• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      ARF和Aux/IAA調(diào)控果實(shí)發(fā)育成熟機(jī)制研究進(jìn)展

      2018-01-08 08:58:16胡曉侯旭袁雪管丹劉悅萍
      生物技術(shù)通報(bào) 2017年12期
      關(guān)鍵詞:生長(zhǎng)素信號(hào)轉(zhuǎn)導(dǎo)突變體

      胡曉 侯旭 袁雪 管丹 劉悅萍,3

      (1. 北京農(nóng)學(xué)院植物科學(xué)技術(shù)學(xué)院,北京 102206;2. 北京農(nóng)學(xué)院生物科學(xué)與工程學(xué)院,北京 102206;3. 北京林果業(yè)生態(tài)環(huán)境功能提升協(xié)同創(chuàng)新中心,北京 102206)

      ARF和Aux/IAA調(diào)控果實(shí)發(fā)育成熟機(jī)制研究進(jìn)展

      胡曉1侯旭2袁雪2管丹1劉悅萍2,3

      (1. 北京農(nóng)學(xué)院植物科學(xué)技術(shù)學(xué)院,北京 102206;2. 北京農(nóng)學(xué)院生物科學(xué)與工程學(xué)院,北京 102206;3. 北京林果業(yè)生態(tài)環(huán)境功能提升協(xié)同創(chuàng)新中心,北京 102206)

      生長(zhǎng)素是調(diào)控果實(shí)發(fā)育成熟的重要植物激素之一。在生長(zhǎng)素介導(dǎo)的信號(hào)轉(zhuǎn)導(dǎo)機(jī)制中,ARF和Aux/IAA扮演重要的角色。ARF與生長(zhǎng)素響應(yīng)基因啟動(dòng)子區(qū)域內(nèi)的生長(zhǎng)素響應(yīng)元件結(jié)合,促進(jìn)或抑制基因的表達(dá)。Aux/IAA通過結(jié)構(gòu)域Ⅲ和Ⅳ與ARF特異性結(jié)合,從而調(diào)節(jié)生長(zhǎng)素早期應(yīng)答基因的轉(zhuǎn)錄功能。研究表明,ARF因子參與調(diào)控果實(shí)形態(tài)發(fā)育、硬度和糖分積累等,Aux/IAA因子在授粉、果實(shí)形態(tài)發(fā)育等方面作用明顯。此外ARF和Aux/IAA之間相互或與自身發(fā)生的互作以調(diào)控下游基因表達(dá)是植物體響應(yīng)生長(zhǎng)素信號(hào)的主要機(jī)制。介紹了ARF和Aux/IAA的結(jié)構(gòu)特征、在不同植物中的分布狀況以及與果實(shí)發(fā)育成熟的關(guān)系,同時(shí)討論了ARF和Aux/IAA互作的研究現(xiàn)狀,旨為進(jìn)一步闡明生長(zhǎng)素調(diào)控果實(shí)發(fā)育成熟的機(jī)制提供參考。

      ARF;Aux/IAA;果實(shí);發(fā)育與成熟;調(diào)控機(jī)制

      生長(zhǎng)素(Auxin)是第一個(gè)被發(fā)現(xiàn)的植物激素,其能促進(jìn)植物細(xì)胞的膨大,引起植物向性生長(zhǎng),參與植物組織器官的形成及果實(shí)的發(fā)育成熟等,在植物響應(yīng)逆境脅迫過程中發(fā)揮重要的調(diào)控作用[1]。

      目前研究表明,生長(zhǎng)素引起植物生理反應(yīng)的細(xì)胞信號(hào)轉(zhuǎn)導(dǎo)途徑既有直接作用機(jī)制,也存在分子上的調(diào)控。參與生長(zhǎng)素調(diào)節(jié)轉(zhuǎn)錄過程的一系列基因叫做原初生長(zhǎng)素反應(yīng)基因,已知的這類基因包括3個(gè)基 因 家 族 Aux/IAA(Auxin/indole acetic acid),GH3(Gretchen Hagen3)和 SAUR(Small auxin up RNA),它們的啟動(dòng)子上游均含有的保守序列“TGTCTC”,該序列被稱之為生長(zhǎng)素響應(yīng)原件(AuxREs)[2-3]。生長(zhǎng)素響應(yīng)因子(Auxin response factors,ARF)是一類能夠識(shí)別并與AuxREs結(jié)合,調(diào)控生長(zhǎng)素響應(yīng)基因表達(dá)的轉(zhuǎn)錄因子[3]。ARF調(diào)節(jié)基因的表達(dá)決定其結(jié)構(gòu)存在的狀態(tài),其可與其它的ARF或生長(zhǎng)素阻遏 蛋 白(Auxin/Indole-3-Acetic Acid,Aux/IAA) 形成二聚體,阻遏ARF的轉(zhuǎn)錄活性[4]。在生長(zhǎng)素信號(hào)轉(zhuǎn)導(dǎo)過程中,當(dāng)內(nèi)源生長(zhǎng)素濃度增高時(shí),生長(zhǎng)素與受體TIR1/AFBs(Transport inhibitor resistant/Auxin signaling Fbox)結(jié)合后,使TIR1易于結(jié)合AUX/IAA蛋白并誘導(dǎo)發(fā)生泛素化反應(yīng),在26S蛋白酶降解作用下ARF被釋放,開啟對(duì)下游基因的調(diào)控作用(圖1)[5]。ARF與Aux/IAA是生長(zhǎng)素的信號(hào)轉(zhuǎn)導(dǎo)途徑中的重要因子,其在植物體內(nèi)廣泛存在(表1),并對(duì)一些生理過程發(fā)揮著重要的調(diào)控作用。

      本文將對(duì)生長(zhǎng)素信號(hào)轉(zhuǎn)導(dǎo)相關(guān)因子ARF和Aux/IAA在果實(shí)成熟發(fā)育過程中的調(diào)控作用以及因子間相互作用的研究進(jìn)展進(jìn)行概述,以期為生長(zhǎng)素調(diào)控果實(shí)發(fā)育成熟的分子機(jī)制研究提供參考。

