張 穎, 趙光鋒, 李 潔
(南京大學(xué)醫(yī)學(xué)院附屬鼓樓醫(yī)院, 江蘇 南京 210008)
雌二醇通過ERα抑制miR-16表達并促進蛻膜間充質(zhì)干細胞生長*
張 穎, 趙光鋒, 李 潔△
(南京大學(xué)醫(yī)學(xué)院附屬鼓樓醫(yī)院, 江蘇 南京 210008)
目的研究雌二醇(E2)通過調(diào)控微小RNA-16(miR-16)的表達對胎盤蛻膜來源間充質(zhì)干細胞(MSCs)活力的影響。方法分別檢測E2在正常孕婦及重度子癇前期(PE)患者外周血中的濃度。CCK-8法分析不同濃度E2對MSCs活力的影響。Real-time PCR分析不同濃度E2處理MSCs對miR-16表達的影響。探索E2通過何種受體調(diào)控miR-16表達。結(jié)果與正常孕婦相比,重度PE患者外周血中E2濃度顯著降低(P<0.01)。5、10和100 nmol/L E2分別處理MSCs 48 h后,MSCs活力顯著增加(P<0.05)。5、10和100 nmol/L E2分別處理MSCs 12 h后,miR-16的表達水平下調(diào)(P<0.05),而用10 nmol/L E2處理MSCs不同時間(0 h、3 h、6 h、12 h和24 h)后,miR-16表達水平隨著時間呈現(xiàn)明顯下調(diào)趨勢。在E2處理之前預(yù)先轉(zhuǎn)染miR-16,細胞活力被顯著逆轉(zhuǎn)。E2處理MSCs之前 6 h,用雌激素受體拮抗劑ICI 182780和他莫昔芬預(yù)預(yù)處理,E2對miR-16失去抑制作用。雌激素受體α(ERα)激動劑丙基吡唑三醇(PPT)及ERβ受體激動劑二芳基丙腈DPN分別處理MSCs后,僅PPT可明顯抑制miR-16表達。結(jié)論雌二醇可能通過ERα抑制miR-16表達,從而促進蛻膜MSCs的生長。
雌二醇; 微小RNA-16; 子癇前期; 間充質(zhì)干細胞
子癇前期(preeclampsia,PE)是妊娠最常見的并發(fā)癥之一,發(fā)病率約占孕產(chǎn)婦總數(shù)的5%~8%[1]??墒?,PE的發(fā)病機制至今未被闡明,故目前臨床上尚缺乏有效的治療手段,很多情況下不得不提前終止妊娠,造成妊娠失敗。因此,迫切需要深入研究PE的發(fā)病機制,尋找新的有效防治方法。大量的研究發(fā)現(xiàn),母胎界面免疫失衡參與了PE的發(fā)生與發(fā)展過程[2-3]。另外,PE也是一種系統(tǒng)性血管異常疾病[4],血管形成異常是PE的主要特征之一[5-6]。
間充質(zhì)干細胞(mesenchymal stem cells,MSCs)具有免疫調(diào)節(jié)功能,易于分離、培養(yǎng)、擴增和純化[7],多次傳代擴增后仍具有干細胞特性,且具有強大的增殖能力、多向分化潛能及免疫原性低等特性。我們前期研究顯示,與正常人相比,PE患者母胎界面MSCs生長減緩且其免疫抑制功能發(fā)生異常。我們利用微小RNA(microRNA,miRNA)芯片技術(shù)對母胎界面處MSCs中的miRNAs表達譜進行了分析,發(fā)現(xiàn)在蛻膜來源的MSCs中,miRNAs的表達與正常人顯著不同[8]。我們進一步的研究顯示,miR-16在PE的發(fā)病中扮演著重要的角色[9]。miR-16可通過靶向調(diào)控與細胞周期相關(guān)的cyclin E1和血管生成相關(guān)的血管內(nèi)皮生長因子(vascular endothelial growth factor,VEGF)-A而抑制MSCs的增殖活性,引起MSCs的G0/G1期阻滯并且抑制其對血管新生的調(diào)節(jié)功能[9]。但是引起PE患者母胎界面MSCs中miR-16表達異常的機制仍不清楚。
