鄭璟瑤
青蒿素抑制CD133+HepG2細(xì)胞對(duì)γδ T細(xì)胞的耐受性及其機(jī)制研究
鄭璟瑤
目的探討青蒿素是否能抑制CD133+肝癌細(xì)胞HepG2對(duì)γδT細(xì)胞的耐受性及研究其機(jī)制。方法LDH釋放實(shí)驗(yàn)檢測(cè)γδT細(xì)胞及青蒿素共培養(yǎng)對(duì)CD133+及CD133-HepG2的殺傷活性;Western blot實(shí)驗(yàn)檢測(cè)γδT細(xì)胞及青蒿素共培養(yǎng)對(duì)CD133+HepG2細(xì)胞MCL-1表達(dá)水平、Caspase-9、Caspase-3活化水平和細(xì)胞色素C釋放水平的影響;流式細(xì)胞技術(shù)檢測(cè)γδT細(xì)胞及青蒿素共培養(yǎng)對(duì)CD133+HepG2細(xì)胞凋亡和線粒體膜電位的影響。結(jié)果LDH釋放實(shí)驗(yàn)結(jié)果顯示,在相同數(shù)量γδT細(xì)胞處理下,CD133+HepG2細(xì)胞LDH釋放率顯著低于CD133-HepG2細(xì)胞,表明CD133+HepG2細(xì)胞對(duì)γδT細(xì)胞治療存在耐受性;同時(shí),γδT細(xì)胞+青蒿素組CD133+HepG2的LDH釋放率顯著高于γδT細(xì)胞組和青蒿素+γδT細(xì)胞+MCL-1質(zhì)粒組[(55.3±6.1)%比(18.7±2.6)%、(24.2±2.8)%,P<0.05]。流式細(xì)胞實(shí)驗(yàn)結(jié)果顯示,γδT細(xì)胞+青蒿素組CD133+HepG2的凋亡率顯著高于γδT細(xì)胞組和青蒿素+γδT細(xì)胞+MCL-1質(zhì)粒組[(38.2±3.5)%比(10.5±1.1)%、(14.3±1.2)%,P<0.05]。Western blot實(shí)驗(yàn)結(jié)果顯示,青蒿素處理能顯著抑制CD133+HepG2細(xì)胞MCL-1蛋白表達(dá)水平。流式細(xì)胞實(shí)驗(yàn)結(jié)果顯示,γδT細(xì)胞+青蒿素組CD133+HepG2相對(duì)線粒體膜電位顯著高于γδT細(xì)胞組和青蒿素+γδT細(xì)胞+MCL-1質(zhì)粒組[(0.21±0.02)比(0.78±0.05)、(0.71±0.05),P<0.05]。Western blot實(shí)驗(yàn)結(jié)果則顯示,γδT細(xì)胞+青蒿素組CD133+HepG2的活化Caspase-9、Caspase-3及細(xì)胞色素C的釋放均顯著高于γδT細(xì)胞組和青蒿素+γδT細(xì)胞+MCL-1質(zhì)粒組。結(jié)論青蒿素可能通過抑制CD133+肝癌細(xì)胞MCL-1表達(dá)水平抑制其對(duì)γδT細(xì)胞的耐受性。
青蒿素;MCL-1;γδT細(xì)胞;CD133;HepG2
肝癌患者的預(yù)后很差且5年生存率低[1]。手術(shù)和肝移植是目前最有效的治療肝癌手段,很大部分患者在確診時(shí)腫瘤往往已經(jīng)進(jìn)入中晚期,因此,化療或免疫治療是不可缺少的治療手段[2-3]。研究發(fā)現(xiàn),一些腫瘤細(xì)胞,特別是CD133+腫瘤細(xì)胞對(duì)化療或免疫治療有很強(qiáng)的耐受性[4],因此采取輔助治療手段降低CD133+肝癌細(xì)胞對(duì)化療或免疫治療的耐受性具有十分重要的意義。本研究目的在于探討青蒿素是否能抑制CD133+肝癌細(xì)胞HepG2對(duì)γδT細(xì)胞的耐受性及研究其機(jī)制。
1.1 材料Annexin V細(xì)胞凋亡試劑盒(批號(hào)APOAF)和青蒿素購(gòu)于美國(guó)Sigma-Aldrich。線粒體膜電位染料JC-1(5,5,6,6-tetrachloro-1,1,3,3-tetraethylbenzimidazolylcarbocyanine iodide)、乳酸脫氫酶細(xì)胞毒性檢測(cè)試劑盒(批號(hào)C0016)和線粒體分離試劑盒(批號(hào)C3601)購(gòu)于江蘇碧云天生物技術(shù)有限公司。RPMI-1640培養(yǎng)基購(gòu)于美國(guó)Gibco。