張 培 曹守波 綜述 于 雁 審校
自噬指細(xì)胞內(nèi)的單層或雙層膜結(jié)構(gòu)包裹受損的細(xì)胞器、蛋白質(zhì)和病原體形成自噬體,然后與溶酶體融合并導(dǎo)致自噬體降解的過(guò)程。自噬活動(dòng)在維持腫瘤細(xì)胞的物質(zhì)和能量代謝、增強(qiáng)腫瘤細(xì)胞運(yùn)動(dòng)和侵襲能力、促進(jìn)腫瘤細(xì)胞休眠和免疫逃逸、調(diào)控基質(zhì)細(xì)胞分化等方面的功能正在被廣泛的研究。巨噬細(xì)胞是腫瘤相關(guān)巨噬細(xì)胞(TAMs)的前體細(xì)胞,能被腫瘤細(xì)胞募集、調(diào)控分化成為TAMs而促進(jìn)腫瘤的轉(zhuǎn)移。自噬機(jī)制涉及造血干細(xì)胞(HSCs)持續(xù)分化、單核細(xì)胞募集、單核細(xì)胞向巨噬細(xì)胞分化以及巨噬細(xì)胞極化成TAMs的每個(gè)調(diào)節(jié)步驟。本文就自噬介導(dǎo)的TAMs調(diào)控機(jī)制的研究現(xiàn)狀做一綜述。
自噬是真核細(xì)胞生物中廣泛存在的分解代謝途徑,通常在饑餓、缺氧、氧化應(yīng)激等條件下被誘發(fā)。自噬降解途徑為不能從外環(huán)境獲得足夠營(yíng)養(yǎng)物質(zhì)進(jìn)行生物合成的細(xì)胞提供氨基酸、核苷酸和脂肪酸,實(shí)現(xiàn)物質(zhì)再利用,維持細(xì)胞內(nèi)環(huán)境的穩(wěn)態(tài)和細(xì)胞生存。自噬過(guò)程包括誘導(dǎo)、延伸、包裹、成熟和降解,調(diào)控機(jī)制復(fù)雜,涉及一系列與自噬相關(guān)的多種蛋白質(zhì)(ATG蛋白)的調(diào)控[1]。首先在起始階段由ULK1、FIP200蛋白和ATG13蛋白構(gòu)成初始膜結(jié)構(gòu)復(fù)合物,受哺乳動(dòng)物雷帕霉素靶蛋白1(mTORC1)和腺苷酸活化蛋白激酶(AMPK)的調(diào)節(jié)。mTORC1在正常代謝情況下處于活化狀態(tài),使ULK1和ATG13蛋白磷酸化而降低其活性,抑制初始復(fù)合物的形成。AMPK通路是mTORC1的上游信號(hào)通路,在缺氧或供能不足的情況下被激活,抑制mTORC1的活性,促使初始復(fù)合物的形成及自噬的發(fā)生。mTORC1抑制或AMPK的激活在初期復(fù)合物形成中起主要作用[2]。起始復(fù)合物形成后吸引并激活另一個(gè)復(fù)合物Beclin1,包括Beclin1、Ⅲ類PI3K、Bcl-2家族蛋白和激酶蛋白Vps15。復(fù)合物Beclin1刺激細(xì)胞產(chǎn)生磷脂酰肌醇3-磷酸,進(jìn)而誘導(dǎo)自噬小體膜的形成[3]。
自噬體形成的延伸期和成熟期由兩種獨(dú)立但互補(bǔ)的泛素樣途徑控制:ATG5-12蛋白系統(tǒng)和LC3-PE蛋白系統(tǒng)。ATG7的活性半胱氨酸殘基通過(guò)硫酯鍵與ATG12連接,將ATG12轉(zhuǎn)移到ATG10,然后傳遞至ATG5。最后ATG5-ATG12復(fù)合物與ATG16L形成吞噬體穩(wěn)定所需的多聚體復(fù)合物,并結(jié)合在自噬小體的外膜促進(jìn)其延伸,待自噬體完全形成后脫落。LC3-PE復(fù)合物連接途徑從半胱氨酸蛋白酶ATG4裂解LC3羧基端氨基酸殘基之后開(kāi)始。裂解后的LC3暴露其氨基乙酸末端,然后與ATG7相互作用,并經(jīng)ATG7轉(zhuǎn)移至ATG3。先前形成的ATG5-ATG12-ATG16L復(fù)合物將LC3與磷脂酰乙醇胺(PE)結(jié)合形成LC3-PE復(fù)合物(也稱為L(zhǎng)C3-II)[4]。這種新形成的復(fù)合物L(fēng)C3-II促進(jìn)自噬體與溶酶體的融合,形成雙膜囊泡,在自體蛋白質(zhì)作用下,兩個(gè)單位的膜完全融合。