在正常的妊娠過程中,雌激素水平會隨著孕周的增加而顯著升高。雌激素在分娩[10]、孕酮合成[11]、蛻膜基質(zhì)細胞生長[12]以及胎盤轉(zhuǎn)移方面起到了重要的調(diào)控作用[13]。雌激素還通過促進血管形成[14-15]及血管舒張[16],調(diào)節(jié)母胎界面處的血管適應(yīng)。同時,雌激素可降低妊娠過程中氧化物質(zhì)的增加并抑制炎性因子的升高[16-18]。然而,在PE患者中雌激素水平與正常孕婦相比卻發(fā)生降低,尤其是雌二醇(estradiol,E2),在中度和重度PE患者中都顯著下降[18-20]。同時,研究發(fā)現(xiàn)E2可以通過調(diào)控miRNA的表達來調(diào)控腫瘤的發(fā)生、發(fā)展[21]并發(fā)揮免疫調(diào)節(jié)功能[22]。以上結(jié)果提示E2的下降可能是引起PE患者miR-16升高的原因。因此,本研究分析E2如何通過調(diào)控miR-16的表達來影響MSCs生長,以期為PE的防治提供新的靶點。
正常孕婦和重度子癇前期患者外周血取自南京大學(xué)醫(yī)學(xué)院附屬鼓樓醫(yī)院婦產(chǎn)科。所用材料均嚴格遵守醫(yī)學(xué)倫理道德規(guī)范,經(jīng)產(chǎn)婦及家屬同意,并經(jīng)鼓樓醫(yī)院醫(yī)學(xué)倫理委員會批準。兩組孕婦的年齡、體重指標和孕周相互匹配。
正常孕婦(control)組為剖宮產(chǎn)術(shù)的足月正常妊娠者(36周<孕周<40周),共20例。正常妊娠標準:(1)妊娠順利進行,(2)血壓<140/90 mmHg,(3)無蛋白尿,本次妊娠胎兒發(fā)育正常,無任何內(nèi)、外科并發(fā)癥,無不良妊娠史,無原發(fā)性高血壓、糖尿病和慢性腎炎等病史。重度PE組為剖宮產(chǎn)術(shù)的足月妊娠者(36周<孕周<40周),共20例。重度PE診斷標準為:(1)收縮壓≥160 mmHg 和(或)舒張壓≥110 mmHg,(2)蛋白尿>2.0 g/24 h或持續(xù)(++)以上,剔除妊娠合并原發(fā)性高血壓、糖尿病和慢性腎病等疾患的病例。PE 病人高血壓和蛋白尿在產(chǎn)后6周恢復(fù)正常。
E2和4-羥基他莫昔芬(4-hydroxytamoxifen,TAM)購自Sigma-Aldrich;雌激素受體(estrogen receptor,ER)α激動劑丙基吡唑三醇(propyl pyrazole triol, PPT)、ERβ激動劑丙腈(diarylpropionitrile, DPN)和 雌激素受體拮抗劑ICI 182780 購自Tocris Bioscience。
3.1蛻膜來源的間充質(zhì)干細胞的獲取 正常孕婦蛻膜取自南京大學(xué)醫(yī)學(xué)院附屬鼓樓醫(yī)院婦產(chǎn)科。取好的蛻膜組織在無菌狀態(tài)下用預(yù)冷的含0.01%青霉素和鏈霉素的1×PBS緩沖液沖洗,清除蛻膜組織附帶的血塊。在基礎(chǔ)培養(yǎng)基(DMEM/F12)中,將組織剪成2 mm×1 mm×1 mm碎塊,離心,加入與組織等體積的CDH混合酶,37 ℃振蕩消化2~3 h,用基礎(chǔ)培養(yǎng)基洗3次,置于含10% 胎牛血清的DMEM/F12完全培養(yǎng)基中。調(diào)整細胞密度為1×109/L,培養(yǎng)于37 ℃、5% CO2培養(yǎng)箱中,2~3 d后,輕輕晃動培養(yǎng)板,全量換液,待細胞鋪滿度達80%左右,用2.5 g/L的胰酶消化,常規(guī)傳代。取第3代~第7代的細胞,流式細胞術(shù)分析其表面標志物,確定其為MSCs后用于后續(xù)試驗。
3.2MSCs 活力的檢測 不同濃度的(5、 10及100 nmol/L)E2或10 nmol/L E2聯(lián)合雌激素受體拮抗劑或激動劑處理MSCs 24 h和48 h后,用CCK-8試劑盒檢測MSCs的活力。
3.3Real-time PCR檢測miRNA表達量 不同濃度的(5、10及100 nmol/L)E2處理 MSCs 0、3、6、12及24 h后,提取MSCs中的miRNA。用 10 nmol/L E2聯(lián)合雌激素受體拮抗劑和激動劑處理MSCs 12 h后,提取MSCs中的miRNA。 miRNA的提取按照mirVanaTMmiRNA Isolation Kit的操作說明提取小分子RNA,用SmartSpecTMPlus Spectrophotometer(Bio-Rad)測量RNA濃度,RNA完整性用甲醛變性瓊脂糖凝膠電泳鑒定。