宋建祥, 易忠權(quán), 鄭世營(yíng)
1. 東南大學(xué)醫(yī)學(xué)院附屬鹽城醫(yī)院心胸外科,鹽城 224005 2. 東南大學(xué)醫(yī)學(xué)院附屬鹽城醫(yī)院中心實(shí)驗(yàn)室,鹽城 224005 3. 蘇州大學(xué)附屬第一醫(yī)院心胸外科,蘇州 215006
泛素-蛋白酶體系統(tǒng)(ubiquitin-proteasome system, UPS)由多種不同的蛋白質(zhì)組成,其中的泛素酶主要包括泛素激活酶E1、泛素結(jié)合酶E2、泛素連接酶E3及泛素解離酶等,是細(xì)胞內(nèi)介導(dǎo)蛋白質(zhì)選擇性降解的主要路徑[1],參與調(diào)控細(xì)胞分化、DNA損傷修復(fù)及細(xì)胞凋亡等一系列的生理病理進(jìn)程[2]。泛素化修飾是一個(gè)可逆反應(yīng),其逆過程稱為去泛素化,由去泛素化酶(deubiquitinating enzyme, DUB)調(diào)節(jié)和介導(dǎo)[3]。
基于催化結(jié)構(gòu)域和功能的不同,DUB可分為5類:泛素特異性蛋白酶系(ubiquitin-specific protease, USP)、卵巢腫瘤相關(guān)蛋白酶系(ovarian tumour-like proteases, OTU)、泛素羧基末端水解酶系(ubiquitin carboxy-terminal hydrolase, UCH)、MJD結(jié)構(gòu)域蛋白酶系(Machado-Josephin domain proteases, MJD)以及JAMM/MPN結(jié)構(gòu)域相關(guān)金屬蛋白酶系(JAMM/MPN domain-associated metallopeptidases, JAMM)[4]。其中,USP成員數(shù)量最多、結(jié)構(gòu)最具多樣性。USP15(ubiquitin-specific peptidase 15)是其重要代表,其不僅參與多種腫瘤細(xì)胞生長(zhǎng)和凋亡的調(diào)控,還與多種疾病的發(fā)生發(fā)展密切相關(guān)[5-6]。因此,本文就USP15的基因定位與表達(dá)、相關(guān)信號(hào)通路及其與疾病的相關(guān)性等研究進(jìn)展作一綜述。
USP15基因位于染色體帶12q14.1,在基因組DNA上全長(zhǎng)為149 382 bp。USP15基因編碼19個(gè)轉(zhuǎn)錄體,其中僅8個(gè)轉(zhuǎn)錄體包含編碼區(qū)。通過Ensembl基因組數(shù)據(jù)庫(kù)(http://asia.Ensembl.org/index.html)和UniProt數(shù)據(jù)庫(kù)(http://www.uniprot.org/un-iprot/Q9Y4E8)對(duì)外顯子全長(zhǎng)數(shù)據(jù)分析發(fā)現(xiàn),人類基因組主要包含3種USP15轉(zhuǎn)錄體和蛋白亞型,其亞型USP15-001、USP15-002、USP15-003分別包含981、952、235個(gè)氨基酸殘基[7]。
多種器官和組織中存在USP15 mRNA表達(dá),其中睪丸、胰腺、甲狀腺和腎上腺呈較高表達(dá)[8]。HeLa細(xì)胞中USP15主要表達(dá)在胞質(zhì)和胞核,而在MDA-MB-231乳腺癌細(xì)胞株中USP15僅在質(zhì)膜上表達(dá)[9]。USP15的定位主要依賴分子結(jié)構(gòu)中所包含的核輸出信號(hào)(NESs)和核定位信號(hào)(NLSs),但蛋白的定位并不是由NESs和NLSs信號(hào)單獨(dú)決定的。不同種類細(xì)胞中USP15接收上述兩種信號(hào)的差異決定其在胞核和胞質(zhì)中定位及分布比例[8]。