起始復(fù)合物的活性還受PI3K-Akt-mTOR、LKB1-AMPK-mTOR等信號(hào)通路的調(diào)控[5]。在能量缺乏、低氧情況下,Bcl-2家族蛋白特定的結(jié)構(gòu)域BH3和BNIP3釋放Beclin1,參與細(xì)胞自噬過(guò)程[6]。另外,凋亡相關(guān)蛋白激酶(DAPK)的自噬基因Beclin1 BH3結(jié)構(gòu)域的磷酸化也可導(dǎo)致Beclin1與Bcl-2分離[7]。屬于蛋白激酶的c-Jun氨基末端激酶(JNK)家族通過(guò)對(duì)Bcl-2的直接磷酸化破壞復(fù)合體,降低其對(duì)Beclin1親和力[8]。所有這些步驟對(duì)代謝過(guò)程中自噬的調(diào)控至關(guān)重要。
腫瘤的發(fā)生、發(fā)展不僅取決于腫瘤細(xì)胞,還與腫瘤細(xì)胞周圍的各種基質(zhì)成分密切相關(guān)。這些基質(zhì)成分包括各種基質(zhì)細(xì)胞、細(xì)胞因子及趨化因子[9]。基質(zhì)細(xì)胞中的CD4+Th1和CD8+T起到抗腫瘤作用,而TAMs、CAFs、Th17細(xì)胞與TNF-α、TGF-β和IL-10等大量炎性細(xì)胞因子通過(guò)誘導(dǎo)腫瘤血管生成、獲得免疫逃逸和侵襲能力促使腫瘤生長(zhǎng)和遠(yuǎn)處轉(zhuǎn)移[10-11]。在眾多的炎性免疫細(xì)胞中TAMs在數(shù)量和功能上都有著舉足輕重的地位[12]。腫瘤細(xì)胞產(chǎn)生的CSF-1、IL-6、CCL2等趨化因子募集血管中的單核細(xì)胞進(jìn)入腫瘤微環(huán)境,經(jīng)分化形成巨噬細(xì)胞。巨噬細(xì)胞是TAMs的前體細(xì)胞,具有分化不穩(wěn)定性,經(jīng)不同的細(xì)胞因子誘導(dǎo)分化為M1型(經(jīng)典活化型)和M2型(選擇活化型)巨噬細(xì)胞。實(shí)體腫瘤中M2型巨噬細(xì)胞比M1型巨噬細(xì)胞的表達(dá)水平高,經(jīng)過(guò)進(jìn)一步研究發(fā)現(xiàn)M1型巨噬細(xì)胞的激活針對(duì)免疫應(yīng)答細(xì)胞內(nèi)微生物和腫瘤細(xì)胞Th1應(yīng)答的刺激,而M2型巨噬細(xì)胞是免疫抑制性細(xì)胞,促進(jìn)血管生成和腫瘤生長(zhǎng)[13-14]。目前普遍認(rèn)為TAMs是極化的M2型巨噬細(xì)胞[15]。
TAMs可以通過(guò)多種途徑促進(jìn)腫瘤的生長(zhǎng)、侵襲和轉(zhuǎn)移,如通過(guò)抑制T細(xì)胞和NK細(xì)胞的細(xì)胞毒性功能及正常抗原遞呈,參與調(diào)節(jié)腫瘤免疫逃逸[16];分泌MMP9、MMP13、TGF-β、組織蛋白酶等降解ECM成分,使腫瘤細(xì)胞更易擴(kuò)散[17];分泌VEGF-A、VEGF-C促進(jìn)腫瘤血管和淋巴管形成[18];誘導(dǎo)EMT生成,使腫瘤細(xì)胞能夠獲得更大侵襲和轉(zhuǎn)移能力[19];此外,TAMs高表達(dá)還與多種腫瘤對(duì)化療藥物耐藥及預(yù)后不良相關(guān)[20-21]。據(jù)Chen等[22]的研究,腫瘤組織中M2型巨噬細(xì)胞高表達(dá)人群較低表達(dá)人群的生存率更低。