溴代醇磷酸(BrHPP)購(gòu)于法國(guó)Innate Pharma。白細(xì)胞介素2購(gòu)于美國(guó)R&D System公司。髓樣細(xì)胞白血病-1(MCL-1)、活化半胱天冬酶-9(活化Caspase-9)、活化半胱天冬酶-3(活化Caspase-3)、細(xì)胞色素C和β肌動(dòng)蛋白(β-actin)抗體購(gòu)于美國(guó)Cell Signaling。pcDNA3.1質(zhì)粒和脂質(zhì)體2000購(gòu)于美國(guó)Invitrogen公司。增強(qiáng)化學(xué)發(fā)光(ECL)試劑盒(批號(hào)32106)購(gòu)于美國(guó)Pierce。異硫氰酸熒光素標(biāo)記的CD133(CD133-FITC)熒光抗體購(gòu)于美國(guó)BD公司。
1.2 細(xì)胞培養(yǎng)HepG2細(xì)胞購(gòu)于中國(guó)科學(xué)院典型培養(yǎng)物保藏委員會(huì)細(xì)胞庫(kù)。按文獻(xiàn)所述將HepG2細(xì)胞用CD133-FITC熒光抗體和流式細(xì)胞分選儀對(duì)其中的CD133+及CD133-細(xì)胞進(jìn)行分群[5]。分選后的細(xì)胞培養(yǎng)在含10%胎牛血清的RPMI-1640培養(yǎng)基中,培養(yǎng)環(huán)境為37°C恒溫培養(yǎng)箱中培養(yǎng)并通入5%CO2。γδT細(xì)胞的培養(yǎng)按文獻(xiàn)所述[6],取15例健康人的全血采取密度梯度離心法獲取單個(gè)核細(xì)胞并培養(yǎng)在含10%胎牛血清的RPMI-1640培養(yǎng)基中,加入3μmol/L γδT細(xì)胞特異性擴(kuò)增劑溴代醇磷酸和400IU/mL的白細(xì)胞介素2培養(yǎng)14天。
1.3 MCL-1過表達(dá)質(zhì)粒構(gòu)建和轉(zhuǎn)染將人MCL-1基因的開放閱讀框架序列經(jīng)PCR擴(kuò)增后以分子克隆的方法與pcDNA3.1連接后構(gòu)建成MCL-1重組過表達(dá)質(zhì)粒。MCL-1過表達(dá)質(zhì)粒用脂質(zhì)體2000按試劑操作說明書步驟進(jìn)行轉(zhuǎn)染,簡(jiǎn)要步驟如下:將2μg/mL質(zhì)粒用脂質(zhì)體2000進(jìn)行包裹后將其加入到無血清培養(yǎng)基進(jìn)行混合。將貼壁的HepG2細(xì)胞置于該無血清培養(yǎng)基孵育6h,之后棄去無血清培養(yǎng)基并加入新鮮的含10%胎牛血清的RPMI-1640培養(yǎng)基培養(yǎng)24h。
1.4 乳酸脫氫酶釋放實(shí)驗(yàn)檢測(cè)CD133+及CD133-HepG2細(xì)胞對(duì)γδT細(xì)胞的敏感性按不同的E:T(效應(yīng)γδT細(xì)胞個(gè)數(shù):目標(biāo)CD133+或CD133-HepG2靶細(xì)胞個(gè)數(shù))將靶細(xì)胞和γδT細(xì)胞分別接種在transwell上室(0.4μM孔徑)和下室中進(jìn)行共培養(yǎng),12h后用乳酸脫氫酶細(xì)胞毒性檢測(cè)試劑盒按說明書步驟檢測(cè)CD133+及CD133-HepG2靶細(xì)胞乳酸脫氫酶(LDH)的釋放率。
1.5 乳酸脫氫酶釋放實(shí)驗(yàn)檢測(cè)青蒿素是否影響CD133+HepG2細(xì)胞對(duì)γδT細(xì)胞的敏感性實(shí)驗(yàn)分為對(duì)照組、青蒿素組、γδT細(xì)胞組、青蒿素+γδT細(xì)胞組及青蒿素+γδT細(xì)胞+MCL-1質(zhì)粒組。對(duì)照組為CD133+HepG2細(xì)胞單獨(dú)培養(yǎng)24h;青蒿素組為CD133+HepG2細(xì)胞加入10μmol/mL青蒿素處理24h;γδT細(xì)胞組為CD133+HepG2細(xì)胞與10倍CD133+HepG2數(shù)目的γδT細(xì)胞(E∶T=10∶1)共培養(yǎng)24h;青蒿素+γδT細(xì)胞組為CD133+HepG2細(xì)胞與10μmol/mL青蒿素及2.5倍CD133+HepG2數(shù)目的γδT細(xì)胞共培養(yǎng)24h;青蒿素+γδT細(xì)胞+MCL-1質(zhì)粒組為轉(zhuǎn)染MCL-1質(zhì)粒的CD133+HepG2細(xì)胞與10μmol/mL青蒿素及2.5倍CD133+HepG2數(shù)目的γδT細(xì)胞共培養(yǎng)24h。細(xì)胞處理完畢后用乳酸脫氫酶細(xì)胞毒性檢測(cè)試劑盒按說明書步驟檢測(cè)CD133+HepG2細(xì)胞LDH的釋放率。
