• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Time-Saving Method to Prepare Monodisperse Fe3O4 Microspheres with Controllable Sizes and Morphologies

    2018-01-12 06:09:01WANGDanLIUChuanYongLONGYueSONGKaiHUANGWei
    物理化學(xué)學(xué)報(bào) 2017年11期
    關(guān)鍵詞:三鐵醋酸鈉磁化強(qiáng)度

    WANG Dan LIU Chuan-Yong LONG Yue SONG Kai HUANG Wei

    ?

    A Time-Saving Method to Prepare Monodisperse Fe3O4Microspheres with Controllable Sizes and Morphologies

    WANG Dan1,3LIU Chuan-Yong2LONG Yue3SONG Kai3,*HUANG Wei1

    (1;2;3)

    Monodisperse Fe3O4microspheres with tunable diameters and high magnetic saturation were synthesized by a solvothermal reduction method. It was found that the morphology and structure of the Fe3O4microspheres could be tuned by simply altering the amount of the reactants such as ferric chloride, sodium acetate, water, and the reaction time. The Fe3O4microspheres obtainedthis method possessed high purity, crystallinity, and a nearly spherical shape. Furthermore, they were monodispersed and no aggregation was found. Such monodisperse Fe3O4microspheres had tunable diameters of 400–700 nm and the fabrication time was only 2–4 h. The products showed high magnetic saturation values, and their yields were typically more than 94%.

    Monodisperse Fe3O4microspheres; Solvothermal; Time-saving; Tunable

    1 Introduction

    In the past few years, magnetic microspheres have gained much attention owing to their wide application areas, such as magnetic separation1?4, targeted drug delivery5, catalyst6, magnetic resonance imaging (MRI)7,8, magnetic ink9, magneto-optical applications10and self-assembly11. As the magnetic, transportation properties, catalysis, biomedicalare directly controlled by particlesize, size distribution, shape and surface chemistry12,13, the synthesisof nanostructured magnetic materials has become aparticularly important area of research14–16. Monodisperse Fe3O4microspheres with narrow size distribution, hollow space and high magnetic saturation (σ) can provide maximum signal in liquid media and show high performance in biological, separation and optical applications10,17,18.

    Numerous approaches have been developed to synthesize nanostructured monodisperse Fe3O4microspheres including hydrothermal reactions19, co-precipitation20, microemulsion21, solvothermal reduction22, thermal decomposition23, and high-temperature hydrolysis reaction24–27. Among these methods, solvothermal reduction is one of the most frequently-used means to prepare magnetic microspheres with narrow size distribution and high magnetic saturation for it is simple and inexpensive. Li.22used the solvothermal reduction method to prepare monodisperse Fe3O4microspheres with diameters ranging from 200 to 800 nm, and the size of Fe3O4microspheres was tuned by adjusting the reaction time from 8 h to 72 h. Fu.29prepared well-crystallized Fe3O4hollow microspheres with diameters of 200–300 nm, and the reaction was completed in 12 h. Zhao.21modified solvothermal method and tuned the size of Fe3O4microspheres by varying the concentration of the reactants, obtaining the microspheres with average diameters ranging from 80 to 410 nm after 10 h reaction. Zhu.30reported a facile solvothermal method to fabricate hollow Fe3O4microspheres with the diameter of 290 nm for 10 h at 200 °C. Xia31.reported a bisolvent solvothermal processto prepare monodisperse Fe3O4microsphereswith diameters of 55–500 nm for 20 h, and the size was controlled by adjusting the volume ratio of the solvent. From the above methods, magnetic Fe3O4microspheres with different sizes and morphologies were successfully prepared. However, one drawback of the solvothermal method is that the reaction time is relatively long to prepare microspheres with large sizes, e.g. 10 h reaction is required to prepare microspheres with diameter of 400 nm; microspheres with diameters of 600 and 800 nm requires 48 and 72 h to prepare, respectively.

    Fig.1 XRD diffraction patterns of the Fe3O4 microspheres.

    Herein, the solvothermal reduction method is modified to synthesize monodisperse Fe3O4microspheres with tunable diameters, high magnetic saturation in a short reaction time. The monodisperse Fe3O4microspheres with average diameters ranging from 400 to 700 nm were successfully obtaineda 4 h reaction, and the diameter can be tuned by the amount of ferric chloride, sodium acetate and the reaction time. Moreover, Hollow structure can also be obtained by simply altering the amount of water in the reaction system.

    2 Materials and methods

    2.1 Materials

    Ferric chloride (FeCl3, anhydrous, > 98%) and sodium acetate (CH3COONa, NaAc, anhydrous, > 99%) were purchased from Acros. Ferric chloride hexahydrate (FeCl3·6H2O, > 98%), ethylene glycol (EG, > 99%) and ethanol were obtained from Beijing Chemical Works and used without further purification.Polyethylene glycol (PEG,w ~2000) was purchased from Alfa Aesar. Water used throughout all experiments was purified with the Millipore system.

    X-ray diffraction (XRD) analysis was carried out on a D/Max 2500V/PC (Japan) X-ray diffractometer (= 0.154056 nm) in the 2range of 10°–70° using Cu-Kradiation. Scanning electron microscope (SEM) images were obtained by JEOL S-4800 (Japan) field emission scanning electron microscope. Transmission electron microscope (TEM) images and high resolution (HR) TEM images were taken on JEOL JEM-2100F (Japan) transmission electron microscope. The magnetic properties of the Fe3O4microspheres were investigated by SQUID vibration sample magnetometer (VSM) (America).

    2.2 Synthesis of monodisperse Fe3O4 microspheres.

    In a typical synthesis of Fe3O4microspheres, NaAc (2.87 g) was dissolved in EG (20 mL), and the solution was kept in a water bath at 40 °C. FeCl3·6H2O (2.70 g, 10 mmol) was dissolved in EG (10 mL) to form a clear solution, followed by the addition of PEG (0.75 g). After complete dissolution, the resulting solution was slowly poured into the as-prepared NaAc solution under vigorous stirring at 40 °C. After 30 min, brownish yellow solution was produced, and transferred into a 40 mL Teflon lined stainless-steel autoclave. The autoclave was maintained at 200 °C in oven for 4 h. After cooled down to room temperature, the dark product was collected by a magnet and washed with ethanol and water several times. Finally, the product was dried in room temperature and weighed.