骨髓中的造血干細(xì)胞(HSC)通常處于休眠和非分化狀態(tài),在特定的刺激下分化成各種類型的血細(xì)胞。TAMs半衰期極短,需要骨髓HSCs持續(xù)分化產(chǎn)生單核細(xì)胞維持腫瘤微環(huán)境中的高TAMs水平。在HSCs分化過(guò)程中,活性氧(ROS)逐漸積累。作為重要的第二信使,正常水平的ROS是調(diào)節(jié)HSCs增殖和分化必不可少的,過(guò)量的ROS會(huì)引起氧化應(yīng)激,引起細(xì)胞器、DNA的氧化損傷,導(dǎo)致細(xì)胞結(jié)構(gòu)和功能的破壞甚至細(xì)胞死亡[23]。骨髓中HSCs與其他類型的細(xì)胞相比更容易受到ROS的影響。最近的一項(xiàng)研究報(bào)道小鼠造血干細(xì)胞線粒體內(nèi)過(guò)多的ROS會(huì)觸發(fā)自噬活性;而在自噬完全缺陷的小鼠HSCs分化不受ROS抑制[24]。進(jìn)一步研究發(fā)現(xiàn)ROS可以激活A(yù)MPK的上游調(diào)控因子LKB1,通過(guò)LKB1-AMPK信號(hào)通路調(diào)節(jié)抑制mTOR活性,誘導(dǎo)自噬的發(fā)生,清除代謝活化的細(xì)胞器、控制氧化代謝過(guò)程、負(fù)反饋調(diào)節(jié)ROS和維持ROS正常水平[25]。此外使用抗氧化劑NAC后,Akt去磷酸化作用減弱,說(shuō)明ROS也可以通過(guò)抑制Akt/mTOR調(diào)節(jié)HSCs中的細(xì)胞自噬活性[26]。Mortensen等[27]報(bào)道,敲除小鼠造血系統(tǒng)中ATG7或FIP200導(dǎo)致HSCs功能缺陷,骨髓異常增生;體外實(shí)驗(yàn)顯示ATG7敲除造成HSCs集落形成能力降低,這些結(jié)果表明自噬在維持HSCs自我更新和分化功能中起重要作用。
人類血液中單核細(xì)胞的半衰期約為3天,在沒(méi)有刺激的情況下發(fā)生凋亡。腫瘤細(xì)胞和基質(zhì)細(xì)胞釋放趨化因子和細(xì)胞因子募集單核細(xì)胞進(jìn)入腫瘤微環(huán)境中。CCL2是最主要的趨化因子,其介導(dǎo)的單核細(xì)胞及巨噬細(xì)胞募集在促進(jìn)腫瘤進(jìn)展中起到了重要的作用。多項(xiàng)研究顯示CCL2的表達(dá)伴隨著自噬活性的改變。CCL2通過(guò)上調(diào)抗凋亡蛋白,誘導(dǎo)自噬在單核細(xì)胞中的活化,使單核細(xì)胞免于凋亡[28]。在前列腺癌中,CCL2可以防止雷帕霉素引起的自噬性細(xì)胞死亡,而乳腺癌細(xì)胞中CCL2的低表達(dá)增強(qiáng)了乳腺癌細(xì)胞的自噬[29-30]。然而,CCL2如何通過(guò)自噬調(diào)節(jié)腫瘤微環(huán)境中的單核細(xì)胞及巨噬細(xì)胞募集的機(jī)制需要進(jìn)一步深入的研究。
CSF1、CSF2是誘導(dǎo)單核細(xì)胞分化成巨噬細(xì)胞的另兩個(gè)主要的細(xì)胞因子。CAMKK2-PRKAA1-ULK1途徑的激活在CSF1誘導(dǎo)自噬和介導(dǎo)人類單核細(xì)胞分化中必不可少。CSF1可促進(jìn)嘌呤能受體P2RY6的表達(dá),使ULK1的表達(dá)和磷酸化增加進(jìn)而激活細(xì)胞自噬,促進(jìn)巨噬細(xì)胞的存活和浸潤(rùn)。敲除小鼠ATG7基因后,ATG7蛋白表達(dá)缺失,小鼠自噬功能缺陷,CSF1驅(qū)動(dòng)單核細(xì)胞分化成巨噬細(xì)胞的過(guò)程被阻礙[31-32]。CSF1誘導(dǎo)的單核細(xì)胞分化成巨噬細(xì)胞還需要通過(guò)調(diào)節(jié)Akt信號(hào)通路激活Caspase3和Caspase8。Caspase家族是一類半胱氨酸天冬氨酸蛋白酶,通過(guò)切割不同的ATG蛋白產(chǎn)生不同的功能活性片段,在介導(dǎo)自噬和細(xì)胞凋亡之間復(fù)雜的相互作用中起著關(guān)鍵作用,推動(dòng)自噬與細(xì)胞凋亡之間的轉(zhuǎn)換[33]。CSF2通過(guò)活化巨噬細(xì)胞MAPK/JNK途徑和誘導(dǎo)Bcl-2與Beclin1的解離激活自噬,而阻斷上述自噬途徑后可以抑制CSF2誘導(dǎo)的單核細(xì)胞向巨噬細(xì)胞的分化[34]??傊?,自噬在單核細(xì)胞向巨噬細(xì)胞分化中也起了一定作用。
