王貴芳+彭福田+趙永飛+羅靜靜+于雯+肖元松+陳曉璐
摘要:植物SnRK1蛋白激酶與酵母SNF1 以及哺乳動(dòng)物AMPK在結(jié)構(gòu)和功能上同源性較高,以α催化亞基、β和γ調(diào)節(jié)亞基組成異源三聚體復(fù)合物的形式存在。SnRK1蛋白激酶廣泛存在于高等植物中,響應(yīng)環(huán)境脅迫、營(yíng)養(yǎng)匱乏、光暗周期等引起的能量缺失信號(hào)。SnRK1是調(diào)控植物代謝和能量平衡的重要樞紐,調(diào)節(jié)光合作用途徑相關(guān)基因的表達(dá)以及蔗糖合成、淀粉合成和降解相關(guān)酶編碼基因的表達(dá),參與糖代謝途徑。此外,SnRK1在植物的生長(zhǎng)、發(fā)育和脅迫響應(yīng)中也是重要的調(diào)控樞紐。但SnRK1在代謝網(wǎng)絡(luò)途徑的調(diào)控非常復(fù)雜,很多調(diào)節(jié)機(jī)制還不清楚,亟需進(jìn)一步的研究。本研究通過(guò)對(duì)SnRK1蛋白激酶的結(jié)構(gòu),酶活性的調(diào)節(jié)機(jī)制,及在植物碳氮代謝、生長(zhǎng)發(fā)育及響應(yīng)脅迫應(yīng)答中的調(diào)控研究現(xiàn)狀進(jìn)行綜述,旨在為進(jìn)一步研究植物SnRK1的功能提供參考。
關(guān)鍵詞:SnRK1蛋白激酶;結(jié)構(gòu);酶活性;功能
中圖分類(lèi)號(hào):S188+.3文獻(xiàn)標(biāo)識(shí)號(hào):A文章編號(hào):1001-4942(2018)01-0164-09
Abstract Plant SnRK1 has high homology in the structure and functions with mammalian AMPK and yeast SNF1, and is a heterotrimer complex composed of α catalytic subunit, β and γ regulatory subunit. SnRK1 protein kinase exists in higher plants widely, and responses the energy deficit signal caused by environmental stress, nutrition deficiency and light-dark cycle. SnRK1 is an important hub which can regulate metabolism and energy homeostasis in plants, and it regulates gene expression in photosynthetic pathway as well as the sucrose synthesis, starch synthesis and degradation related enzymes encoding gene expression, and it participates in sugar metabolic pathways. In addition, SnRK1 protein kinase regulates plant growth, development and stress response. But the regulatory mechanisms in plant metabolic network are very complex, it is less clear and urgent to be studied. In this paper, we reviewed the structure of SnRK1 protein kinase, the regulation of SnRK1 activities, and the research advances of SnRK1 regulating in carbon, growth and development process and response stress in plants, which was expected to provide references for further research in the functions of plant SnRK1 protein kinase.
Keywords SnRK1 protein kinase; Structure; Enzyme activity; Function
植物SnRK1蛋白激酶與酵母SNF1 以及哺乳動(dòng)物AMPK在結(jié)構(gòu)和功能上都具有較高的同源性[1]。1981年,Carlson等首次發(fā)現(xiàn)酵母Snf1突變體不能在缺少葡萄糖而僅含有蔗糖、甘油或乙醇等其它碳源的培養(yǎng)基上生長(zhǎng)[2];隨后,Celenza和Carlson首次從酵母中分離得到SNF1基因,并證明它編碼一個(gè)蛋白激酶[3]。在動(dòng)物中鑒定出與SNF1相似的蛋白激酶AMPK[4]。1991年,植物中第一個(gè)SnRK1基因(pcRKin1)從黑麥中分離得到,它編碼一個(gè)相對(duì)分子量為57.7 kD的多肽鏈,氨基酸序列與酵母和動(dòng)物中的同源基因SNF1和AMPKα的同源性為48%[5]。1992年,Le Guen等又從擬南芥中分離得到一個(gè)SNF1的同源基因AKIN10,并推測(cè)其可能在碳水化合物代謝和基因表達(dá)調(diào)控的信號(hào)轉(zhuǎn)導(dǎo)中起重要作用[6]。植物SnRK1蛋白激酶以α、β和γ亞基結(jié)合形成復(fù)合體的形式存在,是植物體內(nèi)生理活動(dòng)的調(diào)控樞紐之一,參與植物代謝、發(fā)育及脅迫應(yīng)答等多種生理活動(dòng)過(guò)程[7]。
1 植物SnRK1蛋白激酶的結(jié)構(gòu)
SNF1/AMPK/SnRK1蛋白激酶在所有的真核生物中具有高度的保守性,以α、β和γ亞基組成異源三聚復(fù)合體的形式存在[8-10]。α催化亞基由兩部分組成,激酶結(jié)構(gòu)域和調(diào)節(jié)結(jié)構(gòu)域;激酶結(jié)構(gòu)域包括一個(gè)典型折疊結(jié)構(gòu)和一個(gè)激活環(huán)(也稱T-loop);在酵母和動(dòng)物中調(diào)節(jié)結(jié)構(gòu)域包含一個(gè)自我抑制的結(jié)構(gòu)域(AIS),可以抑制激酶的活性[11,12],而在植物中此結(jié)構(gòu)域不能進(jìn)行自我抑制[13],而是包含一個(gè)與泛素相關(guān)的結(jié)構(gòu)域(UBA),可以調(diào)節(jié)與泛素化蛋白的互作[14];另外,α亞基包含一個(gè)激酶相關(guān)的結(jié)構(gòu)域(KA1)可以跟調(diào)節(jié)亞基及上游的磷酸酶相互作用[15-18]。endprint