      表1 ARF與Aux/IAA家族成員在各物種中的分布

      1 生長(zhǎng)素響應(yīng)因子ARF

      1.1 ARFs因子的結(jié)構(gòu)

      一個(gè)典型的ARF因子由N-末端保守的DNA結(jié)合域(DNA-binding domain,DBD),C-末端保守的二聚體結(jié)合域(Dimerization domain,CTD)以及中間非保守序列(MR)組成(圖1)。其蛋白分子量一般在67-129 kD。其中,DBD結(jié)合于生長(zhǎng)素響應(yīng)基因上游的生長(zhǎng)素響應(yīng)元件[3],CTD結(jié)構(gòu)域在由于組成上與Aux/IAA結(jié)構(gòu)域Ⅲ、Ⅳ的相似性很高因此可與之結(jié)合[26]。MR的氨基酸序列可以決定ARFs轉(zhuǎn)錄因子對(duì)下游基因的激活或者抑制活性,如果富含谷氨酰胺,其ARF因子具有激活功能,如擬南芥AtARF5、6、7、8、9和19;如果富含脯氨酸、蘇氨酸和絲氨酸,其ARF因子則為轉(zhuǎn)錄抑制子,如擬南芥AtARF1、2、4和9[27]。此外,有小部分ARF因子結(jié)構(gòu)不包含CTD結(jié)構(gòu)域,如擬南芥AtARF3、13和17[3],這類因子的功能尚未深入研究。

      1.2 ARFs因子在果實(shí)發(fā)育成熟過程中的功能

      ARF因子在植物組織內(nèi)普遍表達(dá),且具有時(shí)空特異性[25]。研究表明擬南芥 AtARF2、3、5-8、17和19分別參與調(diào)控植物體形態(tài)生長(zhǎng),如頂芽形成、花粉壁合成、維管束發(fā)育、下胚軸向性運(yùn)動(dòng)、不定根形態(tài)建成等[28-33]。在植物激素信號(hào)轉(zhuǎn)導(dǎo)方面,AtARF2和AtARF19被認(rèn)為是生長(zhǎng)素和乙烯信號(hào)的關(guān)鍵位點(diǎn),JAZ/TAFY10A的表達(dá)在被茉莉酸(Jasmonic acid,JA)誘導(dǎo)的同時(shí)受生長(zhǎng)素響應(yīng)因子AtARF6和AtARF8控制[29]。在維管束發(fā)育方面,AtARF5等位基因monopteros(mp)的強(qiáng)mp突變體與弱mp突變體均導(dǎo)致植株維管束發(fā)育紊亂,無效mp基因具有致死效應(yīng)[34-35]。有研究表明,AtARF5可直接調(diào)節(jié)AtARR7和AtARR15參與維持頂端分生組織發(fā)育,可調(diào)控AtATHB8影響葉片維管束組織的結(jié)構(gòu)[36-37]。劉振華等[25]總結(jié)了大量的研究成果,發(fā)現(xiàn)ARF sister pair基因雙突變的表型往往比單突變要強(qiáng),這證明了ARF因子在功能上的冗余性。

      圖1 生長(zhǎng)素信號(hào)轉(zhuǎn)導(dǎo)途徑[25]

      ARF對(duì)果實(shí)成熟發(fā)育調(diào)控的研究多集中于番茄。迄今為止,番茄中共發(fā)現(xiàn)有21個(gè)ARF因子[38],其中SlARF3、5、6、13、16和17在花、果實(shí)發(fā)育的綠熟期與紅熟期表達(dá)較高,SlARF1、2、4、7、8、11 和 14在綠熟期時(shí)期表達(dá)較高[14]。在果實(shí)形態(tài)發(fā)育方面,Goetz等[39-40]發(fā)現(xiàn)抑制SlARF8表達(dá)的單性結(jié)實(shí)植株突變體果實(shí)比普通單性結(jié)實(shí)植株果實(shí)直徑明顯增加,推測(cè)SlARF8因子可能是番茄果實(shí)膨大的重要負(fù)調(diào)控因子,且該研究結(jié)果在擬南芥與茄子中也得到了驗(yàn)證。此外,SlARF7被證明也是果實(shí)發(fā)育初期的負(fù)調(diào)控子[41]。在果實(shí)糖分積累方面,Sagar等[42-43]發(fā)現(xiàn)抑制SlARF4表達(dá)可釋放SlGLK1基因表達(dá)并誘導(dǎo)葉綠素大量合成最終促進(jìn)果實(shí)的糖分積累,且在SlGLK1基因啟動(dòng)子區(qū)域發(fā)現(xiàn)AuxREs結(jié)構(gòu),推測(cè)SlARF4為該因子的負(fù)調(diào)控因子。此外,有研究推測(cè)SlARF4還與番茄細(xì)胞壁結(jié)構(gòu)建成相關(guān)。在花器官發(fā)育中,擬南芥AtARF6、AtARF8參與調(diào)控JA合成及花器官成熟,AtARF17參與調(diào)控果實(shí)發(fā)育并且與胚授粉密切相關(guān)[44]。此外,在乙烯信號(hào)轉(zhuǎn)導(dǎo)途徑中,ARF因子同樣參與調(diào)控。乙烯(Ethylene)被認(rèn)為是調(diào)控果實(shí)成熟的主要植物激素,木瓜中乙烯信號(hào)轉(zhuǎn)導(dǎo)因子CpETR1和CpETR2以及乙烯合成因子CpACS1、CpACS2和 CpACO1的啟動(dòng)子區(qū)域均發(fā)現(xiàn)了 AuxREs結(jié)構(gòu)[22]。