1 μg RNA用DNase I處理后做逆轉(zhuǎn)錄,20 μL逆轉(zhuǎn)錄反應(yīng)體系包括4 μL 5×RT Buf-fer、2 μL DTT(0.1 mol/L)、0.5 μL dNTPs(10 mmol/L)、1 μL M-MLV逆轉(zhuǎn)錄酶、0.2 μL RNase抑制劑(4×107U/L)和2 μL 混合的逆轉(zhuǎn)錄引物(可生成一個含有多種microRNAs的庫)和無酶水,反應(yīng)程序為: 16 ℃ 30 min, 42 ℃ 30 min, 85 ℃ 5 min。隨后,進行定量PCR,20 μL反應(yīng)體系包括1 μL 逆轉(zhuǎn)錄反應(yīng)產(chǎn)物(1∶10稀釋)、0.6 μL通用下游引物、0.6 μL上游引物、10 μL 2×TransStart SYBR Green qPCR SuperMix、0.4 μL Passive Reference Dye和無酶水,反應(yīng)在96孔板孵育,采用Applied BioSystems 7300 Sequence Detection System,程序為: 95 ℃ 10 min; 95 ℃ 15 s, 60 ℃ 1 min,40個循環(huán)。所有反應(yīng)重復(fù)3次。結(jié)果處理用U6 snRNA作為內(nèi)參照,靶miRNA表達量以2-ΔΔCt計算。
統(tǒng)計方法采用Graphpad Prism 5軟件進行處理。實驗數(shù)據(jù)用均數(shù)±標準差(mean±SD)表示,兩組數(shù)據(jù)間差異的比較采用t檢驗,多組數(shù)據(jù)采用單因素方差分析。以P<0.05為差異有統(tǒng)計學(xué)意義。
本實驗收集10例正常孕婦和10例重度PE患者外周血,分離血清后,用ELISA試劑盒檢測外周血清中E2的濃度。結(jié)果顯示,重度PE患者外周血中E2濃度較正常組顯著下降(P<0.01),見圖1。
Figure 1. The concentration of E2in peripheral blood between normal pregnant women and severe PE patients.
圖1E2在正常孕婦及重度PE患者外周血的濃度
分離培養(yǎng)MSCs至第3代,進行流式表型檢測。結(jié)果所示,MSCs經(jīng)典表面分子CD29、CD90和CD73表達陽性,陰性標志分子CD106、CD14和CD45未表達,見圖2A。CCK-8實驗結(jié)果顯示,隨著E2濃度的增加,E2對MSCs的生長起到明顯的促進作用(P<0.05,P<0.01),見圖2B。Real-time PCR分析miR-16的表達結(jié)果顯示,10和100 nmol/L E2處理MSCs 12 h可明顯抑制miR-16的表達(P<0.05或P<0.01),見圖2C。10 nmol/L E2分別處理MSCs 0 h、3 h、6 h、12 h和24 h后,real-time PCR分析miR-16的表達,結(jié)果顯示E2作用6 h后,可明顯抑制miR-16的表達(P<0.01),見圖2D。
Figure 2. E2promoted the viability of MSCs and inhibited the expression of miR-16. A: flow cytometric characterization of MSCs; B: the viability of MSCs was analyzed after the cells were treated with E2at 0, 5, 10 and 100 nmol/L for 0 h, 24 h and 48 h; C: miR-16 expression in MSCs was tested after the cells were treated with E2at 0, 5, 10 and 100 nmol/L for 12 h; D: miR-16 expression in MSCs was tested after the cells were treated with E2at 10 nmol/L for 0 h, 3 h, 6 h, 12 h and 24 h. Mean±SD.n=3.*P<0.05,**P<0.01vscontrol (0 h or 0 nmol/L) group.