Cat S是腫瘤微環(huán)境中巨噬細(xì)胞表達(dá)最多的半胱氨酸蛋白酶,其高水平表達(dá)與人類結(jié)腸癌預(yù)后不良有關(guān)。通過(guò)研究發(fā)現(xiàn)Cat S與巨噬細(xì)胞中自噬體標(biāo)記物L(fēng)C3表達(dá)呈正相關(guān),通過(guò)上調(diào)Arg-1、FIZZ1和IL-10等TAM特異性基因的mRNA表達(dá)水平,促進(jìn)巨噬細(xì)胞向TAMs的活化[35]。
細(xì)胞內(nèi)信號(hào)通路mTOR參與調(diào)節(jié)巨噬細(xì)胞的極化過(guò)程。mTOR是一種進(jìn)化上高度保守的絲氨酸-蘇氨酸激酶,通過(guò)控制自噬調(diào)節(jié)細(xì)胞生長(zhǎng)和增殖。mTOR信號(hào)通路是M1和M2極化中的一個(gè)關(guān)鍵因素?;罨膍TORC1通過(guò)磷酸化ULK1來(lái)抑制自噬,雷帕霉素抑制mTORC1,是自噬的強(qiáng)誘導(dǎo)劑。在受LPS刺激的單核細(xì)胞中,雷帕霉素抑制mTOR通路導(dǎo)致單核細(xì)胞朝向M1表型分化,而敲除mTOR內(nèi)源性抑制劑TSC2則導(dǎo)致單核細(xì)胞分化成M2型巨噬細(xì)胞。這些發(fā)現(xiàn)支持TSC2-mTOR途徑調(diào)節(jié)的自噬是單核細(xì)胞分化為TAM M2表型中的決定因素[36-37]。CCL2和IL-6通過(guò)抑制Caspase8水解來(lái)增強(qiáng)自噬,進(jìn)而促進(jìn)骨髓單核細(xì)胞的存活及向M2型巨噬細(xì)胞分化。在CCL2或IL-6刺激下,人外周血分離的CD11b+細(xì)胞顯示甘露糖受體(CD206)和CD14+/CD206+雙陽(yáng)性細(xì)胞顯著增加,表明巨噬細(xì)胞朝向CD206+M2表型分化。兩種細(xì)胞因子誘導(dǎo)抗凋亡蛋白cFLIPL、Bcl-2和Bcl-XL的上調(diào),抑制Caspase8的水解,促進(jìn)巨噬細(xì)胞自噬,增加M2巨噬細(xì)胞的極化。這與使用Caspase8抑制劑模擬細(xì)胞因子誘導(dǎo)自噬和M2極化上調(diào)的結(jié)論一致[38]。
自噬有助于微環(huán)境中的腫瘤細(xì)胞克服代謝壓力,維持其在不良理化環(huán)境中的生存。自噬還參與腫瘤微環(huán)境中TAMs產(chǎn)生的各個(gè)環(huán)節(jié),包括調(diào)節(jié)HSCs持續(xù)分化、單核細(xì)胞募集、單核細(xì)胞向巨噬細(xì)胞分化以及巨噬細(xì)胞極化成TAMs的所有步驟。而TAMs表達(dá)的一系列細(xì)胞因子、趨化因子和蛋白酶可以促進(jìn)血管生成,有利于腫瘤生長(zhǎng)轉(zhuǎn)移。因此,通過(guò)控制單核細(xì)胞及巨噬細(xì)胞中的自噬來(lái)減少M(fèi)2型TAMs的生成,調(diào)節(jié)M2/M1型巨噬細(xì)胞的比例,有希望成為新的抗腫瘤治療方法。目前雖然許多自噬相關(guān)療法已經(jīng)被證明是有效的,但自噬在腫瘤中的作用非常復(fù)雜,腫瘤微環(huán)境誘導(dǎo)自噬在不同腫瘤細(xì)胞和腫瘤不同階段中的作用不盡相同,因此,還不能確定靶向自噬是一種可靠的腫瘤治療方式,未來(lái)需要更多關(guān)于自噬與TAMs在塑造腫瘤微環(huán)境中作用的充分研究。
1 Xie Y,Kang R,Sun X,et al.Posttranslational modification of autophagy-related proteins in macroautophagy[J].Autophagy,2015,11(1):28-45.