      ARF因子在其它果實(shí)發(fā)育中的研究也取得了一定進(jìn)展。甜橙(Citrus sinensis)基因組中篩選出19個(gè)ARF因子,通過不同組織部位轉(zhuǎn)錄水平的檢測(cè),CsARF8和12在發(fā)育后期果實(shí)中表達(dá)顯著[21]。木瓜(Carica papaya L.)中共篩選出11個(gè)ARF成員,其中CpARF1在果實(shí)發(fā)育過程中的表達(dá)顯著增加[22]。蘋果(Malus domestica Borkh)中也檢測(cè)到共計(jì)29個(gè)ARF編碼基因[45]。桃(Prunus persicae L.)基因組中篩選出了18個(gè)ARFs編碼基因,其中大部分ARF因子在桃的組織部位廣泛存在,個(gè)別ARF因子的表達(dá)部位具有局限性,如PpARF13和16在根與莖中沒有表達(dá),PpARF5僅在果實(shí)中表達(dá)[19]。我們實(shí)驗(yàn)室發(fā)現(xiàn)‘晚 24 號(hào)’桃在硬核期PpARF1表達(dá)量明顯上調(diào)。由于在果實(shí)硬核期中果皮生長(zhǎng)基本停滯,養(yǎng)分大量向種子中的胚和胚乳集中[46],因此推測(cè)該因子可能與桃胚形態(tài)建成以及內(nèi)果皮木質(zhì)化密切相關(guān),此外有研究推測(cè)PpARF6因子參與調(diào)控果實(shí)花色素苷積累[20,47]。

      2 生長(zhǎng)素/吲哚乙酸蛋白Aux/IAA

      2.1 Aux/IAAs因子的結(jié)構(gòu)

      Aux/IAAs因子是一類半衰期較短的核蛋白,普遍包含4個(gè)保守的結(jié)構(gòu)域(圖1)[4,48]。結(jié)構(gòu)域I中含有保守的亮氨酸序列(LxLxLx),乙烯信號(hào)阻遏蛋白(EAR)中也存在類似結(jié)構(gòu),該序列賦予Aux/IAA轉(zhuǎn)錄抑制子的特性,但抑制效力與LxLxLx序列的成分無明確規(guī)律[15,49]。結(jié)構(gòu)域II包含13個(gè)氨基酸,序列高度保守。在信號(hào)轉(zhuǎn)導(dǎo)過程中生長(zhǎng)素受體TIR1與結(jié)構(gòu)域II結(jié)合引起Aux/IAA因子泛素化降解,從而調(diào)控下游基因的表達(dá)[3,5,26]。結(jié)構(gòu)域Ⅲ、Ⅳ具有ARFs蛋白CTD的同源結(jié)構(gòu)域,主要負(fù)責(zé)Aux/IAA蛋白自身的二聚化和多聚化以及與ARFs的二聚化,從而抑制生長(zhǎng)素反應(yīng)基因的轉(zhuǎn)錄。然而,有個(gè)別非典型性Aux/IAA因子缺失部分結(jié)構(gòu)域,這類因子普遍表達(dá)量較低且受束性較強(qiáng)。如番茄SlIAA33同時(shí)缺失結(jié)構(gòu)域I與II,目前在各個(gè)組織部位均未能有效檢測(cè)到該因子的mRNA;SlIAA32缺失轉(zhuǎn)錄抑制功能的結(jié)構(gòu)域II,僅在番茄“轉(zhuǎn)色期”發(fā)現(xiàn)該因子的生長(zhǎng)素信號(hào)抑制活性,目前該因子尚未研究透徹[15];擬南芥AtIAA20和AtIAA31被發(fā)現(xiàn)缺失結(jié)構(gòu)域II,經(jīng)檢測(cè)這兩個(gè)因子的半衰期長(zhǎng)于其他結(jié)構(gòu)完整的擬南芥Aux/IAA因子[50]。在功能方面,目前人們普遍認(rèn)為Aux/IAA具有轉(zhuǎn)錄調(diào)控和參與組成生長(zhǎng)素信號(hào)轉(zhuǎn)導(dǎo)復(fù)合體兩種作用。

      2.2 Aux/IAAs在果實(shí)發(fā)育成熟過程中的功能

      Aux/IAA因子在植物發(fā)育過程中起重要調(diào)控作用,其作用主要包括向性生長(zhǎng),細(xì)胞伸長(zhǎng)、分裂,根毛、維管組織的發(fā)育,以及花、果和種子的形態(tài)建成等[2,51]。擬南芥 AtIAA12突變體 iaa12/bdl-1的根系發(fā)育不良[52]。AtIAA-28表達(dá)抑制突變體IAA28-1表現(xiàn)出側(cè)根生長(zhǎng)旺盛,頂端優(yōu)勢(shì)缺失等與生長(zhǎng)素關(guān)聯(lián)表型的變異[53]。AtIAA-1抑制型突變體axr5-1、番茄突變體 SlIAA3[54]與馬鈴薯突變體 StIAA2[55]的植株,其根系生長(zhǎng)與向性運(yùn)動(dòng)均發(fā)生異常[56]。