1.6 線粒體分離將CD133+HepG2細(xì)胞按上述進(jìn)行分組。用線粒體分離試劑盒按試劑說明書步驟將處理后的CD133+HepG2細(xì)胞的線粒體從細(xì)胞質(zhì)中分離出來,取無線粒體的細(xì)胞質(zhì)進(jìn)行后續(xù)的Western blot實(shí)驗(yàn),檢測(cè)其中細(xì)胞色素C的釋放水平。
1.7 Western blot實(shí)驗(yàn)將CD133+HepG2細(xì)胞按上述進(jìn)行分組。細(xì)胞處理完畢后提取其中的總蛋白質(zhì)。將等量的總蛋白質(zhì)用12%丙烯酰胺凝膠電泳進(jìn)行分離。分離完畢后通過電轉(zhuǎn)方法將蛋白質(zhì)從分離膠上轉(zhuǎn)到PVDF膜上,用MCL-1、活化Caspase-9、活化Caspase-3、細(xì)胞色素C和β-actin抗體孵育過夜,之后再用帶辣根過氧化物酶的二抗孵育2h,蛋白條帶用ECL試劑盒顯色發(fā)光。
1.8 細(xì)胞凋亡和線粒體膜電位測(cè)定將CD133+HepG2細(xì)胞按上述進(jìn)行分組。收集細(xì)胞后用凋亡檢測(cè)試劑盒按照說明書步驟檢測(cè)CD133+HepG2細(xì)胞的凋亡,Annexin V陽(yáng)性細(xì)胞所占比例即為細(xì)胞凋亡率;用JC-1試劑按照說明書步驟檢測(cè)CD133+HepG2細(xì)胞的線粒體膜電位,相對(duì)線粒體膜電位為實(shí)驗(yàn)組的紅色熒光強(qiáng)度與對(duì)照組紅色熒光強(qiáng)度的比值[7]。
2.1 CD133+HepG2細(xì)胞對(duì)γδT細(xì)胞的耐受性將γδT細(xì)胞和CD133+或CD133-HepG2細(xì)胞按不同的E:T進(jìn)行共培養(yǎng)后檢測(cè)腫瘤細(xì)胞LDH的釋放率。結(jié)果顯示,在γδT細(xì)胞的共培養(yǎng)下,CD133+HepG2細(xì)胞的LDH釋放率顯著低于CD133-HepG2細(xì)胞(見圖1),表明CD133+HepG2細(xì)胞對(duì)γδT細(xì)胞有耐受性。
圖1 CD133+和CD133-HepG2細(xì)胞與γδT細(xì)胞共培養(yǎng)后LDH釋放率
2.2 青蒿素通過抑制MCL-1表達(dá)抑制CD133+HepG2細(xì)胞對(duì)γδT細(xì)胞的耐受性Western blot結(jié)果顯示,CD133+HepG2細(xì)胞MCL-1表達(dá)水平顯著高于CD133-HepG2細(xì)胞(見圖2),提示MCL-1高表達(dá)可能是CD133+HepG2細(xì)胞對(duì)γδT細(xì)胞有耐受性的機(jī)制。LDH釋放實(shí)驗(yàn)和凋亡檢測(cè)實(shí)驗(yàn)結(jié)果顯示,γδT細(xì)胞+青蒿素組CD133+HepG2的LDH釋放率和細(xì)胞凋亡率顯著高于γδT細(xì)胞組和青蒿素組(見表1),提示青蒿素能抑制CD133+HepG2細(xì)胞對(duì)γδT細(xì)胞的耐受性。同時(shí),轉(zhuǎn)染MCL-1表達(dá)質(zhì)粒后,青蒿素和γδT細(xì)胞聯(lián)合處理后的CD133+HepG2細(xì)胞的LDH釋放率和細(xì)胞凋亡率明顯降低(見表1),表明青蒿素通過抑制MCL-1表達(dá)抑制CD133+HepG2細(xì)胞對(duì)γδT細(xì)胞的耐受性。
圖2 CD133+與CD133-HepG2細(xì)胞MCL-1表達(dá)水平
表1 各組LDH釋放率、細(xì)胞凋亡率比較(%±s)
表1 各組LDH釋放率、細(xì)胞凋亡率比較(%±s)
注:與對(duì)照組比較,*P<0.05;與γδT細(xì)胞組比較,▲P<0.05;與青蒿素組比較,△P<0.05;與γδT細(xì)胞+青蒿素組比較,□P<0.05
?