2 Kim J,Kundu M,Viollet B,et al.AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1[J].Nat Cell Biol,2011,13(2):132-141.
3 Wehn KM,Howell AB,Kresty LA.Expression,modulation,and clinical correlates of the autophagy protein Beclin1 in esophageal adenocarcinoma[J].Mol Carcinog,2016,55(11):1876-188.
4 Dooley HC,Razi M,Polson HE,et al.WIPI2 links LC3 conjugation with PI3P,autophagosome formation,and pathogen clearance by recruiting Atg12-5-16L1[J].Molecular Cell,2014,55(2):238-252.
5 Xie BY,Lv QY,Ning CC,et al.TET1-GPER-PI3K/AKT pathway is involved in insulin-driven endometrial cancer cell proliferation[J].Biochem Biophys Res Commun,2017,482(4):857-862.
6 Zhou F,Yang Y,Xing D.Bcl-2 and Bcl-xL play important roles in the crosstalk between autophagy and apoptosis[J].FEBS,2011,278(3):403-413.
7 Wu HM,Jiang ZF,Ding PS,et al.Hypoxia-induced autophagy mediates cisplatin resistance in lung cancer cells[J].Sci Rep,2015,5:12291.
8 Zhao M,Yang M,Yang L,et al.HMGB1regulates autophagy through increasing transcriptional activities of JNK and ERK in human myeloid leukemia cells[J].BMB Rep,2011,44(10):601-606.
9 Ruffell B,Coussens LM.Macrophages and therapeutic resistance in cancer[J].Cancer Cell,2015,27(4):462-472.
10 Li P,Shan JX,Chen XH,et al.Epigenetic silencing of microRNA-149 in cancer-associated fibroblasts mediates prostaglandin,E2/interleukin-6 signaling in the tumor microenvironment[J].Cell Res,2015,25(5):588-603.
11 Zhang Q,Zhu B,Li YS.Resolution of cancer-promoting inflammation:A new approach for anticancer therapy[J].Front Immunol,2017,8:71.
12 Guo Q,Jin Z,Yuan Y,et al.New mechanisms of tumor-associated macrophages on promoting tumor progression:recent research advances and potential targets for tumor immunotherapy[J].J Immunol Res,2016,2016:97 20912.
13 Jaehong K,Jong-Sup B.Tumor-associated macrophages and neutrophils in tumor microenvironment[J].Mediators Inflamm,2016,2016:6058147.
14 Ostuni R,Krato-chvill F,Murray PJ,et al.Macrophages and cancer:from mechanisms to therapeutic implications[J].Trends Immunol,2015,36(4):229-239.
15 Abdelaziz A,Essa M,Yamazaki M,et al.Tumour-associated macrophages are recruited and differentiated inthe neoplastic stroma of oral squamous cell carcinoma[J].Pathology,2016,48(3):219-227.
16 Janji B,Viry E,Moussay E,et al.The multifaceted role of autophagy in tumor evasion from immune surveillance[J].Oncotarget,2016,7(14):17591-17607.
17 Sousa S.The role of tumour-associated macrophages in bone metastasis[J].J Bone Oncol,2016,5(3):135-138.
18 Zhang L,Xu YY,Sun J,et al.M2-like tumor-associated macrophages drive vasculogenic mimicry through amplification of IL-6 expression in glioma cells[J].Oncotarget,2017,8(1):819-832.