      Aux/IAAs在果實(shí)發(fā)育中有重要的調(diào)控作用。在果實(shí)形態(tài)發(fā)育方面,番茄SlIAA9表達(dá)抑制型突變體植株的復(fù)合葉片被簡(jiǎn)單葉片所替代,果實(shí)發(fā)育順序發(fā)生顛倒從而產(chǎn)生單性結(jié)實(shí)的果實(shí)[57]。SlIAA9在轉(zhuǎn)色期與紅熟期時(shí)期高效表達(dá),如沉默該因子的表達(dá)將會(huì)導(dǎo)致番茄單性結(jié)實(shí)[15,51]。沉默SlIAA27可導(dǎo)致花粉與胚珠的生育能力明顯降低,果實(shí)變小且胎座增大[58]。SlIAA17的組織定位結(jié)果揭示該基因在果肉中大量出現(xiàn),沉默該基因后突變體果實(shí)較野生型果實(shí)明顯增大,揭示該基因可能與果肉增厚有關(guān)[59]。SlIAA3隨著番茄果實(shí)發(fā)育表達(dá)量逐步提升,在轉(zhuǎn)色期對(duì)果實(shí)噴施乙烯信號(hào)阻遏劑1-MCP能顯著抑制SlIAA3的表達(dá),說明該基因還受到乙烯信號(hào)的調(diào)控[57]。在果實(shí)發(fā)育過程中,Aux/IAA的表達(dá)量變化差異明顯。通過對(duì)草莓發(fā)育過程中FaAIAA1與FaIAA2的表達(dá)量進(jìn)行檢測(cè),發(fā)現(xiàn)這兩個(gè)基因在小綠期和白果期時(shí)期表達(dá)量較高,大綠期時(shí)期表達(dá)量最低,而FaIAA2在小綠期時(shí)期表達(dá)量最高,且隨著發(fā)育進(jìn)程的推進(jìn)表達(dá)量逐步下降[60]。本實(shí)驗(yàn)室對(duì)桃Aux/IAA家族進(jìn)行了鑒定與果實(shí)發(fā)育中的表達(dá)分析,結(jié)果顯示PpIAA3和PpIAA17在桃果實(shí)成熟期中果皮的表達(dá)量顯著升高,PpIAA26、PpIAA29 Z種子中的表達(dá)量顯著提高,表明以上4個(gè)因子在桃果實(shí)硬核期具有重要的調(diào)控作用[47]。由于PpIAA17與SlIAA17同源性較高,推測(cè)該因子也可能具有促進(jìn)果實(shí)膨大的功能[59]。此外,史夢(mèng)雅等認(rèn)為PpIAA17還與桃內(nèi)果皮在硬核期的木質(zhì)化相關(guān)[29]。PpIAA3與SlIAA3在果實(shí)發(fā)育進(jìn)程中的表達(dá)模式相似,推測(cè)兩因子在果實(shí)發(fā)育也具有相似的調(diào)控功能[57]。Aux/IAA因子在植物體響應(yīng)逆境脅迫的過程中也參與了重要的信號(hào)傳導(dǎo)作用。經(jīng)實(shí)驗(yàn)證實(shí),擬南芥DREB/CBF家族可激活A(yù)tIAA5和AtIAA19表達(dá)以響應(yīng)非生物脅迫,在IAAs基因表達(dá)抑制型突變體植株的抗逆性顯著降低。該研究推測(cè),Aux/IAA是協(xié)調(diào)植物響應(yīng)脅迫以及生長(zhǎng)素介導(dǎo)的調(diào)控網(wǎng)絡(luò)的關(guān)鍵因子,為維持植物體穩(wěn)定發(fā)育發(fā)揮重要的調(diào)控功能[61]。

      3 ARF與Aux/IAA的互作調(diào)控

      目前普遍認(rèn)為ARF與Aux/IAA因子間通過CTD結(jié)構(gòu)域構(gòu)成特定二聚體或直接形成二聚體調(diào)控下游基因表達(dá),ARF因子自身也可直接調(diào)控下游基因表達(dá)[3-4]。生長(zhǎng)素信號(hào)阻遏蛋白Aux/IAA結(jié)合并抑制ARF的轉(zhuǎn)錄調(diào)控活性是植物體響應(yīng)生長(zhǎng)素信號(hào)的主要機(jī)制[4,32,62]。近期在小立碗蘚(Physcomitrella patens)的研究證實(shí)了生長(zhǎng)素通過Aux/IAA影響ARF最終對(duì)下游基因進(jìn)行調(diào)控這一機(jī)制,并發(fā)現(xiàn)了Aux/IAA對(duì)生長(zhǎng)素信號(hào)的響應(yīng)的專一性[63]。

      近年來,基于互作模擬軟件(Cytoscape,http://www.cytoscape.org)、酵母雙雜交技術(shù)(Yeast two hybrid)與雙分子熒光互補(bǔ)技術(shù)(Bimolecular fluorescence complementation,BiFC), 在 挖 掘 Aux/IAA-ARF互作關(guān)系上取得了一定的研究成果[27],目前以擬南芥、水稻及番茄等物種的研究居多。ARF與Aux/IAA互作網(wǎng)絡(luò)非常復(fù)雜,有研究通過整合共表達(dá)圖譜與蛋白-蛋白互作數(shù)據(jù)發(fā)現(xiàn)多達(dá)70%的ARF與Aux/IAA因子存在相互作用的可能性[64]。目前,擬南芥中共發(fā)現(xiàn)213對(duì)互作關(guān)系,水稻中8個(gè)ARF因子與15個(gè)Aux/IAA因子間可相互作用,推測(cè)番茄SlARF2A至少可與5個(gè)Aux/IAA因子互作,SlARF7A與SlARF16推測(cè)至少可與11個(gè)Aux/IAA因子互作[64-65]。在互作方式上,除了典型的ARFAux/IAA二聚體,還存在ARF-ARF和Aux/IAAAux/IAA的互作模式,但目前研究尚不深入[27]。不同ARF-Aux/IAA組合功能各異[66]。有實(shí)驗(yàn)表明擬南 芥 AtIAA3-AtARF7、AtIAA19-AtARF7、AtIAA17-AtARF1和 AtIAA8-AtARFs(AtARF7、11、16及19)互作單元分別參與子葉下胚軸及根系發(fā)育調(diào)控[67-68]。AtARF6和8與一些Aux/IAA因子僅在發(fā)育中的花與花芽組織內(nèi)互作,這表明ARF-Aux/IAA的互作具有組織特異性[64]。番茄SlARF5在成熟期表達(dá)量最高,該因子可與已證實(shí)的成熟相關(guān)因子SlIAA3發(fā)生互作[69]。此外SlARF7A-SlIAA8互作在番茄果實(shí)綠熟期的作用同樣值得矚目[69]。通過整合現(xiàn)有研究結(jié)果,劉振華等推測(cè)雖然ARF和Aux/IAA的互作網(wǎng)絡(luò)非常復(fù)雜,但在特定的發(fā)育時(shí)期存在一對(duì)或幾對(duì)優(yōu)勢(shì)組合起主要作用,其他組合起輔助作用[26]。迄今為止,ARF和Aux/IAA的互作研究在果實(shí)發(fā)育中依然存在較大空白。