2.3 青蒿素促進(jìn)CD133+HepG2細(xì)胞發(fā)生γδT細(xì)胞依賴的線粒體途徑凋亡流式細(xì)胞結(jié)果顯示,青蒿素能顯著促進(jìn)γδT細(xì)胞對(duì)CD133+HepG2細(xì)胞線粒體膜電位的損傷,而轉(zhuǎn)染MCL-1質(zhì)粒則能明顯抑制線粒體膜電位的下降(見表2),表明青蒿素能通過抑制MCL-1的表達(dá)促進(jìn)CD133+HepG2細(xì)胞發(fā)生γδT細(xì)胞依賴的線粒體膜電位的下降。另外,Western blot結(jié)果顯示,青蒿素能顯著促進(jìn)γδT細(xì)胞對(duì)CD133+HepG2細(xì)胞線粒體中細(xì)胞色素C的釋放,從而誘導(dǎo)細(xì)胞發(fā)生Caspase-9和Caspase-3的活化,而MCL-1質(zhì)粒則同樣能抑制細(xì)胞色素C的釋放和Caspases的活化(見圖3)。這些結(jié)果表明青蒿素能通過抑制MCL-1表達(dá)促進(jìn)CD133+HepG2細(xì)胞發(fā)生γδT細(xì)胞依賴的線粒體途徑凋亡。
γδT細(xì)胞是效應(yīng)性T細(xì)胞的一個(gè)亞群,具有良好的抗腫瘤作用[8-9]。CD133是一種糖蛋白,表達(dá)于細(xì)胞表面,被認(rèn)為是“干細(xì)胞樣”細(xì)胞的表面標(biāo)志。在包括肝癌在內(nèi)的一些腫瘤細(xì)胞中,CD133+細(xì)胞亞群也被稱為腫瘤干細(xì)胞[10-11]。研究[12]表明,CD133+腫瘤細(xì)胞對(duì)抗腫瘤治療有較強(qiáng)的抵抗能力,因此CD133+腫瘤細(xì)胞已經(jīng)成為腫瘤治療的重要靶點(diǎn)。
表2 各組相對(duì)線粒體膜電值比較(±s)
表2 各組相對(duì)線粒體膜電值比較(±s)
注:與對(duì)照組比較*P<0.05;與γδT細(xì)胞組比較,▲P<0.05;與青蒿素組比較,△P<0.05;與γδT細(xì)胞+青蒿素組比較,□P<0.05
?