2.1 USP15與CSN/CRLs信號(hào)通路 COP9信號(hào)復(fù)合體(COP9-signalosome, CSN)是由9個(gè)亞基(CSN1~CSN7a、CSN7b、CSN8)組成的多功能蛋白復(fù)合物[10],參與包括細(xì)胞復(fù)制、DNA損傷修復(fù)及細(xì)胞凋亡等多種與癌癥發(fā)生發(fā)展相關(guān)的代謝活動(dòng)[11]。Cullin-Ring E3泛素連接酶(CRLs)是一類組裝在支架蛋白Cullin上的多亞基E3連接酶復(fù)合物。細(xì)胞內(nèi)CRLs的激活除了需要相關(guān)多亞基的有效組合外,還依賴Neddylation修飾及類泛素分子Nedd8對(duì)其Cullin骨架蛋白的共價(jià)修飾[12-13]。CSN在CRLs的Deneddylation作用過程中起重要的調(diào)控作用[14-15]。Zhou等[16]通過質(zhì)譜分析技術(shù)觀察到,與人USP15具有同源性的粟酒裂殖酵母ubp12p與CSN可起結(jié)合反應(yīng)。Hetfeld等[17]發(fā)現(xiàn)人源USP15能與CSN結(jié)合,使CRLs復(fù)合體及RBX1去泛素化,通過此來(lái)穩(wěn)定CRLs同時(shí)保留CRLs的E3泛素連接酶活性。因此,USP15在CSN/CRLs信號(hào)通路中起著關(guān)鍵作用。
2.2 USP15與CSN/APC介導(dǎo)的β-catenin信號(hào)轉(zhuǎn)導(dǎo)通路 Wnt信號(hào)通路也稱為Wnt/β-catenin信號(hào)通路,其信號(hào)激活與否高度依賴細(xì)胞內(nèi)β-catenin濃度,而β-catenin的濃度受Axin/GSK-3/APC復(fù)合體控制。這一復(fù)合體由Axin的3個(gè)不同區(qū)域分別結(jié)合GSK3、CK1和β-catenin形成[18]。當(dāng)Wnt信號(hào)未被激活時(shí),CK1α、GSK3依次磷酸化β-catenin而使β-catenin被CRL/SCFβ-TrCP識(shí)別,繼而泛素化后被降解,使細(xì)胞中的β-catenin維持在較低濃度。Axin/GSK-3/APC復(fù)合體的裝配受CSN介導(dǎo)的Deneddylation及APC的濃度控制[19]。USP15能使APC去泛素化,使APC得以穩(wěn)定并不斷積累,從而增強(qiáng)Axin/GSK-3/APC復(fù)合體的裝配,促進(jìn)β-catenin的降解[20]。
2.3 USP15與CSN/IκBa介導(dǎo)的NF-κB信號(hào)轉(zhuǎn)導(dǎo)通路 轉(zhuǎn)錄因子NF-κB(nuclear factor-κB)是一類可調(diào)控多種生理病理活動(dòng)的蛋白因子,包括炎癥、免疫應(yīng)答、細(xì)胞增殖和凋亡等[21]。細(xì)胞在靜息狀態(tài)下,NF-κB與其抑制蛋白IκB結(jié)合形成NF-κB-IκB復(fù)合物。正常生理情況下,該復(fù)合物在細(xì)胞核內(nèi)外處于動(dòng)態(tài)平衡狀態(tài)。當(dāng)IκBα被泛素降解后,NF-κB會(huì)發(fā)生轉(zhuǎn)位和激活。USP15能與CSN結(jié)合使CRL/SCFβ-TrCP去泛素化,從而穩(wěn)定IκBα,進(jìn)而抑制NF-κB的轉(zhuǎn)位和激活。其中,CRL/SCFβ-TrCP能夠抑制IκBα的泛素依賴性殘基Ser-32和Ser-36被降解[22-23]。