    2.3 Characterization of the Fe3O4 microspheres

    XRD pattern of the Fe3O4microspheres synthesized by the method in section 2.2 is shown in Fig.1. The diffraction peaks match well with the database for magnetite in the JCPDS-International Center for Diffraction Data (JCPDS Card: 79-0419) file. The specific sharp and strong diffraction peaks also confirmed the well crystallization of the product, and no impurity was observed.

    SEM and TEM images were taken to investigate the morphology and structure of theproduct, as shown in Fig.2. It can be seen from Fig.2a that the Fe3O4microspheres are spherical with a uniform size distribution and the average diameter of the spheres is ~600 nm. Rough surface morphology of the microspheres is observed from the magnified SEM image shown in Fig.2b. More details can be found by the broken spheres (observed occasionally) shown in Fig.2c that Fe3O4microspheres are comprised by many aggregated Fe3O4nanocrystals. The TEM images shown in Fig.2d and 2e further confirmed the spherical structure of Fe3O4microspheres. The detailed structure information of the Fe3O4microspheres was investigated by using HRTEM (taken from the marked area in Fig.2e). Clear lattice fringes can be observed in the HRTEM image (Fig.2f), and it also displays the high crystalline and single-crystalline nature of Fe3O4microspheres. The spacing of the lattice fringes is ~0.48 nm, which matches well with the (111) lattice planes of Fe3O4crystal.

    The magnetic properties of the Fe3O4microspheres were investigated with VSM. Fig.3 shows the hysteresis loop measured at room temperature by cycling the field between ?10 and 10 kOe. Results show that the magnetic saturation value of the microspheres at room temperature is 80 emu·g-1, and the inset curve reveals the weak ferromagnetism behavior of the product with a remanence of 2.9 emu·g-1and a coercivity of 23.7 Oe.

    3 Results and discussion

    3.1 Modifed solvthermal method

    There are two dynamical stagesin the Fe3O4microspheres formation process32. The first stage is the burst-nucleation, forming nanocrystals in the supersaturated solution. The second stage is the oriented aggregation of nanocrystals formed in the first stage to minimize the surface energy. By adjusting these two processes, the morphology and structure of the product can be tuned. In previous studies, attentions were focused on adjusting the ratio of the reactants and solvents in the synthesis system.

    However, we found that the precursor solution also has a severe impact on the final product. The conventional way to prepare the precursor solution is to dissolve the FeCl3·6H2O, NaAc solid and surfactant (PEG) consecutively in the EG solution under vigorous stirring. Here, we report a new time-saving method to prepare Fe3O4microspheres: FeCl3·6H2O was dissolved in EG firstly, and then adding PEG to form solution A. NaAc was dissolved separately in EG to form solution B, followed by the combination of solutions A and B. For comparison, precursor solutions using both the conventional method and the new method were prepared, and heated at 200 °C for4 h to produce the Fe3O4microspheres. From the SEM image in Fig.4a, it can be seen that the Fe3O4microspheres prepared by the conventional method are heterodisperesed in size with diameters ranging from a few nanometers to few hundred nanometers. In contrast, the microspheres fabricated by the time-saving method are much more monodisperse with the average diameter of ~600 nm, as seen in Fig.4b. It is widely accepted that a homogenous system is the key for the preparation of monodisperse particles33, so it is important to make a homogenous precursor solution.

    The time-saving mechanism remains unclear, while a possible one could be due to the liquid-liquid mixing strategy in our method. In the conventional method, when NaAc was added to the EG solution of FeCl3·6H2O, it started to dissolve. As NaAc is in the solid form, the dissolved NaAc will react with the FeCl3·6H2O firstly, which results in the inhomogeneous of the whole system with dissolution and reaction occurs at the same time. Therefore, the Fe3O4microspheres synthesized from this method is also inhomogeneous in size. Comparatively, in the time-saving method, FeCl3·6H2O and NaAc are dissolved separately in EG first, after combination, reaction carries out simultaneously; hence, is more likely to form a homogeneous system and consequently monodispersed microspheres. In addition, liquid-liquid mixing has larger reaction interfaces than the liquid-solid one. The interface of the following reaction enlarges correspondingly due to the increased total surface of the precursor. In turn, the whole reaction time could be reduced. Hence, in accordance with our explanation, after 4 h of reaction at 200 °C, the yield of the products prepared by the conventional process was ~85%, and the yield of the time-saving process was ~94%.

    The synthesis conditions: 2.70 g FeCl3·6H2O, 0.75 g PEG, 2.87 g NaAc, 30 mL EG, 200 °C, and 4 h.

    Fig.3 Hysteresis loop of Fe3O4 microspheres.

    3.2 Size modification of monodispersed Fe3O4 microspheres

    3.2.1 Adjusting the amount of FeCl3·6H2O

    Amount of FeCl3·6H2O in the precursor solution affects the size distribution of the Fe3O4microspheres. It was found that no Fe3O4microspheres were obtained with 1 mmol of FeCl3·6H2O added in the precursor solution. When increasing the amount of FeCl3·6H2O to 2 mmol, aggregated Fe3O4microspheres were formed, which can be seen in Fig.5a. When the amount of FeCl3·6H2O increased to 3 mmol, uniform Fe3O4microspheres were produced with the average diameter of 500 nm, as depicted in Fig.5b. As further increasing the FeCl3·6H2Ocontent to 5 and 10 mmol, Fe3O4microspheres with average diameters of 570 nm (Fig.5c) and 600 nm (Fig.5d) were produced, respectively.

    The effect of amount of FeCl3·6H2O on the formation of Fe3O4microspheres can be explained withthe help of the two-stage growth model described in section 3.1. When the amount of FeCl3·6H2O was too low, the nucleation process was impeded, which resulted in low yield. With more FeCl3·6H2O added to the precursor solution, the nucleation and formation process of nanocrystals started off. At lower rate, slow formation of the nanocrystals caused the widening of the size distribution, as shown in Fig.5a. When the amount of FeCl3·6H2O increased, the nucleation of the nanocrystals became faster, which accelerated the rate of the nanocrystals formation, and resulted in narrower sizedistribution.