圖3 青蒿素促進(jìn)CD133+HepG2細(xì)胞發(fā)生γδT細(xì)胞依賴的細(xì)胞色素C釋放和Caspase-9,Caspase-3活化
近年研究表明,青蒿素有一定的抗腫瘤效應(yīng),如青蒿素能顯著抑制肺癌的發(fā)展和轉(zhuǎn)移,又能抑制膽囊癌的細(xì)胞周期并促進(jìn)其發(fā)生凋亡[13-14]。本研究結(jié)果表明,CD133+肝癌細(xì)胞對(duì)γδT細(xì)胞治療有明顯的耐受性,然而青蒿素能顯著增強(qiáng)γδT細(xì)胞對(duì)CD133+HepG2肝癌細(xì)胞的殺傷活性,因此,青蒿素可能是良好的免疫治療輔助藥物。
MCL-1屬于Bcl-2抗凋亡蛋白家族,主要表達(dá)于線粒體外膜上。研究[15-18]表明,過表達(dá)的MCL-1能阻礙腫瘤細(xì)胞的凋亡途徑,抑制由藥物引起的腫瘤細(xì)胞線粒體的損傷,從而使細(xì)胞色素C等凋亡活性物質(zhì)不能從線粒體中釋放到細(xì)胞質(zhì)中,抑制下游Caspase-9和Caspase-3的活化,保護(hù)腫瘤細(xì)胞逃避凋亡途徑。因此腫瘤細(xì)胞的MCL-1往往會(huì)發(fā)生過度,且MCL-1的過表達(dá)程度與腫瘤細(xì)胞對(duì)抗腫瘤治療的敏感性呈負(fù)相關(guān)[19]。
本研究Western blot實(shí)驗(yàn)結(jié)果發(fā)現(xiàn),青蒿素能顯著下調(diào)CD133+肝癌細(xì)胞中MCL-1表達(dá)水平。當(dāng)轉(zhuǎn)染MCL-1過表達(dá)質(zhì)粒上調(diào)肝癌細(xì)胞中MCL-1的蛋白水平后,青蒿素聯(lián)合γδT細(xì)胞對(duì)CD133+肝癌細(xì)胞的殺傷活性受到明顯抑制,且線粒體途徑的凋亡通路受到明顯阻斷,證明青蒿素是通過降低肝癌組織MCL-1蛋白表達(dá)促進(jìn)γδT細(xì)胞對(duì)CD133+肝癌細(xì)胞線粒體途徑凋亡的誘導(dǎo),使CD133+肝癌細(xì)胞發(fā)生凋亡性死亡。
綜上所述,青蒿素能顯著提高CD133+肝癌細(xì)胞對(duì)免疫治療的敏感性,可能為腫瘤免疫治療提供更有效的策略和思路。
[1]Siegel R,Naishadham D,Jemal A.Cancer statistics,2013[J].CA Cancer J Clin,2013,63(1):11-30.
[2]Huang JS,Chang PH.Refractory hypoglycemia controlled by systemic chemotherapy with advanced hepatocellular carcinoma:A case report[J].Oncol Lett,2016,11(1):898-900.
[3]Liang C,Xu Y,Wu J,et al.Downregulation of DcR3 sensitizes hepatocellular carcinoma cells to TRAIL-induced apoptosis[J].Onco Targets Ther,2017,10:417-428.
[4]Lee SH,Hyun SK,Kim SH,et al.Potential Role of CD133 Expression in the Susceptibility of Human Liver Cancer Stem-Like Cells to TRAIL[J].Oncol Res,2016,24(6):495-509.
[5]Feng X,Jiang J,Zheng S,et al.Knockdown of miR-25 increases the sensitivity of liver cancer stem cells to TRAIL-induced apoptosis via PTEN/PI3K/Akt/Bad signaling pathway[J].Int J Oncol,2016,49(6):2600-2610.
[6]Gonnermann D,Oberg HH,Wesch D,et al.Resistance of cyclooxygenase-2 expressing pancreatic ductal adenocarcinoma cells against γδ T cell cytotoxicity[J].Oncoimmunology,2015,4(3):e988460.
[7]Prathapan A,Vineetha VP,Raghu KG.Protective effect of Boerhaavia diffusa L.against mitochondrial dysfunction in angiotensin II induced hypertrophy in H9c2 cardiomyoblast cells[J].PLoS One,2014,9(4):e96220.
[8]Dokouhaki P,Schuh NW,Zhang L,et al.NKG2D regulates production of soluble TRAIL by ex vivo expanded human γδ T cells[J].Eur J Immunol,2013,43(12):3175-3182.
[9]Li Z.Potential of human gammadelta T cells for immunotherapy of osteosarcoma[J].Mol Biol Rep,2013,40(1):427-437.
[10]Zhang L,Li H,Li JJ,et al.Inhibitory effects of transcription factor Ikaros on the expression of liver cancer stem cell marker CD133 in hepatocellular carcinoma[J].Oncotarget,2014,5(21):10621-10635.
[11]Jiang J,F(xiàn)eng X,Yang Y,et al.MiR-128 reverses the gefitinib resistance of the lung cancer stem cells by inhibiting the c-met/PI3K/AKT pathway[J].Oncotarget,2016,7(45):73188-73199.