2.4 USP15與TGF-β信號(hào)轉(zhuǎn)導(dǎo)通路 轉(zhuǎn)化生長(zhǎng)因子β(TGF-β)是一種細(xì)胞分泌因子,其在調(diào)控細(xì)胞復(fù)制、分化、轉(zhuǎn)移及凋亡過程中發(fā)揮著重要作用[24-25]。TGF-β通路調(diào)節(jié)異常與心血管系統(tǒng)、肌肉骨骼、神經(jīng)系統(tǒng)等均有密切關(guān)聯(lián)[26]。SMAD2、SMAD3、SMAD7是R-SMADs家族中的蛋白質(zhì),其中SMAD2和SMAD3可在C末端磷酸化,磷酸化后的SMAD2和SMAD3參與TGF-β信號(hào)通路的激活[27]。另外,SMAD7是TGF-β通路的轉(zhuǎn)錄靶位,其作為支架蛋白募集SMURF2。SMURF2是一種E3泛素連接酶靶向TGF-β受體,可使TGF-β受體被泛素降解,進(jìn)而抑制TGF-β通路[28]。Zhang等[29]研究發(fā)現(xiàn)USP15可以水解磷酸化后與SMAD2和SMAD3 DNA結(jié)合區(qū)域所連接的泛素分子,使得新一輪依賴SMAD的轉(zhuǎn)錄繼續(xù)進(jìn)行,激活TGF-β通路。USP15能對(duì)SMAD7-SMURF2復(fù)合體介導(dǎo)的Ⅰ型TGF-β受體(TβR-Ⅰ)去泛素化,抑制TβR-Ⅰ的降解,增強(qiáng)TGF-β通路[30]。
2.5 USP15與MDM2介導(dǎo)的p53信號(hào)轉(zhuǎn)導(dǎo)通路 p53蛋白是人類腫瘤最重要的抑制因子之一。MDM2(murine double minute 2)蛋白是p53重要的負(fù)性調(diào)節(jié)因子[31]。MDM2的E3泛素酶能使其與p53結(jié)合,并將p53泛素化降解。此外,MDM2還可負(fù)性調(diào)節(jié)抗腫瘤T細(xì)胞的活化反應(yīng),使T細(xì)胞靶向降解轉(zhuǎn)錄因子NFATc2。40多種惡性腫瘤中均可檢測(cè)到過表達(dá)的MDM2[32]。黑素瘤和結(jié)直腸癌細(xì)胞株中USP15可以與MDM2結(jié)合,通過去泛素化作用抑制MDM2的泛素化降解,進(jìn)而促進(jìn)p53的降解,同時(shí)抑制T細(xì)胞的抗腫瘤反應(yīng)[33]。USP15可以穩(wěn)定MDM2蛋白水平進(jìn)而促進(jìn)腫瘤的發(fā)生,因此USP15可能是潛在的藥物靶點(diǎn)。
2.6 USP15與HPV E6介導(dǎo)的p53信號(hào)轉(zhuǎn)導(dǎo)通路 人乳頭瘤病毒(HPV)屬于乳多空病毒科A亞群的一組DNA病毒,HPV亞型有120多種。其中高危型HPV E6蛋白不僅與人宮頸癌有關(guān),且與生殖器、頭頸部腫瘤及皮膚癌等發(fā)生發(fā)展也密切相關(guān)[34-35]。HPV E6能作用于腫瘤抑制因子p53,導(dǎo)致p53在蛋白酶體中降解,從而使HPV陽(yáng)性的細(xì)胞株p53的水平降低[36]。Vos等[37]發(fā)現(xiàn)USP15可以與HPV-16 E6蛋白相互作用并調(diào)節(jié)其穩(wěn)定性,高表達(dá)的USP15通過去泛素化作用使HPV-16 E6蛋白水平明顯升高,進(jìn)而促進(jìn)p53的降解。