    3.2.2 Adjusting the amount of NaAc

    To investigate the effect of NaAc, a series of experiments were carried out with different amount of NaAc, whereas other parameters remained constant. When the molar ratio of NaAc/ Fe3+is 1 : 1, the product was polydispersed in size, as shown in Fig.6a. After adjusting the ratio to 2 and 3, uniform microspheres were produced with the average diameters of 400 nm (Fig.6b) and 700 nm (Fig.6c), respectively. However, as the ratio increased to 3.5, the average diameter of the Fe3O4microspheres decreased to 600 nm (Fig.6d). Further reduction of the average diameters was also observed when the NaAc/Fe3+molar ratio increased to 6 (550 nm, Fig.6e) and 9 : 1 (400 nm, Fig.6f). It was also found that the yields of the first two batches (Fig.6a and 6b) are 15% and 55%, respectively, while all the others are over 94%. It can be deduced from the results that low yields of the first two batches are caused by the shortage of NaAc.

    Fig.4 SEM image of Fe3O4 microspheres prepared through different processes.

    (a) conventional method; (b) time-saving method. All scale bars are 5 μm.

    Fig.5 SEM images of Fe3O4 microspheres prepared with different amount of FeCl3·6H2O.

    (a) 2 mmol, (b) 3 mmol, (c) 5 mmol, (d) 10 mmol. All scale bars are 2 μm.

    Fig.6 SEM images of Fe3O4 microspheres prepared with different amount of NaAc.

    The molar ratio of NaAc/Fe3+: (a) 1, (b) 2, (c) 3, (d) 3.5, (e) 6, (f) 9. All scale bars are 1 μm.

    The effect of NaAc on the size of the Fe3O4microspheres can be explained that when the amount of NaAc was low, it caused the slow nucleation of the nanocrystals; hence, resulted in the wider size distribution. As the amount of NaAc increased, the nucleation rate of the nanocrystals became faster, which accelerated the formationof the Fe3O4nanocrystals and resulted in the narrow size distribution31. High amount of NaAc can act as a electrostatic stabilizer which prevents the newly formed microspheres from aggregation. This is also helpful to narrow the size distribution. With the same amount of ferric chloride, faster nucleation leads to the decrease in particle size, which can explain the decrease of size when the molar ratio further increased to 6 and 9. Moreover, electrostatic stabilization also facilitates the oriented attachment. With the increase amount of NaAc, the diffraction peaks became sharper and stronger as one can be seen from the XRD patterns (Fig.7). The corresponding grain sizes increased from 20 to 64.8 nm, which were calculated by the Scherrer equation based on the strongest peak (311) in Fig.734.

    3.2.3 Adjusting the heating time

    Heating time also affects the size of Fe3O4microspheres. Results show that no Fe3O4microspheres were formed if the heating time is less than 2 h. As the heating time increased to 2 h, Fe3O4microspheres with average diameter of 400 nm were formed (Fig.8a). When the heating time further increased to 3 and 4 h, the diameters of the Fe3O4microspheres increased to 500 nm (Fig.8b) and 600 nm (Fig.8c), respectively. However, no increase in size was found with further prolonged heating (6 h, Fig.8d). This result shows that the diameter of the Fe3O4microspheres can be tuned from 400 to 600 nm by increasing the heating time from 2 h to 4 h, which is much shorter than the reaction time reported in the previous study22.

    Fig.7 XRD diffraction patterns of the Fe3O4 microspheres prepared with different amount of NaAc.

    The molar ratio of NaAc/Fe3+and the grain sizes of peak (311): (a) 1, 20 nm; (b) 2, 22.7 nm; (c) 3, 23.2 nm; (d) 3.5, 28.3 nm; (e) 6, 31.4 nm; (f) 9, 64.8 nm.

    Fig.9 SEM images of Fe3O4 microspheres prepared with different amount of water.

    The molar ratio of H2O/Fe3+: (a) 6, (b) 9, (c) 12, (d) 18.All scale bars are 2 μm.

    3.3 Tuning the morphology of the monodisperse Fe3O4 microspheres

    The amount of water can affect the morphology of the Fe3O4microspheres, and anhydrous FeCl3was used instead of FeCl3·6H2O in the preparation process. When the molar ratio of H2O/Fe3+was 6, the product showed uniform size distribution with the average diameter of 600 nm, as shown in Fig.9a. When the molar ratio increased to 9, slight decrease in the average diameter was observed, and small holes appeared on the surface of the microspheres (Fig.9b). After further increasing the molar ratio to 12, the average diameter decreased to 500 nm, as depicted in Fig.9c. It can be seen from the inset image that some of the microspheres became hollow structured. As the molar ratio increased to 18, the average diameter remained as 500 nm. However, a greater portion of the microspheres became hollow, some were even ruptured (Fig.9d).As mentioned earlier, faster nucleation leads to the decrease in particle size. High amount of water gives rise to fast hydrolysis of FeCl3and NaAc, which accelerates the nucleation of the Fe3O4nanocrystals26. Hence, it is comprehensible that the size of the microspheres decreased with the increase amount of water. In addition, the viscosity of the solution decreases with high amount of water, which facilitates the growth and aggregation of the nanocrystals. So the aggregation process at the beginning was very fast, and there is not enough time for the aggregated nanocrystals to adjust and rotate to the suitable configuration interface. Naturally the interior aggregated nanocrystals of Fe3O4microspheres were not oriented as well as the outer ones and had relatively higher surface energy and smaller size. Therefore, they were unstable and gradually dissolved and attached to the outer nanocrystals by the driving force to reduce the overall surface energy. This “solid-solution-solid” mass transportation resulted in the hollow structure of the products35,36.

    Fig.8 SEM images of Fe3O4 microspheres prepared with different reaction time.

    (a) 2 h, (b) 3 h, (c) 4 h, (d) 6 h.All bars are 1 μm.