      在植物體的生長(zhǎng)素信號(hào)轉(zhuǎn)導(dǎo)過程中還存在ARF與Aux/IAA參與的其他信號(hào)轉(zhuǎn)導(dǎo)途徑。ETT因子(隸屬于擬南芥ARF家族)缺失與Aux/IAA結(jié)合的關(guān)鍵結(jié)構(gòu)域PBI,但依然在在雌蕊頂部具有生長(zhǎng)素調(diào)節(jié)作用。經(jīng)研究表明,ETT因子可與一類受生長(zhǎng)素直接調(diào)控的具有典型堿性螺旋(bHLH)結(jié)構(gòu)的轉(zhuǎn)錄因子IND(TF)發(fā)生互作,使之不需要通過泛素化途徑就可響應(yīng)生長(zhǎng)素調(diào)控。該研究中,ETT-TE途徑被認(rèn)為有助于加快Aux/IAA因子的重新合成,重置生長(zhǎng)素對(duì)下游基因的影響[70]。

      4 展望

      生長(zhǎng)素信號(hào)轉(zhuǎn)導(dǎo)相關(guān)因子ARF和Aux/IAA在生長(zhǎng)素介導(dǎo)的果實(shí)發(fā)育過程中具有非常重要的調(diào)控作用,包括果實(shí)與種子的形態(tài)建成、果肉膨大和糖分積累等。迄今為止,對(duì)ARF、Aux/IAA在果實(shí)發(fā)育中的調(diào)控方式與生物學(xué)功能方面的探究取得了一些進(jìn)展,但是多集中于番茄與草莓等草本植物的轉(zhuǎn)基因植株層面,而對(duì)具體生理指標(biāo)相關(guān)基因的調(diào)控方面研究較為匱乏,因此具有廣闊的研究前景。

      此外,ARF與Aux/IAA的調(diào)控功能在核果類果樹中的研究較少。其主要原因?yàn)楹斯惞麡涞霓D(zhuǎn)化體系尚未構(gòu)建完全,進(jìn)行ARF與Aux/IAA因子的基因功能驗(yàn)證比較困難。因此,目前在探究該類果實(shí)的ARF與Aux/IAA因子功能時(shí),可根據(jù)果實(shí)生長(zhǎng)類型,探究其在模式植物中的調(diào)控作用以及果實(shí)發(fā)育過程中轉(zhuǎn)錄水平的變化趨勢(shì),經(jīng)過體外互作實(shí)驗(yàn)等,對(duì)這些因子的功能及作用進(jìn)行相關(guān)研究。

      在ARF-Aux/IAA互作方面,其復(fù)雜的互作關(guān)系賦予了生長(zhǎng)素多樣的調(diào)控功能和不同的調(diào)控方式。目前,有多種成熟的實(shí)驗(yàn)技術(shù)可以對(duì)蛋白互作關(guān)系進(jìn)行研究,然而由于ARF與Aux/IAA本身互作組合數(shù)量比較龐大,且在大部分物種中的功能尚未研究透徹,以致ARF與Aux/IAA互作關(guān)系網(wǎng)絡(luò)的構(gòu)建與調(diào)控方式的闡明需要更為深入的研究。

      [1]Kazan K, Manners JM. Linking development to defense:auxin in plant-pathogen interactions[J]. Trends in Plant Science, 2009, 14(7):373-382.

      [2]Guilfoyle TJ. Aux/IAA proteins and auxin signal transduction[J].Trends in Plant Science, 1998, 3(6):205-207.

      [3]Guilfoyle TJ, Hagen G. Auxin response factors[J]. Journal of Plant Growth Regulation, 2001, 10(3):453-460.

      [4]Shiv B. Tiwari GHTG. The roles of auxin response factor domains in auxin-responsive transcription[J]. Plant Cell, 2003, 15(2):533-543.

      [5]Woodward AW, Bartel B. Auxin:regulation, action, and interaction[J]. Annals of Botany, 2005, 95(5):707-735.

      [6]Guilfoyle TJ. Chapter 19 - Auxin-regulated genes and promoters[J]. New Comprehensive Biochemistry, 1999, 33 :423-459.

      [7]Wang D, Pei K, Fu Y, et al. Genome-wide analysis of the auxin response factors(ARF)gene family in rice(Oryza sativa)[J].Gene, 2007, 394(2):13-24.

      [8]Thakur JK, Jain M, Tyagi AK, et al. Exogenous auxin enhances the degradation of a light down-regulated and nuclear-localized OsIAA1,an AUX/IAA protein from rice, via proteasome[J]. Biochimica Et Biophysica Acta, 2005, 1730(3):196-205.

      [9]Van HaC, Le DT, Nishiyama R, et al. The auxin response factor transcription factor family in soybean:genome-wide identification and expression analyses during development and water stress[J].DNA Research, 2013, 20(5):511-524.

      [10]Singh VK, Jain M. Genome-wide survey and comprehensive expression profiling of Aux/IAA gene family in chickpea and soybean[J]. Frontiers in Plant Science, 2015, 6:918.

      [11]Kalluri UC, Difazio SP, Brunner A M, et al. Genome-wide analysis of Aux/IAA and ARF gene families in Populus trichocarpa[J].BMC Plant Biology, 2007, 7(1):59.