3.1 USP15與腫瘤 USP15與非小細(xì)胞肺癌、惡性膠質(zhì)瘤、乳腺癌和卵巢癌等多種腫瘤的發(fā)生均密切相關(guān),在惡性膠質(zhì)瘤、乳腺癌和卵巢癌細(xì)胞中,USP15基因拷貝數(shù)均明顯高于正常對(duì)照組,存在過表達(dá)現(xiàn)象[21,32]。Xie等[38]通過微陣列分析表明,與親代細(xì)胞相比,對(duì)多西紫杉醇耐藥的胃癌細(xì)胞USP15的表達(dá)顯著下調(diào),并且該結(jié)果被RT-PCR證實(shí)。研究者進(jìn)一步對(duì)消化系統(tǒng)其他11個(gè)腫瘤細(xì)胞系的USP15表達(dá)與多西紫杉醇耐藥關(guān)系進(jìn)行了研究,結(jié)果亦同樣證實(shí)USP15的表達(dá)與多西紫杉醇的敏感性密切相關(guān)。因此,USP15有望成為腫瘤個(gè)體化治療中的新的靶標(biāo)用于評(píng)估某些化療藥物的療效。
3.2 USP15與帕金森病 帕金森病(Parkinson disease, PD)是一種因黑質(zhì)多巴胺神經(jīng)元丟失導(dǎo)致的神經(jīng)退行性疾病[39]。遺傳性PD與PARK2基因突變有密切關(guān)系,該基因編碼E3泛素連接酶PARKIN。正常細(xì)胞中PARKIN從細(xì)胞質(zhì)轉(zhuǎn)運(yùn)到受損的線粒體,使線粒體外膜蛋白泛素化,從而選擇性地誘導(dǎo)線粒體自噬[40]。
USP15作為一種重要的去泛素化酶,能直接或間接地調(diào)節(jié)細(xì)胞內(nèi)多種蛋白的功能和穩(wěn)定性,通過調(diào)節(jié)多種信號(hào)通路參與或調(diào)控包括腫瘤等多種疾病的發(fā)生發(fā)展。盡管USP15的重要性得到了很好的闡述,但目前對(duì)于USP15與相關(guān)疾病關(guān)系的研究仍不深入,且目前對(duì)USP15所作用的底物知之甚少。隨著蛋白質(zhì)組學(xué)關(guān)鍵技術(shù)如生物質(zhì)譜技術(shù)、蛋白質(zhì)芯片技術(shù)等的發(fā)展,將實(shí)現(xiàn)對(duì)泛素-蛋白酶體系統(tǒng)進(jìn)行深入研究,對(duì)USP15與相關(guān)信號(hào)因子的相互作用網(wǎng)絡(luò)進(jìn)行系統(tǒng)研究,并據(jù)此開發(fā)特異性靶向藥物,從而為相關(guān)疾病的機(jī)制及治療提供新的手段。
[ 1 ] CLAGUE M J, URBé S. Ubiquitin: same molecule, different degradation pathways[J].Cell, 2010,143(5):682-685.
[ 2 ] SAHASRABUDDHE A A, ELENITOBA-JOHNSON K S. Role of the ubiquitin proteasome system in hematologic malignancies[J]. Immunol Rev, 2015,263(1):224-239.
[ 3 ] MCKINNON C, TABRIZI S J.The ubiquitin-proteasome system in neurodegeneration[J].Antioxid Redox Signal, 2014,21(17):2302-2321.
[ 4 ] PEREIRA R V, DE S GOMES M, OLMO R P, et al.Ubiquitin-specific proteases are differentially expressed throughout the schistosoma mansoni life cycle[J]. Parasit Vectors, 2015,8:349.
[ 5 ] TORRE S, POLYAK M J, LANGLAIS D, et al. USP15 regulates type Ⅰ interferon response and is required for pathogenesis of neuroinflammation[J]. Nat Immunol, 2017,18(1):54-63.