β亞基作為一個(gè)支架將α與γ亞基連接在一起,β亞基包含兩個(gè)明確的不同結(jié)構(gòu)域。第一個(gè)結(jié)構(gòu)域位于蛋白質(zhì)的中部,最早被認(rèn)為是激酶互作的序列域(KIS),但是現(xiàn)在一般是指碳綁定域(CBM,以前也稱GBD)[19,20]。在酵母SNF1和植物SnRK1中,GBD/KIS是β亞基與α催化亞基相互作用所必須的。第二個(gè)結(jié)構(gòu)域位于C端,被稱為與SNF1相關(guān)的復(fù)合物(ASC),調(diào)節(jié)與酵母SNF1及植物SnRK1γ亞基的相互作用。植物SnRK1蛋白激酶特有的β3亞基缺少GBD/KIS結(jié)構(gòu)域,只含有ASC結(jié)構(gòu)域,能與α催化亞基及γ亞基互作,并且能互補(bǔ)酵母三突變體gal83Δsip1Δsip2Δ[19]。此外,β亞基N末端延伸域可以對(duì)激酶進(jìn)行亞細(xì)胞定位[21],比如,酵母在高濃度的葡萄糖情況下,三個(gè)β亞基都位于細(xì)胞質(zhì);而在低濃度的葡萄糖條件下,Gal83轉(zhuǎn)移到細(xì)胞核內(nèi),Sip1定于液泡中,而Sip2仍位于細(xì)胞質(zhì)[22]。
在酵母和哺乳動(dòng)物中,γ調(diào)節(jié)亞基通過(guò)CBS(cystathionine-β-synthase)結(jié)構(gòu)域與α亞基上的腺苷酸綁定調(diào)節(jié)催化亞基的活性[23],γ亞基由N延伸端和兩對(duì)CBS結(jié)構(gòu)域串聯(lián)而成(也稱Bateman1和Bateman2)[9]。植物中還存在一個(gè)非典型的γ亞基(βγ亞基),在γ亞基的N端融合了一個(gè)CBM/GBD結(jié)構(gòu)域,這個(gè)βγ亞基可以互補(bǔ)酵母突變體snf4Δ的表型,表明植物βγ亞基具有γ亞基的典型功能[24]。
2 植物SnRK1蛋白激酶的活性調(diào)節(jié)
2.1 磷酸化調(diào)節(jié)
α催化亞基的激酶結(jié)構(gòu)域T-loop上保守的蘇氨酸磷酸化是SNF1/AMPK/SnRK1保持活性狀態(tài)所必須的[13,25-27,29]。在高濃度的葡萄糖介質(zhì)中時(shí),酵母Snf1大部分處于去磷酸化狀態(tài),此時(shí)SNF1激酶復(fù)合體失去活性;把酵母細(xì)胞轉(zhuǎn)移至低濃度葡萄糖介質(zhì)中時(shí),Snf1被磷酸化, SNF1激酶復(fù)合體被激活[26]。與酵母SNF1相似,AMPK激酶復(fù)合體在代謝脅迫的情況下(ATP生成受阻或ATP的消耗加?。┍患せ頪29],即當(dāng)T-loop環(huán)上蘇氨酸殘基(T172)被磷酸化時(shí)激酶復(fù)合體才具有活性[25]。對(duì)植物研究發(fā)現(xiàn),在脅迫條件下與正常條件下總的細(xì)胞磷酸化水平?jīng)]有差異[30,31],這表明脅迫條件下植物中可能存在其他的磷酸化殘基或調(diào)節(jié)機(jī)制調(diào)控激酶的活性;依據(jù)不同分子大小進(jìn)行分離,發(fā)現(xiàn)激酶復(fù)合體催化亞基T-loop上磷酸化水平較高[32];因此,植物在脅迫條件下可能只是提高了激酶α催化亞基的磷酸化水平,而細(xì)胞總的磷酸化水平不能反映這種變化。
2.2 上游激酶的調(diào)節(jié)
1987年Carling 等對(duì)動(dòng)物的研究中最早發(fā)現(xiàn)關(guān)于上游激酶對(duì)SNF1/AMPK/SnRK1活性調(diào)節(jié)[33],哺乳動(dòng)物中存在至少兩種上游激酶(腫瘤抑制性激酶LKB1和Ca2+/鈣調(diào)素依賴的蛋白激酶Camkkβ);而在酵母細(xì)胞中SNF1存在三種上游激酶Elm1、Tos3和Sak1,Sak1是SNF1主要的上游激酶,因?yàn)樗鼘?duì)SNF1活性的影響大于Elm1和Tos3[34]。
最先在擬南芥中發(fā)現(xiàn)的植物SnRK1上游激酶是GRIK1和GRIK2(又稱SnAK1和SnAK2),體外試驗(yàn)研究發(fā)現(xiàn)自動(dòng)磷酸化是使其具有活性所必須的[35,28],并且其可以被SnRK1反饋抑制調(diào)節(jié)[28]。植物的頂端分生組織中表達(dá)SnAKs并且SnRK1被磷酸化,認(rèn)為SnAKs/GRIKs僅存在于生長(zhǎng)活躍的分生組織或被病菌感染的成熟葉片組織中;而正常的成熟葉片中也發(fā)現(xiàn)SnRK1被磷酸化,因此正常的成熟葉片中也可能存在SnAKs/GRIKs磷酸化SnRK1的現(xiàn)象[13],然而檢測(cè)到磷酸化的水平較低,這可能是蛋白酶降解的結(jié)果[36],也可能存在其他的上游激酶。對(duì)水稻的研究發(fā)現(xiàn),CIPK15是SnRK1的一個(gè)上游激酶[37],然而還需要其他更多的證據(jù)證實(shí)SnRK1是被CIPK15直接磷酸化的。體外試驗(yàn)研究發(fā)現(xiàn)菠菜葉片提取物中SnRK1可以被哺乳動(dòng)物CaMKK磷酸化,這表明可能存在內(nèi)源Ca2+依賴的激酶(如CIPKs)或鈣調(diào)素依賴的蛋白激酶充當(dāng)SnAKs的角色。有意思的是番茄中存在一個(gè)由病原菌引發(fā)的抑制細(xì)胞死亡的蛋白(Adi3)可以和SnRK1互作,磷酸化Gal83β亞基,調(diào)節(jié)SnRK1蛋白激酶的活性[38],這種磷酸化機(jī)制是否只存在病原菌侵染的情況下,還是也存在于其他環(huán)境條件下、代謝途徑或激素調(diào)節(jié)途徑中,還有待進(jìn)一步研究。
2.3 上游磷酸酶調(diào)節(jié)
去磷酸化作用對(duì)SNF1/AMPK/SnRK1的活性調(diào)節(jié)至關(guān)重要[17,18,39-44]。目前為止,確定的蛋白磷酸酶是酵母細(xì)胞的PPs,Snf1催化亞基的去磷酸化由PP1磷酸酶Reg1調(diào)節(jié)亞基上Glc7位點(diǎn)執(zhí)行[9],缺失Reg1A基因的酵母在葡萄糖介質(zhì)中表現(xiàn)為SNF1的磷酸化及活性狀態(tài)[26],然而酵母glc7Δ突變體是致死的[45],可能因?yàn)镾NF1的活性太強(qiáng)的緣故。另外研究表明,Snf1可以被2C類(lèi)型的磷酸酶(Ptc1)和2A類(lèi)型的磷酸酶(Sit4)去磷酸化[46,47]。體外試驗(yàn)研究表明AMPK可以被PP1、PP2A和金屬離子依賴性的PP2C磷酸酶去磷酸化,且PP1和PP2C去磷酸化的效率高于PP2A[48,49]。