    4 Conclusions

    In conclusion, monodisperse Fe3O4microspheres with average diameters ranging from 400 to 700 nm were successfully synthesized by a time-saving solvothermal reaction route for 2?4 h, and the size of Fe3O4microspheres can be tuned by variousmeans: amount of ferric chloride and sodium acetate, and reaction time. Moreover, hollow structure can also be obtained by simply altering the amount of water in the reaction system. The products have high magnetic saturation values, and the yield of the products is over 94%.

    (1) Ge, J. P.; Zhang, Q.; Zhang, T. R.; Yin, Y. D.2008,, 8924. doi: 10.1002/anie.200803968.

    (2)Sheng, W.; Wei, W.; Li, J. J.; Qi, X. L.; Zuo, G. C.; Chen, Q.; Pan, X. H.; Dong, W.2016,, 1116. doi: 10.1016/j.apsusc.2016.07.061.

    (3) Yu, M.; Di, Y.; Zhang, Y.; Zhang, Y. T.; Guo, J.; Lu, H. J.; Wang, C. C.2016,, 74. doi: 10.3390/polym8030074.

    (4) Zhou, L. M.; Wang, Y. P.; Huang, Q. W.; Liu, Z. R.2007,(12), 1979. [周利民, 王一平, 黃群武, 劉峙嶸. 物理化學(xué)學(xué)報(bào), 2007,(12), 1979.]doi: 10.3866/PKU.WHXB20071228.

    (5) Jain, T. K.; Morales, M. A.; Sahoo, S. K.; Leslie-Pelecky, D. L.; Labhasetwar, V.2005,, 194. doi: 10.1021/mp0500014.

    (6) Ge, J. P.; Huynh, T.; Hu, Y. X.; Yin, Y. D.2008,, 931. doi: 10.1021/nl080020f.

    (7) Qiao, R. R.; Yang, C. H.; Gao, M. Y.2009,, 6274. doi: 10.1039/b902394a.

    (8) Kim, D. H.; Chen, J.; Omary, R. A.; Larson, A. C.2015,, 477. doi: 10.7150/thno.10823.

    (9) Ge, J. P.; Goebl, J.; He, L.; Lu, Z. D.; Yin, Y. D.2009,, 4259. doi: 10.1002/adma.200901562.

    (10) Kim, H.; Ge, J. P.; Kim, J.; Choi, S.; Lee, H.; Lee, H.; Park, W.; Yin, Y. D.; Kwon, S.2009,, 534. doi: 10.1038/NPHOTON.2009.141.

    (11) Ge, J. P.; Hu, Y. X.; Zhang, T. R.; Yin, Y. D.2007,, 8974. doi: 10.1021/ja0736461.

    (12) Sun, S. H.; Murray, C. B.; Weller, D.; Folks, L.; Moser, A.2000,, 1989. doi: 10.1126/science.287.5460.1989.

    (13) Hyeon, T.; Lee, S. S.; Park, J.; Chung, Y.; Na, H. B.2001,, 12798. doi: 10.1021/ja016812s.

    (14) Yan, L.; Wang, Y. F.; Li, J.; Shen, H. D.; Wang, C.; Yang, S. B.2016,, 10616. doi: 10.1007/s10854-016-5156-3.

    (15) Bokharaei, M.; Schneider, T.; Dutz, S.; Stone, R. C.; Mefford, O. T.; Hafeli, U. O.2016,, 1. doi: 10.1007/s10404-015-1693-y.

    (16) Wang, X. M.; Huang, P. F.; Ma, X. M.; Wang, H.; Lu, X. Q.; Du, X. Z.2017,, 300. doi: 10.1016/j.talanta.2017.01.067.

    (17) Wang, Z.; Hong, R. Y.2016,, 1. doi: 10.1007/s10965-015-0897-x.

    (18) Gee, S. H.; Hong, Y. K.; Erickson, D. W.; Park, M. H.2003,, 7560. doi: 10.1063/1.1540177.

    (19) Wang, X.; Zhuang, J.; Peng, Q.; Li, Y. D.2005,, 121. doi: 10.1038/nature03968.

    (20) Kang, Y. S.; Risbud, S.; Rabolt, J. F.; Stroeve, P.1996,, 2209. doi: 10.1021/cm960157j.

    (21) Chin, A. B.; Yaacob, I. I.2007,, 235. doi: 10.1016/j.jmatprotec.2007.03.011.

    (22) Deng, H.; Li, X. L.; Peng, Q.; Wang, X.; Chen, J. P.; Li, Y. D.;2005,, 2782. doi: 10.1002/ange.200462551.

    (23) Sun, S. H.; Zeng, H.; Robinson, D. B.; Raoux, S.; Rice, P. M.; Wang, S. X.; Li, G. X.2004,, 273. doi: 10.1021/ja0380852.

    (24) Ge, J. P.; Hu, Y. X.; Biasini, M.; Beyermann, W. P.; Yin, Y. D.2007,, 4342. doi: 10.1002/anie.200700197.

    (25) Reddy, L. H.; Arias, J. L.; Nicolas, J.; Couvreur, P.2012,, 5818. doi: 10.1021/cr300068p.

    (26) Laurent, S.; Forge, D.; Port, M.; Roch, A.; Robic, C.; Elst, L. V.; Muller, R. N.2008,, 2064. doi: 10.1021/cr068445e.

    (27) Lu, A. H.; Salabas, E. L.; Schüth F.2007, 46, 1222. doi: 10.1002/anie.200602866.

    (28) Liu, J.; Sun, Z. K.; Deng, Y. H.; Zou, Y.; Li, C. Y.; Guo, X. H.; Xiong, L. Q.; Gao, Y.; Li, F. Y.; Zhao, D. Y.2009,, 5875. doi: 10.1002/anie.200901566.

    (29) Zhu, L. P.; Xiao, H. M.; Zhang, W. D.; Yang, G.; Fu, S. Y.2008,, 957. doi: 10.1021/cg700861a.

    (30) Liu, S. H.; Xing, R.M.; Lu, F.; Rana, R. K.; Zhu, J. J.2009,, 21042. doi: 10.1021/jp907296n.