[ 6 ] CHOU C K, CHANG Y T, KORINEK M, et al. The regulations of deubiquitinase USP15 and its pathophysiological mechanisms in diseases[J]. Int J Mol Sci, 2017,18(3).pii:E483.
[ 7 ] ANGELATS C, WANG X W, JERMIIN L S, et al. Isolation and characterization of the mouse ubiquitin-specific protease Usp15[J]. Mamm Genome, 2003,14(1):31-46.
[ 8 ] CROWE S O,PHAM G H,ZIEGLER J C,et al. Subunit-specific labeling of ubiquitin chains by using sortase: insights into the selectivity of deubiquitinases[J].Chembiochem,2016,17(16):1525- 1531.
[ 9 ] SOBOLEVA T A, JANS D A, JOHNSON-SALIBA M, et al. Nuclear-cytoplasmic shuttling of the oncogenic mouse UNP/USP4 deubiquitylating enzyme[J]. J Biol Chem, 2005,280(1):745-752.
[10] SCHMIDT M W, MCQUARY P R, WEE S, et al. F-box-directed CRL complex assembly and regulation by the CSN and CAND1[J]. Mol Cell, 2009,35(5):586-597.
[11] LI P, XIE L, GU Y, et al. Roles of multifunctional COP9 signalosome complex in cell fate and implications for drug discovery[J]. J Cell Physiol, 2017,232(6):1246-1253.
[12] CHUNG D, DELLAIRE G. The role of the COP9 signalosome and neddylation in DNA damage signaling and repair[J]. Biomolecules, 2015,5(4):2388-2416.
[13] LI J M, JIN J. CRL ubiquitin ligases and DNA damage response[J]. Front Oncol, 2012,2:29.
[14] DUBIEL D, ROCKEL B, NAUMANN M, et al. Diversity of COP9 signalosome structures and functional consequences[J]. FEBS Lett, 2015,589(19 Pt A):2507-2513.
[15] GUMMLICH L, RABIEN A, JUNG K, et al. Deregulation of the COP9 signalosome-cullin-ring ubiquitin-ligase pathway: mechanisms and roles in urological cancers[J]. Int J Biochem Cell Biol, 2013,45(7):1327-1337.
[16] ZHOU C, WEE S, RHEE E, et al. Fission yeast COP9/signalosome suppresses cullin activity through recruitment of the deubiquitylating enzyme Ubp12p[J]. Mol Cell, 2003,11(4):927-938.
[17] HETFELD B K, HELFRICH A, KAPELARI B, et al.The zinc finger of the CSN-associated deubiquitinating enzyme USP15 is essential to rescue the E3 ligase Rbx1[J].Curr Biol, 2005,15(13):1217-1221.
[18] STAMOS J L, WEIS W I. The β-catenin destruction complex[J]. Cold Spring Harb Perspect Biol, 2013,5(1):a007898.
[19] JUMPERTZ S, HENNES T, ASARE Y, et al. CSN5/JAB1 suppresses the WNT inhibitor DKK1 in colorectal cancer cells[J]. Cell Signal. 2017,34:38-46.
[20] HARPER S, BESONG T M, EMSLEY J, et al. Structure of the USP15 N-terminal domains: a β-hairpin mediates close association between the DUSP and UBL domains[J].Biochemistry, 2011,50(37):7995-8004.
[21] CAHILL K E, MORSHED R A, YAMINI B. Nuclear factor-κB in glioblastoma: insights into regulators and targeted therapy[J]. Neuro Oncol, 2016,18(3):329-339.
[22] SCHWEITZER K, NAUMANN M.CSN-associated USP48 confers stability to nuclear NF-κB/RelA by trimming K48-linked Ub-chains[J]. Biochim Biophys Acta, 2015,1853(2):453-469.