植物中, PP2C磷酸酶、ABI1和PP2CA可以跟SnRK1α1互作使之去磷酸化[18],這與之前發(fā)現(xiàn)的人類(lèi)PP2C能夠使菠菜SnRK1α去磷酸化并使之失活相似[50];另外PP2C也能夠通過(guò)與SnRK2互作負(fù)調(diào)節(jié)ABA途徑,其抑制作用可以被ABA受體綁定ABA解除[51];因此,PP2C調(diào)節(jié)SnRK1不僅抑制SnRK1響應(yīng)糖信號(hào)途徑,而且抑制ABA響應(yīng)途徑[18]。通過(guò)體外試驗(yàn)及酵母雙雜交試驗(yàn)研究發(fā)現(xiàn)其他一些磷酸酶如PP2C、PP2C74可以跟SnRK1α2互作,盡管其功能及作用機(jī)制還不清楚[52]。endprint
2.4 翻譯后修飾調(diào)節(jié)
雖然T-loop的磷酸化被認(rèn)為SNF1/AMPK/SnRK1活性調(diào)節(jié)的主要機(jī)制,然而還存在其他一些翻譯后修飾調(diào)節(jié),如乙?;?、泛素化、SUMO修飾、豆蔻?;脱趸饔?。
2.4.1 乙?;?研究發(fā)現(xiàn)Sip2(酵母SNF1的一個(gè)β亞基)是核小體乙酰轉(zhuǎn)移酶H4復(fù)合體(NuA4)的非染色質(zhì)底物[53]。Sip2乙?;怪cSnf1催化亞基的互作更穩(wěn)定從而抑制其活性,另外Sip2乙酰化可以使細(xì)胞延長(zhǎng)壽命[54]。體外試驗(yàn)研究表明AMPKα1催化亞基能被P300乙酰轉(zhuǎn)移酶乙酰化,但還需要進(jìn)一步的體內(nèi)試驗(yàn)加以證明[55],另外對(duì)AMPK亞基進(jìn)行光譜分析發(fā)現(xiàn)AMPKγ1在N末端的延伸域被乙?;也淮嬖谄渌姆g后修飾[56]。目前在植物中雖然還沒(méi)發(fā)現(xiàn)乙?;默F(xiàn)象,但酵母SNF1和哺乳動(dòng)物AMPK激酶復(fù)合體的三個(gè)亞基都存在乙酰化的修飾。
2.4.2 泛素化 當(dāng)酵母生長(zhǎng)在碳源改變的情況下,泛素化負(fù)向調(diào)節(jié)Snf1的穩(wěn)定性、磷酸化和催化活性,一個(gè)組蛋白調(diào)節(jié)器SAGA復(fù)合體的亞基Ubp8可以使Snf1去泛素化[57]。對(duì)哺乳動(dòng)物深色的脂肪組織研究發(fā)現(xiàn)Cidea(cell death-inducing DFF45-like effector A)通過(guò)泛素化與AMPKβ互作在活體內(nèi)形成復(fù)合體,而缺少Cidea的老鼠體內(nèi)AMPKαT172磷酸化水平及催化活性提高;相反表達(dá)Cidea增加了AMPK復(fù)合體蛋白酶體的降解[58]。植物中激酶的活性及磷酸化與蛋白質(zhì)的穩(wěn)定性有很大的關(guān)系[27];低營(yíng)養(yǎng)條件下SnRK1α1以5-磷酸酶(5P Tase13)依賴性肌醇磷酸鹽的方式被蛋白酶降解[59]。PRL1作為SnRK1α1蛋白激酶復(fù)合體的底物受體被DDB1-CUL4-ROC-PRL1 E3泛素連接酶調(diào)節(jié)降解[60],SnRK1α1可以與PRL1相互作用[61,14],與對(duì)照野生型WT相比,prl1和cul4cs突變體中SnRK1α1蛋白通過(guò)26S蛋白酶體降解的途徑受阻,積累較高水平的SnRK1α1蛋白質(zhì)和較高的酶活性[60],此外突變體prl1中被SnRK1抑制的3羥基-3-甲基乙酰輔酶A羧化酶(3-hydroxy-3-methyl-glutaryl-CoA reductase)的活性降低[62]
2.5 腺苷酸調(diào)節(jié)
酵母中AMP不能通過(guò)變構(gòu)來(lái)激活[63],但是ADP能保護(hù)SNF1防止去磷酸化[42,43]。盡管這種機(jī)制起初被認(rèn)為是通過(guò)ADP結(jié)合Snf4的方式來(lái)調(diào)節(jié)的,但是越來(lái)越多的研究表明,調(diào)控亞基不需要這種保護(hù)[64]。目前的假說(shuō)是,磷酸化一個(gè)底物以后,ADP仍停留在活性位點(diǎn),防止激酶去磷酸化從而起保護(hù)作用。
AMPK在幾個(gè)水平上受腺苷酸調(diào)控[48]。第一,AMP通過(guò)結(jié)合γ-亞基,從而變構(gòu)激活A(yù)MPK[33]。第二,AMP結(jié)合γ-亞基,增加其作為底物與上游激酶結(jié)合的能力[65,66],這已經(jīng)在LKB1得到了論證[67]。蛋白AXIN與LKB1相互作用,能提高其與AMP綁定AMPK的互作,這解釋了為什么依賴LKB1的AMPK磷酸化,會(huì)受AMP的刺激[68]。第三,低能量的ADP和AMP與γ亞基的結(jié)合,使AMPK復(fù)合物避免去磷酸化或失活[39,44,49]。ADP結(jié)合γ亞基是AMPK避免去磷酸化的主要因素[17],但最近更多的研究認(rèn)為,與ADP相比,AMP在生理濃度范圍內(nèi)更能使AMPK避免去磷酸化[67]。
植物中,在純化的菠菜葉片SnRK1復(fù)合物中檢測(cè)到其對(duì)腺苷酸敏感,當(dāng)純化的SnRK1復(fù)合物與重組的動(dòng)物PP2C一起孵育時(shí),AMP保護(hù)復(fù)合物防止其去磷酸化[50]。雖然目前對(duì)這種作用機(jī)制還知之甚少,但異源三聚復(fù)合體的所有亞基在真核生物中是相當(dāng)保守的,植物的亞基能相應(yīng)地互補(bǔ)酵母突變體[8],因而有理由認(rèn)為,它們的作用機(jī)制是相似的;另一方面,激酶結(jié)構(gòu)域更加保守,因此ADP可能對(duì)激酶的活性位點(diǎn)起直接的保護(hù)作用。
2.6 激素調(diào)節(jié)
SNF1/AMPK/SnRK1廣泛存在于真核生物中,從簡(jiǎn)單的單細(xì)胞生物到復(fù)雜的多細(xì)胞生物[29],因此這就需要其能夠響應(yīng)激素和系統(tǒng)信號(hào)的調(diào)節(jié)能力,較好地在整個(gè)生物體水平上達(dá)到能量平衡。