      [12]Liu SQ, Hu LF. Genome-wide analysis of the auxin response factor gene family in cucumber[J]. Genetics & Molecular Research Gmr, 2013, 12(4):4317-4331.

      [13]王壘, 婁麗娜, 閆立英, 等. 黃瓜果實(shí)發(fā)育早期Aux/IAA家族部分基因的差異表達(dá)分析[J]. 南京農(nóng)業(yè)大學(xué)學(xué)報(bào), 2011, 34(4):13-17.

      [14]Kumar R, Tyagi AK, Sharma AK. Genome-wide analysis of auxin response factor(ARF)gene family from tomato and analysis of their role in flower and fruit development[J]. Molecular Genetics and Genomics, 2011, 285(3):245-260.

      [15]Audrandelalande C, Bassa C, Mila I, et al. Genome-wide identification, functional analysis and expression profiling of the Aux/IAA gene family in tomato[J]. Plant & Cell Physiology,2012, 53(4):659-672.

      [16]Xie R, Pang S, Ma Y, et al. The ARF, AUX/IAA and GH3 gene families in citrus:genome-wide identification and expression analysis during fruitlet drop from abscission zone A[J].Molecular Genetics and Genomics, 2015, 290(6):2089-2105.

      [17]Wan S, Li W, Zhu Y, et al. Genome-wide identification,characterization and expression analysis of the auxin response factor gene family in Vitis vinifera[J]. Plant Cell Reports, 2014,33(8):1365-1375.

      [18]?akir B, Kili?kaya O, Olcay A C. Genome-wide analysis of Aux/IAA genes in Vitis vinifera:cloning and expression profiling of a grape Aux/IAA gene in response to phytohormone and abiotic stresses[J]. Acta Physiologiae Plantarum, 2013, 35(2):365-377.

      [19]Li H, Ran K, Sun Q. Genome-wide identification and expression analysis of peach auxin response factor gene families[J]. Journal of Plant Biochemistry & Biotechnology, 2016, 25(4):1-9.

      [20]焦云, 馬瑞娟, 沈志軍, 等. 桃果實(shí)花色素苷積累與ABP1、ARF6表達(dá)分析[J]. 中國(guó)南方果樹, 2015, 44(1):12-16.

      [21]Li SB, Ouyang WZ, Hou XJ, et al. Genome-wide identification,isolation and expression analysis of auxin response factor(ARF)gene family in sweet orange(Citrus sinensis)[J]. Frontiers in Plant Science, 2015, 6:119.

      [22] Liu K, Yuan C, Li H, et al. Genome-wide identification and characterization of auxin response factor(ARF)family genes related to flower and fruit development in papaya(Carica papaya L.)[J]. Bmc Genomics, 2015, 16(1):1-12.

      [23]Hu W, Zuo J, Hou X, et al. The auxin response factor gene family in banana:genome-wide identification and expression analyses during development, ripening, and abiotic stress[J]. Frontiers in Plant Science, 2015, 6:742.

      [24]張敬虎, 潘一山, 王少峰, 等. 柚AUX/IAA基因族的基因注釋分析[J]. 福建熱作科技, 2015(4):5-11.

      [25]劉振華, 于延沖, 向鳳寧. 生長(zhǎng)素響應(yīng)因子與植物的生長(zhǎng)發(fā)育[J]. 遺傳 , 2011, 33(12):1335-1346.

      [26]Gray WM, del Pozo JC, Walker L, et al. Identification of an SCF ubiquitin-ligase complex required for auxin response in Arabidopsis thaliana[J]. Genes & Development, 1999, 13(13):1678-1691.

      [27]Vernoux T, Brunoud G, Farcot E, et al. The auxin signalling network translates dynamic input into robust patterning at the shoot apex[J]. Molecular Systems Biology, 2011, 7(1):508-508.

      [28]Hardtke CS, Ckurshumova W, Vidaurre DP, et al. Overlapping and non-redundant functions of the Arabidopsis auxin response factors MONOPTEROS and NONPHOTOTROPIC HYPOCOTYL 4[J].Development, 2004, 131(5):1089-1100.

      [29]Schruff MC, Spielman M, Tiwari S, et al. The AUXIN RESPONSE FACTOR 2 gene of Arabidopsis links auxin signalling, cell division,and the size of seeds and other organs[J]. Development, 2006,133(133):251-261.

      [30]Schlereth A, M?ller B, Liu W, et al. MONOPTEROS controls embryonic root initiation by regulating a mobile transcription factor[J]. Nature, 2010, 464(7290):913-916.

      [31]Mallory AC, Bartel B. MicroRNA-directed regulation of Arabidopsis AUXIN RESPONSE FACTOR17 is essential for proper development and modulates expression of early auxin response genes[J]. Plant Cell, 2005, 17(5):1360-1375.

      [32]Wang S, Tiwari SB, Hagen G, et al. AUXIN RESPONSE FACTOR7 restores the expression of auxin-responsive genes in mutant Arabidopsis leaf mesophyll protoplasts[J]. Plant Cell, 2005, 17(7):1979-1993.

      [33] 楊俊. 擬南芥生長(zhǎng)素響應(yīng)因子ARF17調(diào)控花粉壁模式形成[D]. 上海:上海師范大學(xué), 2013.

      [34]Przemeck GKH, Mattsson J, Hardtke CS, et al. Studies on the role of the Arabidopsis gene MONOPTEROS in vascular development and plant cell axialization[J]. Planta, 1996, 200(2):229-237.

      [35]Hardtke CS, Berleth T. The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development[J]. Embo Journal, 1998, 17(5):1405-1411.

      [36]Zhao Z, Andersen S U, Ljung K, et al. Hormonal control of the shoot stem-cell niche[J]. Nature, 2010, 465(7301):1089-1092.

      [37]Donner TJ, Sherr I, Scarpella E. Regulation of preprocambial cell state acquisition by auxin signaling in Arabidopsis leaves[J].Development, 2009, 136(19):3235-46.