[23] AKSENTIJEVICH I, ZHOU Q.NF-κB pathway in autoinflammatory diseases: dysregulation of protein modifications by ubiquitin defines a new category of autoinflammatory diseases[J].Front Immunol, 2017,8:399.
[24] MASSAGUé J. TGF-β signalling in context[J]. Nat Rev Mol Cell Biol, 2012,13(10):616-630.
[25] ZHANG J, ZHANG X, XIE F, et al.The regulation of TGF-β/SMAD signaling by protein deubiquitination[J]. Protein Cell, 2014,5(7):503-517.
[26] REDONDO S, NAVARRO-DORADO J, RAMAJO M, et al. The complex regulation of TGF-β in cardiovascular disease[J]. Vasc Health Risk Manag, 2012,8:533-539.
[27] LUO K. Signaling cross talk between TGF-β/Smad and other signaling pathways[J]. Cold Spring Harb Perspect Biol, 2017,9(1).pii: a022137.
[28] OGUNJIMI A A, WIESNER S, BRIANT D J, et al. The ubiquitin binding region of the Smurf HECT domain facilitates polyubiquitylation and binding of ubiquitylated substrates[J].J Biol Chem, 2010,285(9):6308-6315.
[29] ZHANG L, ZHOU F, GARCA DE VINUESA A, et al.TRAF4 promotes TGF-β receptor signaling and drives breast cancer metastasis[J]. Mol Cell, 2013,51(5):559-572.
[30] LIU W T, HUANG K Y, LU M C, et al. TGF-β upregulates the translation of USP15 via the PI3K/AKT pathway to promote p53 stability[J]. Oncogene, 2017,36(19):2715-2723.
[31] WANG S, ZHAO Y, AGUILAR A, et al.Targeting the MDM2-p53 protein-protein interaction for new cancer therapy: progress and challenges[J].Cold Spring Harb Perspect Med,2017,7(5).pii: a026245.
[32] EBRAHIM M, MULAY S R, ANDERS H J, et al.MDM2 beyond cancer: podoptosis, development, inflammation, and tissue regeneration[J]. Histol Histopathol, 2015,30(11):1271-1282.
[33] ZOU Q, JIN J, HU H, et al.USP15 stabilizes MDM2 to mediate cancer-cell survival and inhibit antitumor T cell responses[J]. Nat Immunol, 2014,15(6):562-570.
[34] DODD R H, WALLER J, MARLOW L A. Human papillomavirus and head and neck cancer: psychosocial impact in patients and knowledge of the link-a systematic review[J].Clin Oncol (R Coll Radiol), 2016,28(7):421-439.
[35] SCHMIDT S A, HAMILTON-DUTOIT S J, FARKAS D K, et al. Human papillomavirus and the incidence of nonmelanoma and melanoma skin cancer using cervical conization as a surrogate marker: a nationwide population-based Danish cohort study[J]. Ann Epidemiol, 2015,25(4):293-296.
[36] CHENG D, GUO Z, ZHANG S. Effect of β-sitosterol on the expression of HPV E6 and p53 in cervical carcinoma cells[J]. Contemp Oncol (Pozn), 2015,19(1):36-42.
[37] VOS R M, ALTREUTER J, WHITE E A, et al.The ubiquitin-specific peptidase USP15 regulates human papillomavirus type 16 E6 protein stability[J].J Virol, 2009,83(17):8885-8892.
[38] XIE L, WEI J, QIAN X, et al.CXCR4, a potential predictive marker for docetaxel sensitivity in gastric cancer[J]. Anticancer Res, 2010,30(6):2209-2216.
[39] CALIGIORE D, HELMICH R C, HALLETT M,et al.Parkinson's disease as a system-level disorder[J]. NPJ Parkinsons Dis, 2016,2:16025.
[40] ZHANG C W, HANG L, YAO T P, et al.Parkin regulation and neurodegenerative disorders[J].Front Aging Neurosci, 2016,7:248.