哺乳動(dòng)物AMPK的活性在整個(gè)生物體水平上受激素信號(hào)調(diào)節(jié),包括肥胖荷爾蒙、脂聯(lián)素、饑餓荷爾蒙、胰島素、胰島高血糖肽、糖皮質(zhì)激素及甲狀腺激素等[69,70]。值得注意的是一些激素對(duì)AMPK活性的調(diào)節(jié)是有組織特異性的,如肥胖荷爾蒙在肝臟激活A(yù)MPK而在心臟和下丘腦抑制其活性[70]。雖然多數(shù)激素調(diào)節(jié)AMPK的機(jī)制還不清楚[70],但已發(fā)現(xiàn)在心肌組織中胰島素通過(guò)激活A(yù)kt/PKB激酶(其可磷酸化AMPRS485而減少AMPKT172的磷酸化)抑制AMPK的活性[71];凝血酶通過(guò)誘導(dǎo)Ca2+信號(hào)和激活CaMKKβ而激活A(yù)MPK;治療慢性病TNFα?xí)r,在肌肉細(xì)胞通過(guò)誘導(dǎo)AMPK的抑制因子PP2C抑制其活性[72]。
越來(lái)越多的研究表明植物中SnRK1與ABA相互聯(lián)系。在ABA的調(diào)控下,在種子的成熟和萌發(fā)過(guò)程中 SnRK1發(fā)揮核心作用[73-75]。超表達(dá)SnRK1α1的擬南芥在種子萌發(fā)和幼苗生長(zhǎng)發(fā)育的過(guò)程中對(duì)ABA信號(hào)敏感[75,76];在成熟的光合組織中,ABA通過(guò)抑制SnRK1的負(fù)調(diào)節(jié)因子2C-型磷酸酶ABI1和PP2CA激活SnRK1[18]。在種子萌發(fā)和早期幼苗的生長(zhǎng)階段ABA通過(guò)與SnRK1A互作的負(fù)調(diào)節(jié)因子作用抑制SnRK1信號(hào)途徑[77],這表明ABA在不同的組織(自養(yǎng)和異養(yǎng))中對(duì)SnRK1的調(diào)節(jié)不同,這與動(dòng)物不同組織中激素對(duì)AMPK表現(xiàn)為相反方向的調(diào)節(jié)類(lèi)似[70]。
3 植物SnRK1蛋白激酶的生理調(diào)節(jié)功能
SnRK1蛋白激酶是植物代謝、生長(zhǎng)發(fā)育及脅迫響應(yīng)中重要的調(diào)控樞紐(圖1)。體外試驗(yàn)研究發(fā)現(xiàn),SnRK1蛋白激酶抑制植物代謝中四種重要的代謝酶活性,他們分別是3-羥基-3-甲基戊二酰-輔酶A還原酶(HMG-CoA還原酶)、蔗糖磷酸合成酶(SPS)、海藻糖磷酸合酶5(TPS5)和硝酸還原酶(NR)[8]。其中SPS是植物葉片中催化蔗糖合成的一個(gè)關(guān)鍵酶;NR是氮素同化過(guò)程中催化硝酸鹽還原成亞硝酸鹽最重要的酶之一;HMG-CoA還原酶催化HMG-CoA還原成甲羥戊酸(MVA) [50,78],這一步是所有類(lèi)異戊二烯的前體異戊烯焦磷酸合成的關(guān)鍵限速步驟,而類(lèi)異戊二烯是植物化學(xué)家非常感興趣的物質(zhì),它包括多種重要的次生代謝物如可溶性維生素、植物固醇和色素等,這些物質(zhì)的水平影響果實(shí)和植物油料的營(yíng)養(yǎng)品質(zhì)、風(fēng)味和色澤等;TPS5是海藻糖6磷酸(T6P)合成的關(guān)鍵酶,而T6P是植物中重要的糖信號(hào),調(diào)節(jié)植物的代謝和生長(zhǎng)發(fā)育[79]。endprint
3.1 植物SnRK1蛋白激酶調(diào)節(jié)碳氮代謝
SnRK1能夠被黑暗和能量缺失所誘導(dǎo)。SnRK1 響應(yīng)高蔗糖/低葡萄糖信號(hào),誘導(dǎo)相關(guān)基因的表達(dá),參與糖代謝途徑。煙草 SnRK1 基因(NPK5)轉(zhuǎn)入snf1 酵母突變體后其可以在含有蔗糖的培養(yǎng)基上生長(zhǎng)[80],由此可以推斷植物SnRK1 可以代替酵母SNF1行使信號(hào)傳導(dǎo)的功能,也存在類(lèi)似酵母的糖代謝途徑。
SnRK1調(diào)節(jié)蔗糖合成、淀粉合成和降解有關(guān)酶編碼基因的表達(dá),間接調(diào)控碳水化合物的代謝,SnRK1在轉(zhuǎn)錄水平上對(duì)蔗糖合酶和α-淀粉酶進(jìn)行調(diào)節(jié)[81,82]。研究發(fā)現(xiàn)SnRK1響應(yīng)高濃度的蔗糖,激活A(yù)GPase,參與淀粉的生物合成[83],馬鈴薯中SnRK1同源基因PKIN1反義表達(dá)使得葉片和塊莖中蔗糖合成酶編碼基因表達(dá)量急劇降低[81],擬南芥KIN10和KIN11參與糖代謝的調(diào)控網(wǎng)絡(luò), 葉肉細(xì)胞中KIN10瞬時(shí)表達(dá)在轉(zhuǎn)錄水平上影響到1 000多個(gè)基因的表達(dá),KIN10和KIN11是植物對(duì)黑暗和多種抗逆信號(hào)傳導(dǎo)過(guò)程中很多重要的轉(zhuǎn)錄組件的調(diào)節(jié)基因[27,30]。反義表達(dá)SnRK1的大麥,出現(xiàn)花粉敗育的性狀,敗育的花粉粒較小,呈梨形,不含淀粉或淀粉含量很少[84];Zhang等認(rèn)為,花粉的敗育通常與淀粉的積累及蔗糖的代謝有關(guān),而在反義表達(dá) SnRK1 的花粉粒中,不能通過(guò)表達(dá)相應(yīng)的轉(zhuǎn)化酶而利用外源蔗糖而使花粉敗育[84]。反義表達(dá)SnRK1的豌豆種子中碳氮比值高于野生型,通過(guò)對(duì)反義表達(dá)SnRK1豌豆的表型觀察推測(cè)SnRK1可能與細(xì)胞的分裂與伸長(zhǎng)有關(guān),另外SnRK1可能與種子成熟時(shí)ABA調(diào)節(jié)途徑有關(guān)[85]。本課題組研究發(fā)現(xiàn),平邑甜茶MhSnRK1在番茄中超表達(dá)提高了植株葉片的光合速率及淀粉合成關(guān)鍵酶AGPase的活性,數(shù)字基因表達(dá)譜分析顯示,超表達(dá)MhSnRK1的植株葉片光合途徑中差異表達(dá)的10個(gè)基因中7個(gè)基因的轉(zhuǎn)錄水平上調(diào),葉片和果實(shí)的可溶性糖和淀粉含量提高,夜晚淀粉的利用率提高,糖代謝加強(qiáng),硝酸的吸收利用率提高,可溶性蛋白含量、AsA和可滴定酸含量明顯降低;SnRK1響應(yīng)外源海藻糖信號(hào),其活性被抑制,海藻糖處理的番茄葉片的可溶性糖含量明顯高于未經(jīng)處理的對(duì)照[86-88]。
3.2 植物SnRK1蛋白激酶調(diào)節(jié)植物的生長(zhǎng)發(fā)育