      [38]Wu J, Wang F, Cheng L, et al. Identification, isolation and expression analysis of auxin response factor(ARF)genes in Solanum lycopersicum[J]. Plant Cell Reports, 2011, 30(11):2059-2073.

      [39]Goetz M, Hooper LC, Johnson SD, et al. Expression of aberrant forms of AUXIN RESPONSE FACTOR8 stimulates parthenocarpy in Arabidopsis and tomato[J]. Plant Physiology, 2007, 145(2):351-366.

      [40]Du L, Bao C, Hu T, et al. SmARF8, a transcription factor involved in parthenocarpy in eggplant[J]. Molecular Genetics and Genomics, 2016, 291(1):1-13.

      [41]De J M, Wolters-Arts M, Feron R, et al. The Solanum lycopersicum auxin response factor7(Sl ARF7)regulates auxin signaling during tomato fruit set and development[J]. Plant Journal, 2009,57(1):160-170.

      [42]Sagar M, Chervin C, Roustant JP, et al. Under-expression of the Auxin Response Factor Sl-ARF4 improves postharvest behavior of tomato fruits[J]. Plant Signaling & Behavior, 2013, 8(10):10-4161.

      [43]Sagar M, Chervin C, Mila I, et al. Sl-ARF4, an Auxin Response Factor involved in the control of sugar metabolism during tomato fruit development[J]. Plant Physiology, 2013, 161(3):1362-1374.

      [44]Nagpal P, Ellis CM, Weber H, et al. Auxin response factors ARF6 and ARF8 promote jasmonic acid production and flower maturation[J]. Development, 2005, 132(18):4107-4118.

      [45]李慧峰, 冉昆, 何平, 等. 蘋果生長(zhǎng)素響應(yīng)因子(ARF)基因家族全基因組鑒定及表達(dá)分析[J]. 植物生理學(xué)報(bào), 2015(7):1045-1054.

      [46] 朱立新, 李光晨. 面向21世紀(jì)課程教材-園藝通論[M]. 第2版. 北京:中國(guó)農(nóng)業(yè)大學(xué)出版社, 2005.

      [47]史夢(mèng)雅, 張巍, 余佳, 等. 桃生長(zhǎng)素反應(yīng)因子和生長(zhǎng)素/吲哚乙酸蛋白家族基因的克隆及表達(dá)分析[J]. 園藝學(xué)報(bào), 2014,41(3):536-544.

      [48]Shen CJ, Wang SK, Bai YH, et al. Functional analysis of the structural domain of ARF proteins in rice(Oryza sativa L.)[J].Journal of Experimental Botany, 2010, 61(14):3971-3981.

      [49]Tiwari SB, Hagen G, Guilfoyle TJ. Aux/IAA proteins contain a potent transcriptional repression domain[J]. Plant Cell, 2004,16(2):533-543.

      [50]Dreher KA, Brown J, Saw RE, et al. The Arabidopsis Aux/IAA protein family has diversified in degradation and auxin responsiveness[J]. Plant Cell, 2006, 18(3):699-714.

      [51]Wang H, Bouzayen M. The tomato Aux/IAA transcription factor IAA9 is involved in fruit development and leaf morphogenesis[J]. Plant Cell, 2005, 17(10):2676-2692.

      [52]Szemenyei H, Hannon M, Long JA. TOPLESS mediates auxindependent transcriptional repression during Arabidopsis embryogenesis[J]. Science, 2008, 319(5868):1384-1386.

      [53]Rogg LE, Lasswell J, Bartel B. A Gain-of-function mutation in IAA28 suppresses lateral root development[J]. Plant Cell, 2001,13(3):465-480.

      [54]Zhang J, Chen R, Xiao J, et al. Isolation and characterization of SlIAA3, an Aux/IAA gene from tomato[J]. Mitochondrial DNA,2007, 18(6):407-414.

      [55]Kloosterman B, Visser RG, Bachem CW. Isolation and characterization of a novel potato Auxin/Indole-3-Acetic Acid family member(StIAA2)that is involved in petiole hyponasty and shoot morphogenesis[J]. Plant Physiology & Biochemistry,2006, 44(11-12):766-775.

      [56]Yang X, Lee S, So JH, et al. The IAA1 protein is encoded by AXR5 and is a substrate of SCF(TIR1)[J]. Plant Journal, 2004, 40(5):772-782.

      [57]Chaabouni S, Jones B, Delalande C, et al. Sl-IAA3, a tomato Aux/IAA at the crossroads of auxin and ethylene signalling involved in differential growth[J]. Journal of Experimental Botany, 2009, 60(4):1349-1362.

      [58]Bassa C, Mila I, Bouzayen M, et al. Phenotypes associated with down-regulation of Sl-IAA27 support functional diversity among Aux/IAA family members in tomato[J]. Plant & Cell Physiology,2012, 53(9):1583-1595.

      [59]Su L, Bassa C, Audran C, et al. The Auxin Sl-IAA17 transcriptional repressor controls fruit size via the regulation of endoreduplicationrelated cell expansion[J]. Plant & Cell Physiology, 2014, 55(11):1969-1976.

      [60]Liu DJ, Chen JY, Lu WJ. Expression and regulation of the early auxin-responsive Aux/IAA genes during strawberry fruit development[J]. Molecular Biology Reports, 2011, 38(2):1187-1193.

      [61]Shani E, Salehin M, Zhang Y, et al. Plant stress tolerance requires auxin-sensitive Aux/IAA transcriptional repressors[J]. Current Biology Cb, 2017, 27(3):437-444.

      [62]Guilfoyle TJ, Hagen G. Getting a grasp on domain III/IV responsible for Auxin Response Factor-IAA protein interactions[J]. Plant Science, 2012, 190(3):82-88.

      [63]Lavy M, Prigge MJ, Tao S, et al. Constitutive auxin response in Physcomitrella reveals complex interactions between Aux/IAA and ARF proteins[J]. Elife, 2016, 5 :e13325.