    (31) Huang, Z. Z.; Wu, K. L.; Yu, Q. H.; Wang, Y. Y.; Xing, J. Y.; Xia, T. L.2016,, 219. doi: 10.1016/j.cplett.2016.10.036.

    (32) Libert, S.; Gorshkov, V.; Goia, D.; Matijevi?, E.; Privman, V.2003,, 10679. doi: 10.1021/la0302044.

    (33) Matijevi?, E.1993,, 412. doi: 10.1021/cm00028a004.

    (34) Penn, R. L.2004,, 12707. doi: 10.1021/jp036490+.

    (35) Jia, B. P.; Gao, L.2008,, 666. doi: 10.1021/jp0763477.

    (36) Lou, X. W.; Wang, Y.; Yuan, C. L.; Lee, J. Y.; Archer, L. A.2006,, 2325. doi: 10.1002/adma.200600733.

    尺寸可控的單分散四氧化三鐵微球的省時制備

    王 丹1,3劉傳勇2龍 玥3宋 愷3,*黃 維1

    (1南京郵電大學(xué)先進(jìn)生物與化學(xué)制造協(xié)同創(chuàng)新中心,有機(jī)電子與信息顯示國家重點(diǎn)實(shí)驗(yàn)室培育基地,南京 210023;2中國科學(xué)院化學(xué)研究所,北京 100190;3中國科學(xué)院理化技術(shù)研究所,北京 100190 )

    用溶劑熱法制備了單分散性較好、尺寸可控,飽和磁化強(qiáng)度高的四氧化三鐵磁性微球,并用多種手段調(diào)控制備了不同尺寸和形貌的四氧化三鐵微球,如氯化鐵、醋酸鈉、水的量以及反應(yīng)時間。結(jié)果表明所得四氧化三鐵產(chǎn)物純凈、結(jié)晶度高,形狀近乎球形、無團(tuán)聚,大小均一、具有很好的單分散性。此方法可以在2?4 h內(nèi)制備400?700 nm范圍內(nèi)尺寸可控、高飽和磁化強(qiáng)度的四氧化三鐵微球,產(chǎn)率達(dá)到了94%。

    單分散四氧化三鐵微球;溶劑熱法;省時;可控

    O649

    10.3866/PKU.WHXB201706093

    April 18, 2017;

    May 29, 2017;

    June 9, 2017.

    Corresponding author. Email: songkai@mail.ipc.ac.cn; Tel: +86-10-82543658.

    The project was supported by the National Natural Science Foundation of China (U1430128).