SnRK1蛋白激酶在植物代謝途徑中起著重要的作用,SnRK1通過(guò)對(duì)碳水化合物代謝的調(diào)控影響植物的生長(zhǎng)發(fā)育進(jìn)程[27,89]。在SnRK1反義表達(dá)的大麥植株中, 對(duì)糖反應(yīng)的調(diào)控途徑產(chǎn)生了可遺傳的影響, 如花粉粒變小, 含有少量或不含淀粉, 最終致使花粉敗育, 同時(shí)胚珠的發(fā)育也在一定程度上受其影響[84];擬南芥SnRK1突變體KINβγ植株的花粉在柱頭上不能吸水萌發(fā),花粉中線粒體及過(guò)氧化物酶體的結(jié)構(gòu)受損且數(shù)量明顯少于野生型擬南芥,并且花粉中活性氧的水平明顯降低[90]。SnRK1反義表達(dá)的豌豆種子出現(xiàn)了許多成熟缺陷, 表現(xiàn)為減少了糖轉(zhuǎn)變成儲(chǔ)存物的數(shù)量,球蛋白含量較低,多數(shù)種子的子葉外觀、形狀、勻稱性改變及早熟現(xiàn)象[85]。苔蘚中SnRK1阻斷新陳代謝,絲狀體和配子體有異常生長(zhǎng)和過(guò)早衰老的現(xiàn)象[91]。擬南芥SnRK1通過(guò)磷酸化抑制與糖代謝相關(guān)的轉(zhuǎn)錄因子IDD8,延遲擬南芥的開(kāi)花時(shí)期[92]。本課題組對(duì)果樹(shù)SnRK1蛋白激酶的研究發(fā)現(xiàn),平邑甜茶MhSnRK1在番茄中超表達(dá)提高了植株的光合速率、淀粉含量及其利用率,果實(shí)成熟期比野生型提前10天,SnRK1響應(yīng)海藻糖信號(hào),超表達(dá)MhSnRK1番茄和野生型番茄在100 mmol·L-1海藻糖處理?xiàng)l件下,植株對(duì)碳水化合物的利用受阻,主梢生長(zhǎng)受到明顯的抑制[86,87]。
3.3 植物SnRK1蛋白激酶對(duì)脅迫的響應(yīng)
首次發(fā)現(xiàn)植物SnRK1參與脅迫響應(yīng)是反義表達(dá)StubGAL83的馬鈴薯的抗鹽性,將StubGAL83基因在馬鈴薯植株中反義表達(dá), 轉(zhuǎn)基因植株對(duì)高鹽脅迫非常敏感, 并且與野生型植株相比, 轉(zhuǎn)基因植株的主根生長(zhǎng)受到了抑制,根細(xì)胞變小、形狀不規(guī)則, 說(shuō)明StubGAL83基因的反義表達(dá)影響了馬鈴薯根和塊莖的發(fā)育,SnRK1可能激活某種保護(hù)機(jī)制抵抗鹽脅迫[93]。擬南芥中的一個(gè)SnRK1基因在煙草中反義表達(dá)導(dǎo)致煙草易受病毒的傷害, 而過(guò)表達(dá)明顯提高了煙草對(duì)病毒的抗性[94],因此SnRK1可能是抗病毒防御機(jī)制的一部分。植物特有的AKINβγ亞基通過(guò)GBD結(jié)構(gòu)域與兩種蛋白互作提高植物抗線蟲(chóng)的能力[24],另有研究發(fā)現(xiàn)SnRK1可使更多的碳回流到根中以抵御食草性動(dòng)物的攻擊[95]。
4 展望
SnRK1蛋白激酶廣泛存在于高等植物中,是調(diào)控植物代謝和能量平衡的重要樞紐;隨著對(duì)植物SnRK1蛋白激酶研究的不斷深入,其序列、結(jié)構(gòu)特征、自身活性調(diào)節(jié)以及在代謝過(guò)程中的調(diào)節(jié)機(jī)制也愈來(lái)愈明確。SnRK1蛋白激酶的活性不僅與α催化亞基上T-loop的磷酸化有關(guān),還與調(diào)節(jié)亞基β及γ的磷酸化狀態(tài)有關(guān);一些翻譯后修飾調(diào)節(jié),如乙?;?、泛素化、SUMO修飾、豆蔻酰化和氧化作用也影響SnRK1蛋白激酶的活性。目前的研究表明SnRK1蛋白激酶在植物的代謝途徑、生長(zhǎng)、發(fā)育及抗逆境生理方面均表現(xiàn)出一定的調(diào)節(jié)作用。SnRK1信號(hào)途徑主要在代謝調(diào)控網(wǎng)絡(luò)中發(fā)揮重要作用, 與能量的狀態(tài)密切相關(guān),但信號(hào)途徑是如何開(kāi)始?如何傳遞?又是如何結(jié)束的?這些調(diào)控機(jī)制仍不清楚,亟需進(jìn)一步的研究。
參 考 文 獻(xiàn):
[1] Halford N G, Hardie D G. SNF1-related protein kinases: global regulators of carbon metabolism in plants? [J]. Plant Mol. Biol., 1998, 37(5):735-748.
[2] Carlson M, Osmond B C, Botstein D. Mutants of yeast defective in sucrose utilization[J]. Genetics, 1981, 98(1):25-40.endprint
[3] Celenza J L, Carlson M. A yeast gene that is essential for release from glucose repression encodes a protein kinase[J]. Science, 1986, 233(4769):1175-1180.
[4] Crute B E, Seefeld K, Gamble J, et al. Functional domains of the α1 catalytic subunit of the AMP-activated protein kinase[J]. J. Biol. Chem., 1998, 273:35347-35354.
[5] Alderson A, Sabelli P A, Dickinson J R, et al. Comple-mentation of snf1, a mutation affecting global regulation of carbon metabolism in yeast, by a plant protein kinase cDNA[J]. Proc. Nati. Acad. Sci. USA, 1991, 88(19): 8602-8605.
[6] Le Guen L, Thomas M, Bianchi M, et al. Structure and expression of a gene from Arabidopsis thaliana encoding a protein related to SNF1 protein kinase[J]. Gene, 1992, 120(2):249-254.
[7] Smeekens S, Ma J, Hanson J, et al. Sugar signals and molecular networks controlling plant growth[J]. Curr. Opin. Plant Biology, 2010, 13:274-279.
[8] Polge C, Thomas M. SNF1/AMPK/SnRK1 kinases, global regulators at the heart of energy control? [J]. Trends Plant Sci., 2007, 12(1):20-28.