19 Ravi J,Elbaz M,Wani NA,et al.Cannabinoid receptor-2 agonist inhibits macrophage induced EMT in non-small cell lung cancer by downregulation of EGFR pathway[J].Mol Carcinog,2016,55(12):2063-2076.
20 Yang C,He L,He P,et al.Increased drug resistance in breast cancer by tumor-associated macrophages through IL-10/STAT3/bcl-2 signaling pathway[J].Med Oncol,2015,32(2):352.
21 Zhang J,Yan Y,Yang Y,et al.High infiltration of tumor-associated macrophages influences poor prognosis in human gastric cancer patients,associates with the phenomenon of EMT[J].Medicine,2016,95(6):26-36.
22 Chen SJ,Zhang QB,Zeng LJ,et al.Distribution and clinical significance of tumour-associated macrophages in pancreatic ductal adenocarcinoma:a retrospective analysis in China[J].Current Oncology,2015,22(1):11-19.
23 Kwak HJ,Liu P,Bajrami B,et al.Myeloid cell-derived reactive oxygen species externally regulate the proliferation of myeloid progenitors in emergency granulopoiesis[J].Immunity,2015,42(1):159-171.
24 Chen YF,Liu H,Luo XJ,et al.The roles of reactive oxygen species(ROS)and autophagy in the survival and death of leukemia cells[J].Crit Rev Oncol Hematol,2017,112:21-30.
25 Li GH,Lin XL,Zhang H,et al.Ox-Lp(a)transiently induces HUVEC autophagy via an ROS-dependent PAPR-1-LKB1-AMPK-mTOR pathway[J].Atherosclerosis,2015,243(1):223-235.
26 Fiorini C,Cordani M,Gotte G,et al.Onconase induces autophagy sensitizing pancreatic cancer cells to gemcitabine and activates Akt/mTOR pathway in a ROS-dependent manner[J].Biochim Biophys Acta,2015,185(3):549-560.
27 Mortensen M,Soilleux EJ,Djordjevic G,et al.The autophagy protein Atg7 is essential for hematopoietic stem cell maintenance[J].Exp Med,2011,208(3):455-467.
28 Chen P,Bonaldo P.Role of macrophage polarization in tumor angiogenesis and vessel normalization:Implications for new anticancer therapies[J].Int Rev Cell Mol Biol,2013,301:1-35.
29 Roca H,Varsos Z,Pienta KJ,et al.CCL2 Protects prostate cancer PC3 cells from autophagic death via phosphatidylinositol 3-Kinase/AKT-dependent survivin up-regulation[J].Biol Chem,2008,283(36):25057-25073.
30 Fang WB,Yao M,Jokar I,et al.The CCL2 chemokine is a negative regulator of autophagy and necrosis in luminal B breast cancer cells[J].Breast Cancer Res Treat,2015,150(2):309-320.
31 Jinushi M,Morita T,Xu ZH,et al.Autophagy-dependent regulation of tumor metastasis by myeloid cells[J].PLoS One,2017,12(7):e0179357.
32 Obba S,Hizir Z,Boyer L,et al.The PRKAA1/AMPKα1 pathway triggers autophagy during CSF1-induced human monocyte differentiation and is a potential target in CMML[J].Autophagy,2015,11(7):1114-1129.
33 Ojha R,Ishaq M,Singh SK.Caspase-mediated crosstalk between autophagy and apoptosis:Mutual adjustment or matter of dominance[J].Cancer Res Ther,2015,11(3):514-524.
34 Zhang Y,Morgan MJ,Chen K,et al.Induction of autophagy is essential for monocyte-macrophage differentiation[J].Blood,2012,119(12):2895-2905.
35 Yang M,Liu J,Shao J,et al.Cathepsin S-mediated autophagic flux in tumor-associated macrophages accelerate tumor development by promoting M2 polarization[J].Mol Cancer,2014,13:43.
36 Chen W,Ma T,Shen XN,et al.Macrophage-induced tumor angiogenesis is regulated by the TSC2-mTOR pathway[J].Cancer Research,2012,72(6):1363-1372.
37 Soave DF,Miguel MP,Tomé FD,et al.The fate of the tumor in the hands of microenvironment:Role of TAMs and mTOR pathway[J].Mediators Inflamm,2016,2016:8910520.
38 Salemi S,Yousefi S,Constantinescu MA,et al.Autophagy is required for self-renewal and differentiation of adult human stem cells[J].Cell Res,2012,22(2):432-435.