    國家自然科學(xué)基金(U1430128)資助

    猜你喜歡
    三鐵醋酸鈉磁化強(qiáng)度
    最近鄰弱交換相互作用對spin-1納米管磁化強(qiáng)度的影響
    納米級四氧化三鐵回收水中鉛離子實(shí)驗(yàn)
    無水醋酸鈉結(jié)構(gòu)及熱穩(wěn)定性
    淡水磁化灌溉對棉花出苗率·生長及干物質(zhì)量的影響
    磁性四氧化三鐵氮摻雜石墨烯磁性固相萃取測定水樣中的6種醛酮化合物
    Identifying vital edges in Chinese air route network via memetic algorithm
    二氯醋酸鈉提高膠質(zhì)母細(xì)胞瘤U251細(xì)胞的放療敏感性
    磁性四氧化三鐵制備及對廢水重金屬離子凈化*
    淺談對磁場強(qiáng)度H和磁感應(yīng)強(qiáng)度B的認(rèn)識
    水溶性四氧化三鐵納米粒子制備及其在大鼠體內(nèi)分布
    bbb黄色大片| 一区二区三区激情视频| 久久亚洲精品不卡| 两个人视频免费观看高清| 18禁黄网站禁片午夜丰满| 淫妇啪啪啪对白视频| 女同久久另类99精品国产91| 国产高清激情床上av| 黄频高清免费视频| 美女 人体艺术 gogo| 国产综合懂色| 国产一区二区三区视频了| 国产又色又爽无遮挡免费看| 啪啪无遮挡十八禁网站| 高清在线国产一区| 亚洲国产高清在线一区二区三| 久久这里只有精品中国| 18美女黄网站色大片免费观看| 亚洲欧美精品综合久久99| 国产熟女xx| 欧美+亚洲+日韩+国产| 久久精品影院6| 国产精华一区二区三区| 制服人妻中文乱码| 亚洲人成网站在线播放欧美日韩| 久久久成人免费电影| 国产成人精品无人区| 国产成人欧美在线观看| 亚洲专区字幕在线| 一a级毛片在线观看| 国产黄色小视频在线观看| 精品一区二区三区四区五区乱码| 韩国av一区二区三区四区| 老汉色∧v一级毛片| 丰满人妻一区二区三区视频av | 久久午夜亚洲精品久久| 国产av麻豆久久久久久久| 国产视频一区二区在线看| 国产伦精品一区二区三区视频9 | 非洲黑人性xxxx精品又粗又长| 国产欧美日韩精品一区二区| 午夜免费成人在线视频| 香蕉丝袜av| 一进一出抽搐动态| 真人做人爱边吃奶动态| 免费看a级黄色片| 舔av片在线| 精品无人区乱码1区二区| 国产1区2区3区精品| 一区二区三区高清视频在线| 亚洲国产欧美人成| bbb黄色大片| 中文字幕av在线有码专区| 日韩人妻高清精品专区| 国产一区二区激情短视频| 国产淫片久久久久久久久 | 18禁黄网站禁片午夜丰满| 99久久精品一区二区三区| 亚洲成人久久性| 十八禁网站免费在线| 1024手机看黄色片| 色综合婷婷激情| 婷婷精品国产亚洲av在线| 九九热线精品视视频播放| 女警被强在线播放| 少妇的逼水好多| 国产黄色小视频在线观看| 国产亚洲欧美98| 国产伦在线观看视频一区| 国产三级在线视频| 亚洲av第一区精品v没综合| 国产成人欧美在线观看| 麻豆成人av在线观看| 午夜免费观看网址| 国产精华一区二区三区| 人人妻人人看人人澡| 97碰自拍视频| 狠狠狠狠99中文字幕| 国产v大片淫在线免费观看| 少妇熟女aⅴ在线视频| avwww免费| 夜夜爽天天搞| 国产综合懂色| 日韩精品青青久久久久久| 90打野战视频偷拍视频| 99久久综合精品五月天人人| 亚洲成人免费电影在线观看| 长腿黑丝高跟| 国产精品美女特级片免费视频播放器 | 悠悠久久av| 亚洲18禁久久av| 一级作爱视频免费观看| 国产伦一二天堂av在线观看| 男人舔女人下体高潮全视频| 18禁裸乳无遮挡免费网站照片| 九色国产91popny在线| 日本黄大片高清| 国产黄a三级三级三级人| 一进一出抽搐动态| 成人国产综合亚洲| 亚洲熟妇中文字幕五十中出| 国产97色在线日韩免费| 国产精品一区二区精品视频观看| 欧美黑人欧美精品刺激| 99精品久久久久人妻精品| 99国产精品99久久久久| 亚洲国产看品久久| 亚洲精品久久国产高清桃花| 真人做人爱边吃奶动态| avwww免费| a在线观看视频网站| 国产精品一区二区免费欧美| 国产野战对白在线观看| 母亲3免费完整高清在线观看| 午夜久久久久精精品| 欧美日韩黄片免| 亚洲精品色激情综合| 欧美日韩福利视频一区二区| 亚洲欧美日韩东京热| 久久精品国产亚洲av香蕉五月| 免费观看的影片在线观看| 免费一级毛片在线播放高清视频| 精品久久久久久,| 99久久无色码亚洲精品果冻| 国产激情欧美一区二区| 午夜福利欧美成人| av女优亚洲男人天堂 | 老鸭窝网址在线观看| 中文在线观看免费www的网站| 色哟哟哟哟哟哟| 久久久久久久午夜电影| 欧美中文综合在线视频| 夜夜看夜夜爽夜夜摸| 久久久水蜜桃国产精品网| 亚洲人与动物交配视频| 黄色日韩在线| 国产成人福利小说| 欧美日韩亚洲国产一区二区在线观看| 悠悠久久av| 99国产综合亚洲精品| 成人亚洲精品av一区二区| 欧美激情久久久久久爽电影| 日本免费一区二区三区高清不卡| 两个人视频免费观看高清| 精品无人区乱码1区二区| 日日夜夜操网爽| 日韩成人在线观看一区二区三区| 成年人黄色毛片网站| 精品久久久久久久人妻蜜臀av| 色在线成人网| 男人和女人高潮做爰伦理| 99久久99久久久精品蜜桃| 99re在线观看精品视频| 精品熟女少妇八av免费久了| 亚洲av五月六月丁香网| 亚洲无线在线观看| 欧美极品一区二区三区四区| 日本黄色视频三级网站网址| 一夜夜www| 97碰自拍视频| 91av网站免费观看| 久久午夜综合久久蜜桃| 一级a爱片免费观看的视频| 这个男人来自地球电影免费观看| 香蕉久久夜色| 免费电影在线观看免费观看| 国产精品亚洲av一区麻豆| 变态另类成人亚洲欧美熟女| 精品久久久久久久毛片微露脸| 亚洲av电影不卡..在线观看| 亚洲 国产 在线| 欧美成人性av电影在线观看| 怎么达到女性高潮| 精品久久久久久,| 国产成人影院久久av| 一区二区三区国产精品乱码| 久久精品国产清高在天天线| bbb黄色大片| 国产精品一区二区三区四区免费观看 | 九色成人免费人妻av| 国产日本99.