[9] Hedbacker K, Carlson M. SNF1/AMPK pathways in yeast[J]. Front. Biosci., 2008, 13:2408-2420.
[10]Carling D, Thornton C, Woods A, et al. AMPK-activated protein kinase: new regulation, new roles? [J]. Biochem. J., 2012, 445(1):11-27.
[11]Pang T, Xiong B, Li J Y, et al. Conserved alpha-helix acts as autoinhibitory sequence in AMP-activated protein kinase alpha subunits[J]. J. Biol. Chem., 2007(282):495-506.
[12]Chen L, Jiao Z H, Zheng LS, et al. Structural insight into the autoinhibition mechanism of AMP-activated protein kinase[J]. Nature, 2009, 459(7250):1146-1149.
[13]Shen W, Reyes M I, Hanley-Bowdoin L. Arabidopsis protein kinases GRIK1 and GRIK2 specifically activate SnRK1 by phosphorylating its activationm loop[J]. Plant Physiol., 2009, 150:996-1005.
[14]Farras R, Ferrando A, Jasik J, et al. SKP1-SnRK protein kinase interactions mediate proteasomal binding of a plant SCF ubiquitin ligase[J]. EMBO J., 2001, 20(11):2742-2756.
[15]Kleinow T, Bhalerao R, Breuer F, et al. Functional identification of an Arabidopsis snf4 ortholog by screening for heterologous multicopy suppressors of snf4 deficiency in yeast[J]. Plant J., 2000, 23(1): 115-122.
[16]Amodeo G A, Rudolph M J, Tong L. Crystal structure of the heterotrimer core of Saccharomyces cerevisiae AMPK homologue SNF1[J]. Nature, 2007, 449(7161): 492-495.
[17]Xiao B, Sanders M J, Underwood E, et al. Structure of mammalian AMPK and its regulation by ADP[J]. Nature, 2011,472(7342):230-233.endprint
[18]Rodrigues A, Adamo M, Crozet P, et al. ABI1 and PP2CA phosphatases are negative regulators of Snf1-related protein kinase1 signaling in Arabidopsis[J]. Plant Cell, 2013, 25(10):3871-3884.
[19]Crozet P, Margalha L, Confraria A, et al. Mechanisms of regulation of SNF1/AMPK/SnRK1 protein kinase[J]. Front. Plant Science, 2014, 5(190):1-17.
[20]Ghillebert R, Swinnen E, Wen J, et al. The AMPK/SNF1/SnRK1 fuel gauge and energy regulator: structure, function and regulation[J]. FEBS J.,2011, 278(21):3978-3990.
[21]Hedbacker K, Carlson M. Regulation of the nucleocytoplasmic distribution of Snf1-Gal83 protein kinase[J]. Eukaryot. Cell, 2006, 5(12):1950-1956.
[22]Vincent O, Townley R, Kuchin S, et al. Subcellular localization of the snf1 kinase is regulated by specific beta subunits and novel glucose signaling mechanism[J]. Genes Dev., 2001, 15(9):1104-1114.
[23]Bateman A. The structure of a domain common to archaebacteria and the homocystinuria disease protein[J]. Trends Biochem. Sci., 1997, 22(1):12-13.
[24]Gissot L, Polge C, Jossier M, et al. AKIN betagamma contributes to SnRK1 heterotrimeric complexes and interacts with two proteins implicated in plant pathogen resistance through its KIS GBD sequence[J]. Plant Physiol., 2006, 142:931-944.
[25]Stein S C, Woods A, Jones N A, et al. The regulation of AMP-activated protein kinase by phosphorylation[J]. Biochem. J., 2000, 345(Pt3):437-443.
[26]McCartney R R, Schmidt M C. Regulation of Snf1 kinase. Activation requires phosphorylation of threonine 210 by an upstream kinase as well as a distinct step mediated by the Snf4 subunit[J]. J. Biol. Chem., 2001, 276:36460-36466.
[27]Baena-Gonzalez E, Rolland F, Thevelein J M,et al. A central integrator of transcription networks in plant stress and energy signalling[J]. Nature, 2007, 448(7156):938-942.
[28]Crozet P, Jammes F, Valot B, et al. Cross-phosphorylation between Arabidopsis thaliana sucrose nonfermenting 1-related protein kinase 1 (AtSnRK1) and its activating kinase (AtSnAK) determines their catalytic activities[J]. J. Biol. Chem., 2010, 285:12071-12077.
[29]Hardie D G. AMP-activated protein kinase: an energy sensor that regulates all aspects of cell function[J]. Genes Dev., 2011, 25:1895-1908.
[30]Fragoso S, Espindola L, Paez-Valencia J, et al. SnRK1 isoforms AKIN10 and AKIN11 are differentially regulated in Arabidopsis plants under phosphate starvation[J]. Plant Physiol., 2009, 149: 1906-1916.endprint
[31]Coello P, Hirano E, Hey S J, et al. Evidence that abscisic acid promotes degradation of SNF1-related protein kinase (SnRK 1) in wheat and activation of a putative calcium-dependent SnRK2[J]. J. Exp. Bot., 2012, 63:913-924.
[32]Nunes C, Primavesi L F, Patel M K, et al. Inhibition of SnRK1 by metabolites: tissue-dependent effects and cooperative inhibition by glucose 1-phosphate in combination with trehalose 6-phosphate[J]. Plant Physiol. Biochem., 2013, 63:89-98.
[33]Carling D, Zammit V A, Hardie D G. A common bicyclic protein kinase cascade inactivates the regulatory enzymes of fatty acid and cholesterol biosynthesis[J]. FEBS Lett., 1987, 223:217-222.
[34]Hedbacker K, Townley R, Carlson M. Cyclic AMP-dependent protein kinase regulates the subcellular localization of Snf1-Sip1 protein kinase[J]. Mol. Cell Biol., 2004, 24:1836-1843.
[35]Kong L J, Hanley-Bowdoin L. A geminivirus replication protein interacts with a protein kinase and a motor protein that display different expression patterns during plant development and infection[J]. Plant Cell, 2002, 14:1817-1832.
[36]Shen W, Hanley-Bowdoin L. Geminivirus infection up-regulates the expression of two Arabidopsis protein kinases related to yeast SNF1- and mammalian AMPK-activating kinases[J]. Plant Physiol., 2006, 142(4):1642-1655.
[37]Lee K W, Chen P W, Lu C A, et al. Coordinated responses to oxygen and sugar deficiency allow rice seedlings to tolerate flooding[J]. Sci. Signal, 2009, 2(91): ra61.
[38]Avila J, Gregory O G, Su D, et al. The beta-subunit of the SnRK1 complex is phosphorylated by the plant cell death suppressor Adi3[J]. Plant Physiol., 2012, 159:1277-1290.
[39]Suter M, Riek U, Tuerk R, et al. Dissecting the role of 5-AMP for allosteric stimulation, activation, and deactivation of AMP-activated protein kinase[J]. J. Biol. Chem., 2006, 281:32207-32216.