圖2E2促進MSCs細胞生長并抑制miR-16的表達
E2主要通過ER發(fā)揮作用。已知MSCs表達ERα及ERβ[23-24]。我們首先用ER的拮抗劑ICI 182780和TAM來分析E2是否通過ER發(fā)揮抑制miR-16的作用。在加入1 μmol/L ICI 182780和1 μmol/L TAM 6 h后,再加入10 nmol/L E2處理12 h,檢測miR-16的表達。結(jié)果顯示在預(yù)先加入ER拮抗劑后,E2失去對miR-16的抑制作用(P<0.01),見圖3A。進一步我們用ERα及ERβ的特異性激動劑PPT(10 nmol/L) 和DPN(10 nmol/L)處理MSCs 12 h,結(jié)果顯示,僅ERα特異性激動劑PPT可顯著降低miR-16的表達(P<0.01),見圖3B。上述結(jié)果表明,E2主要通過ERα來抑制MSCs中miR-16表達。
Figure 3. E2inhibited the expression of miR-16 in the MSCs by ERα. A: miR-16 expression was checked after the MSCs were treated with 10 nmol/L E2and 1 μmol/L ICI 182780 or TAM for 12 h; B: miR-16 expression was checked after the MSCs were treated with 10 nmol/L E2, PPT or DPN for 12 h. Mean±SD.n=3.**P<0.01vscontrol group;##P<0.01vsE2group.
圖3E2通過ERα抑制MSCs中miR-16的表達
上述結(jié)果顯示E2可以促進MSCs細胞生長,而且E2可以抑制miR-16的表達。為進一步分析E2是否是通過抑制miR-16的表達來影響MSCs細胞的生長,我們在E2處理的同時轉(zhuǎn)染miR-16 mimic片段進入MSCs中,分別于24 h和48 h后觀察細胞生長情況。結(jié)果示,E2可以明顯促進MSCs的活力(P<0.01),而同時轉(zhuǎn)染miR-16后,細胞的活力被部分逆轉(zhuǎn)(P<0.05),見圖4。
Figure 4. E2promoted the viability of MSCs by inhibiting the expression of miR-16. Mean±SD.n=3.**P<0.01vscontrol group;#P<0.05vsE2group.
圖4E2通過抑制miR-16的表達促進MSCs活力
MSCs在母胎界面發(fā)揮重要的免疫調(diào)控作用和促血管形成作用。在PE患者中,蛻膜MSCs的生長和免疫學(xué)功能發(fā)生異常,而miRNA在其中扮演了重要的角色。但是miRNA為什么會發(fā)生異常卻鮮有報道。我們研究發(fā)現(xiàn),PE患者外周血中E2的濃度顯著下降,而E2在促進MSCs生長和功能方面發(fā)揮重要作用,而且E2可以通過調(diào)控miRNA的表達來發(fā)揮作用[21]。因此,我們推測E2可能會通過影響miRNA的表達來發(fā)揮促進MSCs生長的作用。本研究結(jié)果顯示,E2可以通過顯著下調(diào)miR-16的表達來促進MSCs的生長,而ERα介導(dǎo)了此過程。
MSCs已在移植物抗宿主病[25]、實驗性變應(yīng)性腦脊髓炎[26]、缺血再灌注損傷[27]及系統(tǒng)性紅斑狼瘡患者[28]等疾病的治療方面初見成效。另一方面,MSCs可以調(diào)控血管形成[29-31]。研究發(fā)現(xiàn)胎盤中的MSCs,具有促進血管成熟和血管穩(wěn)定的作用[32]。體內(nèi)實驗也證實骨髓MSCs的移植可以促進血管重鑄[33]。目前研究顯示,MSCs體內(nèi)治療PE動物模型可以明顯改善PE的癥狀和妊娠結(jié)局[34]。這提示我們,研究PE患者中MSCs生長和功能異常的分子機制對于將來MSCs用于臨床治療PE患者具有重要的臨床價值。
E2對MSCs生長和功能具有重要的調(diào)控作用。Chen等[35]發(fā)現(xiàn),E2處理后,大鼠來源MSCs的集落數(shù)量明顯增多,而且其凋亡減少。此外,研究表明E2可有效改善MSCs的功能[35],E2可以抵抗過氧化氫對MSCs的促凋亡作用并抑制MSCs中炎性因子IL-6的分泌。我們的研究結(jié)果顯示E2可以通過調(diào)控miR-16的表達來促進MSCs的生長,提示E2預(yù)處理的MSCs可能會增強其治療效果。
