视频| 看黄色毛片网站| 精品一区二区三卡| 热99re8久久精品国产| 亚洲精品国产区一区二| а√天堂www在线а√下载 | 99热只有精品国产| 精品午夜福利视频在线观看一区| 伊人久久大香线蕉亚洲五| 狠狠婷婷综合久久久久久88av| 国产1区2区3区精品| 国产又爽黄色视频| 亚洲成a人片在线一区二区| 亚洲精品成人av观看孕妇| 高清黄色对白视频在线免费看| 欧美久久黑人一区二区| 国产高清视频在线播放一区| 99香蕉大伊视频| 无限看片的www在线观看| 久久久国产精品麻豆| 国产精品欧美亚洲77777| 国产亚洲精品第一综合不卡| 欧美精品一区二区免费开放| 亚洲一区二区三区不卡视频| 亚洲男人天堂网一区| av片东京热男人的天堂| 国产精品影院久久| 欧美精品一区二区免费开放| 日韩中文字幕欧美一区二区| 亚洲精品中文字幕一二三四区| 精品国产国语对白av| 在线永久观看黄色视频| 亚洲avbb在线观看| 女人高潮潮喷娇喘18禁视频| 国产成人一区二区三区免费视频网站| 中文亚洲av片在线观看爽 | 天天躁日日躁夜夜躁夜夜| 精品一品国产午夜福利视频| 国产精品免费大片| 99国产极品粉嫩在线观看| 操出白浆在线播放| 久久久久国产精品人妻aⅴ院 | 亚洲色图综合在线观看| 19禁男女啪啪无遮挡网站| √禁漫天堂资源中文www| 巨乳人妻的诱惑在线观看| 国产欧美日韩一区二区精品| 不卡一级毛片| 色精品久久人妻99蜜桃| 一级a爱视频在线免费观看| 大陆偷拍与自拍| 日日夜夜操网爽| 久久久精品免费免费高清| 亚洲avbb在线观看| 免费黄频网站在线观看国产| 精品久久久久久电影网| 不卡一级毛片| 日韩人妻精品一区2区三区| 怎么达到女性高潮| 丰满的人妻完整版| www.熟女人妻精品国产| 91字幕亚洲| 欧美成狂野欧美在线观看| 日韩免费高清中文字幕av| 岛国毛片在线播放| 午夜成年电影在线免费观看| 国产又色又爽无遮挡免费看| 18禁裸乳无遮挡动漫免费视频| 国产男靠女视频免费网站| 91国产中文字幕| 免费日韩欧美在线观看| 国产精品一区二区在线观看99| 最新美女视频免费是黄的| 国产免费av片在线观看野外av| 欧美丝袜亚洲另类 | 日本五十路高清| videosex国产| 国产欧美日韩综合在线一区二区| 国产精品99久久99久久久不卡| 伊人久久大香线蕉亚洲五| 欧美乱色亚洲激情| 国产一区有黄有色的免费视频| 一夜夜www| 久久影院123| 亚洲熟女毛片儿| 精品国产美女av久久久久小说| 亚洲一卡2卡3卡4卡5卡精品中文| 高潮久久久久久久久久久不卡| 亚洲 国产 在线| 亚洲性夜色夜夜综合| 欧美黄色淫秽网站| 成年版毛片免费区| 极品教师在线免费播放| 久久人人爽av亚洲精品天堂| 无遮挡黄片免费观看| 亚洲五月天丁香| 亚洲中文日韩欧美视频| 12—13女人毛片做爰片一| 久久中文字幕一级| 国产精品免费大片| 大型黄色视频在线免费观看| 最近最新中文字幕大全免费视频| av一本久久久久| 国产一区有黄有色的免费视频| 午夜福利在线观看吧| 精品高清国产在线一区| 欧美激情 高清一区二区三区| 欧美日韩视频精品一区| 成人永久免费在线观看视频| 欧美激情极品国产一区二区三区| 首页视频小说图片口味搜索| 亚洲国产欧美网| 亚洲片人在线观看| 成年人黄色毛片网站| 亚洲欧美精品综合一区二区三区| 十八禁网站免费在线| 99久久国产精品久久久| 亚洲欧美精品综合一区二区三区| 热99久久久久精品小说推荐| 久久久国产成人免费| 国产视频一区二区在线看| 日韩欧美三级三区| 最新的欧美精品一区二区| 亚洲av成人一区二区三| 亚洲精品久久成人aⅴ小说| 欧美在线一区亚洲| 国产99久久九九免费精品| 国产亚洲精品第一综合不卡| 99在线人妻在线中文字幕 | 啦啦啦 在线观看视频| 久久香蕉激情| 看黄色毛片网站| 久久狼人影院| 日韩人妻精品一区2区三区| 91九色精品人成在线观看| 国产蜜桃级精品一区二区三区 | 亚洲中文字幕日韩| 99在线人妻在线中文字幕 | 一级a爱视频在线免费观看| 天堂中文最新版在线下载| 国产精品永久免费网站| 成年人午夜在线观看视频| 麻豆av在线久日| 久久这里只有精品19| 欧美激情久久久久久爽电影 | 欧美色视频一区免费| 国产精品乱码一区二三区的特点 | 十八禁人妻一区二区| 午夜91福利影院| 精品人妻在线不人妻| 免费观看a级毛片全部| 亚洲欧美日韩另类电影网站| 国产亚洲欧美在线一区二区| 亚洲一区高清亚洲精品| 麻豆成人av在线观看| 久久久久久久午夜电影 | 一进一出抽搐动态| a级毛片黄视频| 国产精品自产拍在线观看55亚洲 | 国产精品综合久久久久久久免费 | 老司机午夜十八禁免费视频| 又黄又爽又免费观看的视频| 亚洲熟妇熟女久久| 狠狠婷婷综合久久久久久88av| 成人黄色视频免费在线看| 老司机深夜福利视频在线观看| 欧美午夜高清在线| 成熟少妇高潮喷水视频| 老司机靠b影院| 天天添夜夜摸| 高潮久久久久久久久久久不卡| 男女午夜视频在线观看| 一边摸一边抽搐一进一小说 | 免费黄频网站在线观看国产| 在线天堂中文资源库| 久久久国产一区二区| 12—13女人毛片做爰片一| 国产av精品麻豆| 国产精品永久免费网站| 欧美av亚洲av综合av国产av| 丝袜人妻中文字幕| 免费观看精品视频网站| 欧美精品高潮呻吟av久久| 欧美亚洲 丝袜 人妻 在线| 下体分泌物呈黄色| 亚洲熟妇熟女久久| 精品一区二区三区四区五区乱码| 欧美最黄视频在线播放免费 | 一级片免费观看大全| 欧美日韩国产mv在线观看视频| 热99久久久久精品小说推荐| 一进一出抽搐动态| 久久婷婷成人综合色麻豆| 国产精品av久久久久免费| 精品久久蜜臀av无| 国产在线一区二区三区精| 日本a在线网址| 黄色a级毛片大全视频| 欧美 日韩 精品 国产| 大陆偷拍与自拍| 国产精品欧美亚洲77777| 国产99白浆流出| 免费看十八禁软件| 日日爽夜夜爽网站| 精品一区二区三卡| av福利片在线| 亚洲欧美日韩另类电影网站| 久久久国产精品麻豆| 久久青草综合色| 久久国产精品男人的天堂亚洲| 欧美人与性动交α欧美精品济南到| 一级黄色大片毛片| 亚洲性夜色夜夜综合| www.熟女人妻精品国产| 久久青草综合色| 亚洲av美国av| 国产亚洲欧美精品永久| 欧美av亚洲av综合av国产av| 中文欧美无线码| 免费在线观看视频国产中文字幕亚洲| 90打野战视频偷拍视频| 午夜成年电影在线免费观看| 嫩草影视91久久| 后天国语完整版免费观看| 日韩免费高清中文字幕av| 亚洲男人天堂网一区| xxx96com| 久久国产精品男人的天堂亚洲| 亚洲人成电影观看| 精品少妇一区二区三区视频日本电影| 国产av精品麻豆| 多毛熟女@视频| 午夜福利欧美成人| 久99久视频精品免费| 亚洲欧美精品综合一区二区三区| 夜夜爽天天搞| 日日摸夜夜添夜夜添小说| 亚洲 国产 在线| 交换朋友夫妻互换小说| av一本久久久久| 97人妻天天添夜夜摸| 丝袜美腿诱惑在线| 午夜福利影视在线免费观看| 亚洲成av片中文字幕在线观看| 亚洲免费av在线视频| 亚洲精品在线观看二区| 久久九九热精品免费| 欧美日韩精品网址| 大型av网站在线播放| 精品高清国产在线一区| 日韩欧美三级三区| 美女扒开内裤让男人捅视频| 国产男靠女视频免费网站| 夜夜夜夜夜久久久久| 超碰97精品在线观看| 中国美女看黄片| 女同久久另类99精品国产91| 免费高清在线观看日韩| 国产精品免费大片| 国产高清激情床上av| 狂野欧美激情性xxxx| 天天影视国产精品| 三级毛片av免费| 国产亚洲精品久久久久久毛片 | 精品少妇久久久久久888优播| 午夜福利视频在线观看免费| 国产97色在线日韩免费| 国产99白浆流出| 亚洲精华国产精华精| 亚洲午夜理论影院| 久久中文字幕人妻熟女| 久久国产精品人妻蜜桃| 另类亚洲欧美激情| 成人影院久久| 国产一区在线观看成人免费| aaaaa片日本免费| 日韩成人在线观看一区二区三区| 操出白浆在线播放| 一本综合久久免费| 日韩视频一区二区在线观看| 亚洲情色 制服丝袜| 一区福利在线观看| 亚洲精品国产色婷婷电影| 国产又爽黄色视频| 成年人黄色毛片网站| 老熟妇仑乱视频hdxx| 亚洲人成电影观看| 九色亚洲精品在线播放| 高清毛片免费观看视频网站 | 女警被强在线播放| 黄网站色视频无遮挡免费观看| 国产精品久久久久久人妻精品电影| 丝袜美足系列| 18禁国产床啪视频网站| 首页视频小说图片口味搜索| 一级a爱片免费观看的视频| aaaaa片日本免费| 99国产极品粉嫩在线观看| 满18在线观看网站| 一区二区三区国产精品乱码| 黄片小视频在线播放| 伦理电影免费视频| 国产精品香港三级国产av潘金莲| 久久这里只有精品19| 亚洲精品国产区一区二| 午夜精品久久久久久毛片777| 黑人巨大精品欧美一区二区mp4| 后天国语完整版免费观看| 精品一区二区三区视频在线观看免费 | 他把我摸到了高潮在线观看| 人妻久久中文字幕网| 亚洲欧美色中文字幕在线| 午夜久久久在线观看| 国产在线观看jvid| 亚洲成国产人片在线观看| 精品一区二区三卡| 亚洲第一欧美日韩一区二区三区| 在线观看www视频免费| 亚洲人成电影免费在线| 丝袜在线中文字幕| 桃红色精品国产亚洲av| 久久人人97超碰香蕉20202| 久久久国产成人免费|