[40]Sanders M J, Grondin P O, Hegarty B D, et al. Investigating the mechanism for AMP activation of the AMP-activated protein kinase cascade[J]. Biochemistry J., 2007, 403:139-148.
[41]Rubenstein E M, Mccartney R R, Zhang C, et al. Access denied: Snf1 activation loop phosphorylation is controlled by availability of the phosphorylated threonine 210 to the PP1 phosphatase[J]. J. Biol. Chem., 2008, 283:222-230.
[42]Chandrashekarappa D G, Mccartney R R, Schmidt M C. Subunit and domain requirements for adenylate-mediated protection of Snf1 kinase activation loop from dephosphorylation[J]. J. Biol. Chem., 2011, 286: 44532-44541.endprint
[43]Mayer F V, Heath R, Underwood E, et al. ADP regulates SNF1, the Saccharomyces cerevisiae homolog of AMP-activated protein kinase[J]. Cell Metab., 2011, 14:707-714.
[44]Oakhill J S, Steel R, Chen Z P, et al. AMPK is a direct adenylate charge-regulated protein kinase[J]. Science, 2011, 332:1433-1435.
[45]Cannon J F, Pringle J R, Fiechter A, et al. Characterization of glycogen-deficient glc mutants of Saccharomyces cerevisiae[J]. Genetics, 1994, 136: 485-503.
[46]Ruiz A, Xu X, Carlson M. Roles of two protein phosphatases, Reg1-Glc7 and Sit4, and glycogen synthesis in regulation of SNF1 protein kinase[J]. Pro. Natl. Acad. Sci. USA, 2011, 108:6349-6354.
[47]Ruiz A, Xu X, Carlson M. Ptc1 protein phosphatase 2C contributes to glucose regulation of SNF1/AMP-activated protein kinase (AMPK) in Saccharomyces cerevisiae[J]. J. Biol. Chem., 2013, 288:31052-31058.
[48]Carling D, Clarke P R, Zammit V A, et al. Purification and characterization of the AMP-activated protein kinase. Copurification of acetyl-CoA carboxylase kinase and 3-hydroxy-3-methylglutaryl-CoA reductase kinase activities[J]. Eur. J. Biochem., 1989, 186:129-136.
[49]Davies S P, Helps N R, Cohen P T, et al. 5-AMP inhibits dephosphorylation, as well as promoting phosphorylation, of the AMP-activated protein kinase. Studies using bacterially expressed human protein phosphatase-2C alpha and native bovine protein phosphatase-2AC[J]. FEBS Lett., 1995, 377:421-425.
[50]Sugden C, Crawford R M, Halford N G, et al. Regulation of spinach SNF1-related (SnRK1) kinases by protein kinases and phosphatases is associated with phosphorylation of the T loop and is regulated by 5 -AMP[J]. Plant J., 1999a, 19:433-439.
[51]Cutler S R, Rodriguez P L, Finkelstein R R, et al. Abscisic acid: emergence of a core signaling network[J]. Annu. Rev. Plant Biol., 2010, 61:651-679.
[52]Tsugama D, Liu S, Takano T. A putative myristoylated 2C-type protein phosphatase, PP2C74, interacts with SnRK1 in Arabidopsis[J]. FEBS Lett., 2012, 586: 693-698.
[53]Lin Y Y, Lu J Y, Zhang J, et al. Protein acetylation microarray reveals that NuA4 controls key metabolic target regulating gluconeogenesis[J]. Cell, 2009, 136:1073-1084.
[54]Lu J Y, Lin Y Y, Sheu J C, et al. Acetylation of yeast AMPK controls intrinsic aging independently of caloric restriction[J]. Cell, 2011, 146:969-979.
[55]Lin Y Y, Kiihl S, Suhail Y, et al. Functional dissection of lysine deacetylases reveals that HDAC1 and p300 regulate AMPK[J]. Nature, 2012, 482:251-255.endprint
[56]Mitchelhill K I, Michell B J, House C M, et al. Posttranslational modifications of the 5-AMP-activated protein kinase beta1 subunit[J]. J. Biol. Chem., 1997, 272:24475-24479.
[57]Wilson M A, Koutelou E, Hirsch C, et al. Ubp8 and SAGA regulate Snf1 AMP kinase activity[J]. Mol. Cell Biol., 2011, 31: 3126-3135.
[58]Qi J, Gong J, Zhao T, et al. Downregulation of AMP-activated protein kinase by Cidea-mediated ubiquitination and degradation in brown adipose tissue[J]. EMBO J., 2008, 27:1537-1548.
[59]Ananieva E A, Gillaspy G E, Ely A, et al. Interaction of the WD40 domain of a myoinositol polyphosphate 5-phosphatase with SnRK1 links inositol, sugar, and stress signaling[J]. Plant Physiol., 2008, 148:1868-1882.
[60]Lee J H, Terzaghi W, Gusmaroli G, et al. Characterization of Arabidopsis and rice DWD proteins and their roles as substrate receptors for CUL4-RING E3 ubiquitin ligases[J]. Plant Cell, 2008, 20: 152-167.
[61]Bhalerao R P, Salchert K, Bako L, et al. Regulatory interaction of PRL1 WD protein with Arabidopsis SNF1-like protein kinases[J]. Proc. Natl. Acad. Sci. USA, 1999, 96:5322-5327.
[62]Sugden C, Donaghy P G, Halford N G, et al. Two SNF1-related protein kinases from spinach leaf phosphorylate and inactivate 3-hydroxy-3-methylglutaryl-coenzyme A reductase, nitrate reductase, and sucrose phosphate synthase in vitro[J]. Plant Physiol., 1999b, 120:257-274.
[63]Wilson W A, Hawley S A, Hardie D G. Glucose repression/derepression in budding yeast: SNF1 protein kinase is activated by phosphorylation under derepressing conditions, and this correlates with a high AMP∶ATP ratio[J]. Curr. Biol., 1996, 6:1426-1434.
[64]Chandrashekarappa D G, Mccartney R R, Schmidt M C. Ligand binding to the AMP-activated protein kinase active site mediates protection of the activation loop from dephosphorylation[J]. J. Biol. Chem., 2013, 288:89-98.
[65]Hawley S A, Selbert M A, Goldstein E G, et al. 5-AMP activates the AMP-activated protein kinase cascade, and Ca2+/calmodulin activates the calmodulin-dependent protein kinase I cascade, via three independent mechanisms[J]. J. Biol. Chem., 1995, 270:27186-27191.
[66]Oakhill J S, Chen Z P, Scott J W, et al. β-Subunit myristoylation is the gatekeeper for initiating metabolic stress sensing by AMP-activated protein kinase (AMPK) [J]. Proc. Natl. Acad. Sci. USA, 2010, 107: 19237-19241.