      [64]Piya S, Shrestha SK, Binder B, et al. Protein-protein interaction and gene co-expression maps of ARFs and Aux/IAAs in Arabidopsis[J]. Frontiers in Plant Science, 2014, 5 :744.

      [65]Llères D, Swift S, Lamond AI. Detecting protein-protein interactions in vivo with FRET using multiphoton fluorescence lifetime imaging microscopy(FLIM)[J]. Curr Protoc Cytom, 2007, Chapter 12 :Unit12.

      [66]Weijers D, Benkova E, J?ger KE, et al. Developmental specificity of auxin response by pairs of ARF and Aux/IAA transcriptional regulators[J]. Embo Journal, 2005, 24(10):1874-1885.

      [67]Tatematsu K, Kumagai S, Muto H, et al. MASSUGU2 encodes aux/IAA19, an auxin-regulated protein that functions together with the transcriptional activator NPH4/ARF7 to regulate differential growth responses of hypocotyl and formation of lateral roots in Arabidopsis thaliana[J]. Plant Cell, 2004, 16(2):379-393.

      [68]Arase F, Nishitani H, Egusa M, et al. IAA8 involved in lateral root formation interacts with the TIR1 Auxin receptor and ARF transcription factors in Arabidopsis[J]. PLoS One, 2012, 7(8):e43414.

      [69]Shen CJ, Bai YH, Wang SK, et al. Expression profile of PIN, AUX/LAX and PGP auxin transporter gene families in Sorghum bicolor under phytohormone and abiotic stress[J]. Febs Journal, 2010,277(14):2954-2969.

      [70]Simonini S, Deb J, Moubayidin L, et al. A noncanonical auxinsensing mechanism is required for organ morphogenesis in Arabidopsis[J]. Genes & Development, 2016, 30(20):2286-2296.

      Research Progress on Mechanism of ARF and Aux/IAA Regulating Fruit Development and Ripening

      HU Xiao1HOU Xu2YUAN Xue2GUAN Dan1LIU Yue-ping2,3
      (1.Plant Science and Technology College,Beijing University of Agriculture,Beijing 102206 ;2. College of Biological Science and Engineering,Beijing University of Agriculture,Beijing 102206 ;3. Beijing Collaborative Innovation Center for Eco-environmental Improvement with Forestry and Fruit Trees,Beijing 102206)

      The auxin is one of key essential plant hormones regulating fruit development and ripening. Aux/IAAs and auxin response factors(ARFs)play central roles in auxin-mediated signal transduction mechanism. ARF proteins combine with the auxin-responsive elements in the promoters of auxin-responding genes to promote or inhibit gene expression. Aux/IAA proteins,through specific binding of their common domains III and IV with ARF,regulate the transcriptional activity of early response genes of auxin. The researches indicate that ARF participates in the regulation of fruit morphology development,hardness,sugar accumulation,etc.;Aux/IAA plays a significant role in pollination and fruit morphology etc. In addition,the interactions of Aux/IAA and ARF or themselves regulate downstream gene expressions,which is the main mechanism of plant response to auxin regulation. In this review,we summarized the structures of ARF and Aux/IAA,the distribution characteristics in varied plants,and the regulating function in fruit ripening development and signal transduction. The research status on the interaction of ARFs and Aux/IAA was also discussed, which will provide knowledge for reveal the mechanism of auxin control of fruit development and ripening.

      ARF;Aux/IAA;fruit;development and ripening;regulating mechanism

      10.13560/j.cnki.biotech.bull.1985.2017-0506

      2017-06-16

      2015年度新型生產(chǎn)經(jīng)營(yíng)主體科技能力提升工程項(xiàng)目(20150203-01)

      胡曉,女,碩士,研究方向:果實(shí)發(fā)育生理與分子生物學(xué);E-mail:hxiao_0323@sina.com

      劉悅萍,女,博士,研究方向:果實(shí)發(fā)育生理與分子生物學(xué);E-mail:cauping@sina.com

      (責(zé)任編輯 李楠)

      猜你喜歡
      生長(zhǎng)素信號(hào)轉(zhuǎn)導(dǎo)突變體
      Wnt/β-catenin信號(hào)轉(zhuǎn)導(dǎo)通路在瘢痕疙瘩形成中的作用機(jī)制研究
      基于科學(xué)思維培養(yǎng)的“生長(zhǎng)素的調(diào)節(jié)作用”復(fù)習(xí)課教學(xué)設(shè)計(jì)
      探究生長(zhǎng)素對(duì)植物生長(zhǎng)的兩重性作用
      生長(zhǎng)素的生理作用研究
      淺談生長(zhǎng)素對(duì)植物的作用
      CLIC1及其點(diǎn)突變體與Sedlin蛋白的共定位研究
      擬南芥干旱敏感突變體篩選及其干旱脅迫響應(yīng)機(jī)制探究
      HGF/c—Met信號(hào)轉(zhuǎn)導(dǎo)通路在結(jié)直腸癌肝轉(zhuǎn)移中的作用
      Survivin D53A突變體對(duì)宮頸癌細(xì)胞增殖和凋亡的影響
      鈣敏感受體及其與MAPK信號(hào)轉(zhuǎn)導(dǎo)通路的關(guān)系
      宜良县| 固镇县| 麻江县| 大同市| 馆陶县| 苗栗县| 临沭县| 山东| 曲阳县| 宁国市| 遂溪县| 叙永县| 清涧县| 松桃| 泗洪县| 盐城市| 万全县| 连江县| 文安县| 山阴县| 连山| 大名县| 青龙| 玉龙| 收藏| 苏尼特左旗| 拉萨市| 朝阳区| 江源县| 北川| 定兴县| 东乡族自治县| 抚顺县| 得荣县| 康保县| 德阳市| 新乡县| 西吉县| 南岸区| 黄山市| 仁化县|