免费观看| 欧美激情久久久久久爽电影| 国产精品爽爽va在线观看网站| 熟女少妇亚洲综合色aaa.| 国产午夜福利久久久久久| av在线天堂中文字幕| 黄色丝袜av网址大全| 91字幕亚洲| 国产成人精品久久二区二区91| 91老司机精品| 国产真人三级小视频在线观看| 99riav亚洲国产免费| 人人妻人人看人人澡| 热99在线观看视频| 国产视频内射| 我的老师免费观看完整版| 欧美日韩乱码在线| 国产1区2区3区精品| 最新中文字幕久久久久 | 麻豆成人av在线观看| 午夜福利免费观看在线| 国产 一区 欧美 日韩| 人人妻,人人澡人人爽秒播| 男女视频在线观看网站免费| 搡老熟女国产l中国老女人| 丰满的人妻完整版| 少妇的丰满在线观看| 欧美日韩黄片免| 亚洲av第一区精品v没综合| 久久久精品大字幕| 草草在线视频免费看| 国产精品美女特级片免费视频播放器 | 亚洲av日韩精品久久久久久密| 一卡2卡三卡四卡精品乱码亚洲| 午夜视频精品福利| 俺也久久电影网| 亚洲成av人片在线播放无| 黄色女人牲交| 91麻豆av在线| av中文乱码字幕在线| 欧美xxxx黑人xx丫x性爽| 9191精品国产免费久久| 哪里可以看免费的av片| 国产综合懂色| 婷婷六月久久综合丁香| 久久精品国产99精品国产亚洲性色| 国产av在哪里看| 精品免费久久久久久久清纯| 人人妻人人看人人澡| 久久精品国产清高在天天线| 91麻豆av在线| 国产三级在线视频| bbb黄色大片| 99视频精品全部免费 在线 | 午夜两性在线视频| 亚洲欧美日韩卡通动漫| 一本综合久久免费| a级毛片a级免费在线| 天堂影院成人在线观看| 又黄又粗又硬又大视频| 老汉色av国产亚洲站长工具| 精品久久久久久久久久久久久| 国产男靠女视频免费网站| 免费观看的影片在线观看| 757午夜福利合集在线观看| 哪里可以看免费的av片| 黑人欧美特级aaaaaa片| 99久久精品热视频| 一卡2卡三卡四卡精品乱码亚洲| 日韩精品青青久久久久久| 高清毛片免费观看视频网站| 麻豆av在线久日| 真人做人爱边吃奶动态| www.999成人在线观看| 精品99又大又爽又粗少妇毛片 | 一卡2卡三卡四卡精品乱码亚洲| 国产高清视频在线播放一区| 禁无遮挡网站| 麻豆成人av在线观看| 观看美女的网站| 欧美最黄视频在线播放免费| 欧美黑人欧美精品刺激| 国产综合懂色| 国产精品久久久久久精品电影| 两人在一起打扑克的视频| 身体一侧抽搐| 给我免费播放毛片高清在线观看| 国产精品99久久99久久久不卡| 俄罗斯特黄特色一大片| 亚洲中文日韩欧美视频| 国产成人福利小说| 看免费av毛片| 国产高清视频在线观看网站| 日本一本二区三区精品| 91麻豆精品激情在线观看国产| 99久久综合精品五月天人人| 天天躁狠狠躁夜夜躁狠狠躁| 在线看三级毛片| 亚洲成人久久性| 丝袜人妻中文字幕| 免费av不卡在线播放| 少妇裸体淫交视频免费看高清| 国产精品电影一区二区三区| 国产av不卡久久| 午夜久久久久精精品| 午夜福利欧美成人| av片东京热男人的天堂| www.自偷自拍.com| 一进一出抽搐动态| 亚洲专区中文字幕在线| 国产精品美女特级片免费视频播放器 | 18禁美女被吸乳视频| 免费一级毛片在线播放高清视频| 床上黄色一级片| 亚洲男人的天堂狠狠| 亚洲精品一区av在线观看| 一级作爱视频免费观看| 亚洲成人久久性| 嫁个100分男人电影在线观看| 国产毛片a区久久久久| 亚洲性夜色夜夜综合| 成人一区二区视频在线观看| 亚洲精品美女久久av网站| 国产 一区 欧美 日韩| 国产高清激情床上av| 久久精品国产99精品国产亚洲性色| www.自偷自拍.com| 热99re8久久精品国产| 日本黄大片高清| www.www免费av| 国产精品国产高清国产av| 国产精品av久久久久免费| 免费一级毛片在线播放高清视频| 久久香蕉国产精品| 一级毛片精品| 亚洲精品国产精品久久久不卡| 最新美女视频免费是黄的| 婷婷六月久久综合丁香| www.熟女人妻精品国产| 色综合亚洲欧美另类图片| 色av中文字幕| 亚洲片人在线观看| 国产成人啪精品午夜网站| 精华霜和精华液先用哪个| 欧美丝袜亚洲另类 | 欧美中文综合在线视频| 国产精品av视频在线免费观看| 亚洲第一欧美日韩一区二区三区| 成人三级黄色视频| 免费在线观看成人毛片| 国产三级在线视频| www国产在线视频色| 免费看a级黄色片| 久久这里只有精品19| 国产精品综合久久久久久久免费| 后天国语完整版免费观看| 全区人妻精品视频| 这个男人来自地球电影免费观看| 亚洲成人免费电影在线观看| 久久九九热精品免费| 黑人巨大精品欧美一区二区mp4| 天天躁日日操中文字幕| 在线观看66精品国产| 老鸭窝网址在线观看| 成年版毛片免费区| 中国美女看黄片| 激情在线观看视频在线高清| 国产成人精品无人区| 亚洲欧美日韩东京热| 一个人免费在线观看电影 | 18美女黄网站色大片免费观看| 老熟妇乱子伦视频在线观看| 午夜福利在线观看吧| 一个人看的www免费观看视频| 亚洲国产精品成人综合色| 国产精品99久久久久久久久| 天堂动漫精品| 欧美极品一区二区三区四区| 中文在线观看免费www的网站| 真人做人爱边吃奶动态| 日韩欧美精品v在线| 国模一区二区三区四区视频 | 亚洲激情在线av| 成人18禁在线播放| 色吧在线观看| 精品一区二区三区av网在线观看| 变态另类丝袜制服| 小蜜桃在线观看免费完整版高清| 俄罗斯特黄特色一大片| 天天一区二区日本电影三级| 搡老妇女老女人老熟妇| 欧美不卡视频在线免费观看| 男女视频在线观看网站免费| 熟女电影av网| 真人一进一出gif抽搐免费| 1000部很黄的大片| 精品无人区乱码1区二区| 亚洲精品在线观看二区| 国产单亲对白刺激| 午夜福利欧美成人| 国产人伦9x9x在线观看| 国产欧美日韩精品亚洲av| 免费观看精品视频网站| 国产精品爽爽va在线观看网站| 亚洲av成人一区二区三| 国产黄色小视频在线观看| 在线十欧美十亚洲十日本专区| 欧美成人性av电影在线观看| 国产黄片美女视频| 丝袜人妻中文字幕| 99久久久亚洲精品蜜臀av| 成人av在线播放网站| 伊人久久大香线蕉亚洲五| 99热6这里只有精品| 婷婷精品国产亚洲av在线| 日本黄色片子视频| 国产真人三级小视频在线观看| 亚洲avbb在线观看| 欧美午夜高清在线| 欧美最黄视频在线播放免费| 天天添夜夜摸| 国产毛片a区久久久久| 中亚洲国语对白在线视频| 变态另类成人亚洲欧美熟女| 久久久色成人| 亚洲精品在线观看二区| 老司机福利观看| 久久婷婷人人爽人人干人人爱| 欧美大码av| 十八禁网站免费在线| 99久久精品一区二区三区| 中文字幕熟女人妻在线| 久久久久国产精品人妻aⅴ院| 欧美zozozo另类| 亚洲欧美精品综合一区二区三区| 久久久久久久精品吃奶| 亚洲成人免费电影在线观看| 熟女人妻精品中文字幕| 村上凉子中文字幕在线| www.