[12]Ma L,Liu T,Zhang H,et al.ABCG2 is required for self-renewal and chemoresistance of CD133-positive human colorectal cancer cells[J].Tumour Biol,2016,37(9):12889-12896.
[13]Tong Y,Liu Y,Lu L,et al.Artemisinin and its derivatives can significantly inhibit lung tumorigenesis and tumor metastasis through Wnt/β-catenin signaling[J].Oncotarget,2016,7(21):31413-31428.
[14]Jia J,Qin Y,Qian J,et al.Artemisinin inhibits gallbladder cancer cell lines through triggering cell cycle arrest and apoptosis[J].Mol Med Rep,2016,13(5):4461-4468.
[15]Xie Q,Wang S,Yang X,et al.MiR-519d impedes cisplatin-resistance in breast cancer stem cells by down-regulating the expression of MCL-1[J].Oncotarget,2017,8(13):22003-22013.
[16]Tong J,Wang P,Zhang L,et al.Mcl-1 Degradation Is Required for Targeted Therapeutics to Eradicate Colon Cancer Cells[J].Cancer Res,2017,77(9):2512-2521.
[17]Huang G,Chen X,Xing C,et al.miR-20a-directed regulation of BID is associated with the TRAIL sensitivity in colorectal cancer[J].Oncol Rep,2017,37(1):571-578.
[18]Laussmann MA,Passante E,Rehm M,et al.Proteasome inhibition can impair caspase-8 activation upon submaximal stimulation of apoptotic tumor necrosis factor-related apoptosis inducing ligand(TRAIL)signaling[J].J Biol Chem,2012,287(18):14402-14411.
[19]Ma J,Zhao Z,Liu K,et al.MCL-1 is the key target of adjuvant chemotherapy to reverse the cisplatin-resistance in NSCLC[J].Gene,2016,587(2):147-154.
Effect of Artemisinin on Reducing the Tolerance of CD133+HepG2 to γδT Cells and Its Related Mechanism
ZHENG Jingyao.
Clinical Testing Center,Branch Hospital of Zhejiang Hospital,Hangzhou(310000),China
ObjectiveTo investigate the effect of artemisinin on the tolerance of CD133+HepG2 to γδT cells and the underlying mechanism.MethodsCD133+HepG2 cells were co-cultured with artemisinin and γδT cells,then LDH release assays were performed to evaluate the cell viability,Western blot analysis was performed to evaluate the expression of MCL-1,activation of caspase-9,caspase-3 and release of cytochrome c in CD133+HepG2 cells,Flow cytometry analysis was performed to measure the apoptosis and mitochondrial membrane potential in CD133+HepG2 cells.ResultsResults of LDH release assays showed that under the treatment of equal amount of γδT cells,the release rate of LDH in CD133+HepG2 cells was significantly lower than that in the CD133-HepG2 cells,which indicating that CD133+HepG2 cells were tolerant to γδT cell treatment.Meanwhile,the LDH release rate in γδT cells+artemisinin group(55.3%±6.1%)was significantly higher than that in the γδT cell group(18.7%±2.6%,P<0.05)and γδT cells+artemisinin+MCL-1 plasmid group(24.2%±2.8%,P<0.05).Flow cytometry analysis results showed that the apoptotic rate in γδT cells+artemisinin group(38.2%±3.5%)was significantly higher than that in the γδT cells group(10.5%±1.1%,P<0.05)and γδT cells+artemisinin+MCL-1 plasmid group(14.3%±1.2%,P<0.05).Western blot assays showed that artemisinin downregulated the expression of MCL-1 in CD133+HepG2 cells.In addition,relative mitochondrial membranepotential in γδT cells+artemisinin group(0.21%±0.02%)was significantly lower than that in the γδT cells group(0.78%±0.05%,P<0.05)and γδT cells+artemisinin+MCL-1 plasmid group(0.71%±0.05%,P<0.05).The activation of caspase-9,caspase 3,and release of cytochrome c in γδT cells+artemisinin group was significantly stronger than that in the γδT cells group and γδT cells+artemisinin+MCL-1 plasmid group.ConclusionArtemisinin suppressed the tolerance of CD133+liver cancer cells to γδT cells through the inhibition of MCL-1 expression.
浙江醫(yī)院分院檢驗(yàn)科(杭州310000)
artemisinin;MCL-1;γδT cells;CD133;HepG2
(收稿:2017-06-04修回:2017-07-30)