[67]Gowans G J, Hawley S A, Ross F A, et al. AMP is a true physiological regulator of AMP-activated protein kinase by both allosteric activation and enhancing net phosphorylation[J]. Cell Metab., 2013, 18:556-566.endprint
[68]Zhang Y L, Guo H, Zhang C S, et al. AMP as a low-energy charge signal autonomously initiates assembly of AXIN-AMPK-LKB1 complex for AMPK activation[J]. Cell Metab., 2013, 18:546-555.
[69]Hardie D G. Hot stuff: thyroid hormones and AMPK[J]. Cell Res., 2010, 20:1282-1284.
[70]Lim C T, Kola B, Korbonits M. AMPK as a mediator of hormonal signalling[J]. J. Mol. Endocrinol., 2010, 44:87-97.
[71]Horman S, Vertommen D, Heath R, et al. Insulin antagonizes ischemia-induced Thr172 phosphorylation of AMP-activated protein kinase alpha-subunits in heart via hierarchical phosphorylation of Ser485/491[J]. J. Biol. Chem., 2006, 281:5335-5340.
[72]Steinberg G R, Michell B J, Van Denderen B J, et al. Tumor necrosis fator alpha-induced skeletal muscle insulin resistance involves suppression of AMP-kinase signaling[J]. Cell Metab. Dec., 2006, 4(6):465-474.
[73]Lu C A, Lin C C, Lee K W, et al. The SnRK1A protein kinase plays a key role in sugar signaling during germination and seedling growth of rice[J]. Plant Cell, 2007, 19:2484-2499.
[74]Radchuk R, Emery R J, Weier D, et al. Sucrose non-fermenting kinase 1 (SnRK1) coordinates metabolic and hormonal signals during pea cotyledon growth and differentiation[J]. Plant J., 2010, 61:324-338.
[75]Tsai A Y, Gazzarrini S. AKIN10 and FUSCA3 interact to control lateral organ development and phase transitions in Arabidopsis[J]. Plant J., 2012, 69: 809-821.
[76]Jossier M, Bouly J P, Meimoun P, et al. SnRK1 (SNF1-related kinase 1) has a central role in sugar and ABA signalling in Arabidopsis thaliana[J]. Plant J., 2009, 59:316-328.
[77]Lin C R, Lee K W, Chen C Y, et al. SnRK1A-interacting negative regulators modulate the nutrient starvation signaling sensor SnRK1 in source-sink communication in cereal seedlings under abiotic stress[J]. Plant Cell, 2014, 26:808-827.
[78]Dale S, Wilson W A, Edelman A M, et al. Similar substrate recognition motifs for mammalian AMP-activated protein kinase, higher plant HMG-CoA reductase kinase-A, yeast SNF1, and mammalian calmodulin-dependent protein kinase I[J]. FEBS Lett., 1995, 361:191-195.
[79]Harthill J E, Meek S E, Morrice N, et al. Phosphorylation and 14-3-3 binding of Arabidopsis trehalose-phosphate synthase 5 in response to 2- deoxyglucose[J]. Plant J., 2006, 47: 211-223.
[80]Muranaka T, Banno H, Machida Y. Characterization of tobacco protein kinase NPK5, a homolog of Saccharomyces cerevisiae SNF1 that constitutively avtivates expression of the glucose-repressible SUC2 gene for a secreted invertase of S. cerevisiae[J]. Mol. Cell Biol., 1994, 14(5):2958-2965.endprint
[81]Purcell P C, Smith A M, Halford N G. Antisense expression of a sucrose non-fermenting-1-related protein kinase sequence in potato results in decreased expression of sucrose synthase in tubers and loss of sucrose-inducibility of sucrose synthase transcripts in leaves[J]. Plant J., 1998, 14:195-202.
[82]Laurie S, McKibbin R S, Halford N G. Antisense SNF1-related (SnRK1) protein kinase gene represses transient activity of an a-amylase (a-Amy2) gene promoter in cultured wheat embryos[J]. Journal of Exp. Bot., 2003, 54(383): 739-747.
[83]Geigenberger P, Stitt M, Fernie A R. Metabolic control analysis and regulation of the conversion of sucrose to starch in growing potato tubers[J]. Plant Cell Environ., 2004, 27:655-673.
[84]Zhang Y, Shewry P R, Jones H, et al.. Expression of antisense SnRK1 protein kinase sequence causes abnormal pollen development and male sterility in transgenic barley[J]. Plant J., 2001, 28(4):431-441.
[85]Radchuk R, Radchk V, Weschke W, et al. Repressing the expression of the SUCROSE NONFERMENTING-1-RELATED PROTEIN KINASE gene in pea embryo causes pleiotropic defects of maturation similar to an abscisic acid-insensitive phenotype[J]. Plant Physiol., 2006, 140(1):263-278.
[86]Wang X L, Peng F T, Li M J, et al. Expression of a heterologous SnRK1 in tomato increases carbon assimilation, nitrogen uptake and modifies fruit development[J]. Journal of Plant Physiol., 2012 (4):1-10.
[87]Li G J, Peng F T, Zhang L, et al. Cloning and characterization of a SnRK1-encoding gene from Malus hupehensis Rehd. and heterologous expression in tomato[J]. Mol. Biol. Rep., 2010, 37:947-954.
[88]王貴芳, 彭福田, 張亞飛, 等. 平邑甜茶MhSnRK1在番茄中超表達(dá)對(duì)植株碳代謝的影響[J]. 園藝學(xué)報(bào), 2014, 41(11):2188-2195.
[89]Wingler A, Fritzius T, Wiemken A, et al. Trehalose induces the ADP-glucose gyrophosphorylase gene, ApL3, and starch synthesis in Arabidopsis[J]. Plant Physiology, 2000, 124:105-114.
[90]Gao X Q, Liu C Z, Li D D, et al. The Arabidopsis KINβγ subunit of the SnRK1 complex regulates pollen hydration on the stigma by mediating the level of reaction oxygen species in pollen[J]. PLoS Genet., 2016, 12(7): e1006228.
[91]Thelander M, Olsson T, Ronne H. Effect of the energy supply on filamentous growth and development in Physcomitrella patents[J]. J. Exp. Bot., 2005, 56(412):653-662.
[92]Jeong E Y, Seo P J, Woo J C, et al. AKIN10 delays flowering by inactivating IDD8 transcription factor through protein phosphorylation in Arabidopsis[J]. BMC Plant Biol., 2015, 15:110.
[93]Lovas A, Bimb A, Szab L, et al. Antisense repression of StubGAL83 affects root and tuber development in potato[J]. Plant J., 2003, 33(1):139-147.
[94]Hao L, Wang H, Sunter G, et al. Geminivirus AL2 and L2 proteins interact with and inactivate SNF1 kinase[J]. Plant Cell, 2003, 15(4):1034-1048.
[95]Schwachitje J, Peter E H M, Sigfried J, et al. SNF1-related kinases allow plants to tolerate herbivory by allocating carbon to roots[J]. Proc. Natl. Acad. Sci. USA, 2006, 103(34):12935-12940.endprint