精华液| 午夜免费观看网址| 国产av麻豆久久久久久久| 一个人免费在线观看的高清视频| 不卡av一区二区三区| 男女视频在线观看网站免费| 国产极品精品免费视频能看的| 成人性生交大片免费视频hd| 最好的美女福利视频网| 精品久久久久久成人av| 久久婷婷人人爽人人干人人爱| 真实男女啪啪啪动态图| 成人特级av手机在线观看| 好看av亚洲va欧美ⅴa在| 成人午夜高清在线视频| 亚洲熟女毛片儿| 1024手机看黄色片| 人人妻人人澡欧美一区二区| 精品久久久久久成人av| 国产高清视频在线观看网站| 久久精品国产综合久久久| 欧美成人性av电影在线观看| 国产精品久久久久久久电影 | 一级毛片高清免费大全| 亚洲欧美一区二区三区黑人| 精品不卡国产一区二区三区| 欧美日韩一级在线毛片| 亚洲成人精品中文字幕电影| 久久久久精品国产欧美久久久| 亚洲国产欧洲综合997久久,| 国产亚洲精品av在线| 51午夜福利影视在线观看| 麻豆av在线久日| 欧美三级亚洲精品| 亚洲人成伊人成综合网2020| avwww免费| 黑人欧美特级aaaaaa片| 中文字幕熟女人妻在线| 成年版毛片免费区| 精品一区二区三区视频在线 | 欧美日韩乱码在线| 女同久久另类99精品国产91| 黄色片一级片一级黄色片| 美女大奶头视频| 成人18禁在线播放| 亚洲国产欧美人成| 国产毛片a区久久久久| 午夜免费激情av| 精品电影一区二区在线| 欧美一级毛片孕妇| 亚洲av免费在线观看| 日韩欧美在线乱码| 国产精品 国内视频| 1000部很黄的大片| 国产成人欧美在线观看| 黄片小视频在线播放| 麻豆一二三区av精品| 性色av乱码一区二区三区2| 国语自产精品视频在线第100页| 丝袜人妻中文字幕| 神马国产精品三级电影在线观看| 欧美另类亚洲清纯唯美| 亚洲精品美女久久av网站| 久久精品亚洲精品国产色婷小说| 一边摸一边抽搐一进一小说| 好男人电影高清在线观看| 精品日产1卡2卡| 精品乱码久久久久久99久播| 9191精品国产免费久久| 久久精品91无色码中文字幕| 亚洲专区中文字幕在线| 亚洲avbb在线观看| 国产成人福利小说| 日韩精品中文字幕看吧| 麻豆国产av国片精品| 日韩欧美精品v在线| 一本精品99久久精品77| 久久久久久大精品| 国产精品1区2区在线观看.| 久久久国产成人免费| 成人三级黄色视频| 亚洲在线观看片| 亚洲九九香蕉| 午夜两性在线视频| 亚洲成a人片在线一区二区| 久久久成人免费电影| 麻豆一二三区av精品| 欧美在线一区亚洲| 老熟妇仑乱视频hdxx| 婷婷丁香在线五月| 哪里可以看免费的av片| 欧美激情久久久久久爽电影| 麻豆成人午夜福利视频| 美女大奶头视频| 久久久久久久久免费视频了| 国产精品av久久久久免费| 九九在线视频观看精品| e午夜精品久久久久久久| 午夜免费观看网址| 搡老熟女国产l中国老女人| 又大又爽又粗| 国产av在哪里看| 天堂影院成人在线观看| av在线天堂中文字幕| 99视频精品全部免费 在线 | 搡老岳熟女国产| 亚洲男人的天堂狠狠| 国产免费av片在线观看野外av| 欧美成人免费av一区二区三区| 黑人操中国人逼视频| 露出奶头的视频| 日韩国内少妇激情av| 香蕉丝袜av| 亚洲专区国产一区二区| 露出奶头的视频| www日本在线高清视频| 欧美zozozo另类| 成人欧美大片| 久久久久久久午夜电影| 色综合婷婷激情| 91在线精品国自产拍蜜月 | 久9热在线精品视频| 大型黄色视频在线免费观看| 又大又爽又粗| 日韩欧美 国产精品| x7x7x7水蜜桃| 国产一区在线观看成人免费| 日韩欧美国产在线观看| 国产蜜桃级精品一区二区三区| 制服人妻中文乱码| 国产一区二区激情短视频| 特级一级黄色大片| 在线观看午夜福利视频| 国产一区二区三区视频了| 狂野欧美白嫩少妇大欣赏| 午夜免费成人在线视频| 免费看日本二区| 99re在线观看精品视频| 日韩欧美在线二视频| 他把我摸到了高潮在线观看| 亚洲一区高清亚洲精品| 在线观看一区二区三区| 国产久久久一区二区三区| 国产精品av视频在线免费观看| 老司机午夜十八禁免费视频| 久久人人精品亚洲av| 欧美日韩亚洲国产一区二区在线观看| 久久婷婷人人爽人人干人人爱| 伦理电影免费视频| 一二三四社区在线视频社区8| 免费观看精品视频网站| 亚洲av日韩精品久久久久久密| 99久久99久久久精品蜜桃| 叶爱在线成人免费视频播放| 亚洲国产精品合色在线| 这个男人来自地球电影免费观看| 我的老师免费观看完整版| 亚洲人成伊人成综合网2020| 搡老岳熟女国产| 国产av一区在线观看免费| 男女床上黄色一级片免费看| 少妇的逼水好多| 两个人视频免费观看高清| 黄色成人免费大全| 久9热在线精品视频| 日韩精品青青久久久久久| 亚洲第一欧美日韩一区二区三区| 国产精品久久久人人做人人爽| 怎么达到女性高潮| 极品教师在线免费播放| 亚洲色图av天堂| 久久久色成人| 最好的美女福利视频网| 蜜桃久久精品国产亚洲av| 精品乱码久久久久久99久播| 亚洲av中文字字幕乱码综合| 一个人免费在线观看电影 | 亚洲av熟女| 国产一区二区三区视频了| 又爽又黄无遮挡网站| 国产精品免费一区二区三区在线| 免费一级毛片在线播放高清视频| 在线观看美女被高潮喷水网站 | 免费观看精品视频网站| 亚洲五月天丁香| 人人妻人人澡欧美一区二区| 免费观看精品视频网站| 欧美成人一区二区免费高清观看 | 国产高清videossex| 精品免费久久久久久久清纯| 91字幕亚洲| 精品久久久久久久久久免费视频| 亚洲av熟女| 2021天堂中文幕一二区在线观| 啦啦啦韩国在线观看视频| 日本 欧美在线|