E2通過ER發(fā)揮調(diào)控基因表達的功能主要有2種方式,包括基因組途徑和非基因組途徑?;蚪M途徑是指E2激活ER后,ER進入細胞核并與靶基因啟動子上的雌激素反應(yīng)元件結(jié)合,直接促進基因轉(zhuǎn)錄。非基因組途徑是指E2結(jié)合ER后,通過激活下游的PI3K/Akt及MAPK/ERK等信號通路,間接影響靶基因表達。因此,E2通過何種方式調(diào)控miR-16的表達有待進一步研究。
綜上所述,E2對維持母胎界面間充質(zhì)干細胞的生長具有重要作用,而E2通過ERα來抑制miR-16的表達是其發(fā)揮促進作用的重要途徑。PE患者中E2濃度顯著下調(diào),導(dǎo)致miR-16在MSCs中異常高表達可能是導(dǎo)致PE發(fā)病的原因之一。
[1] Levine RJ, Maynard SE, Qian C, et al. Circulating angiogenic factors and the risk of preeclampsia[J]. N Engl J Med, 2004, 350(7):672-683.
[2] Laresgoiti-Servitje E, Gómez-López N, Olson DM. An immunological insight into the origins of pre-eclampsia[J]. Hum Reprod Update, 2010, 16(5): 510-524.
[3] Goldman-Wohl DS, Yagel S. Examination of distinct fetal and maternal molecular pathways suggests a mechanism for the development of preeclampsia[J]. J Reprod Immunol, 2007, 76(1-2): 54-60.
[5] Powe CE, Levine RJ, Karumanchi SA. Preeclampsia, a disease of the maternal endothelium: the role of antiangiogenic factors and implications for later cardiovascular di-sease[J]. Circulation, 2011, 123(24):2856-2869.
[6] Banek CT, Gilbert JS. Approaching the threshold for predicting preeclampsia: monitoring angiogenic balance during pregnancy[J]. Hypertension, 2011, 58(5):774-775.
[7] 王躍春, 李業(yè)霞, 段阿林,等. 人臍帶間充質(zhì)干細胞的快速分離、純化及凍存[J]. 中國病理生理雜志, 2010, 26(8):1658-1661.
[8] Zhao G, Zhou X, Chen S, et al. Differential expression of microRNAs in decidua-derived mesenchymal stem cells from patients with pre-eclampsia[J]. J Biomed Sci, 2014, 21:81.
[9] Wang Y, Fan H, Zhao G, et al. miR-16 inhibits the proliferation and angiogenesis-regulating potential of mesenchymal stem cells in severe pre-eclampsia[J]. FEBS J, 2012, 279(24): 4510-4524.
[10] Shikichi M, Iwata K, Ito K, et al. Abnormal pregnancies associated with deviation in progestin and estrogen profiles in late pregnant mares: a diagnostic aid[J]. Theriogeno-logy, 2017, 98:75-81.
[11] Albrecht ED, Pepe GJ. Placental steroid hormone biosynthesis in primate pregnancy[J]. Endocr Rev, 1990, 11(1):124-150.
[12] Shao J, Li MQ, Meng YH, et al. Estrogen promotes the growth of decidual stromal cells in human early pregnancy[J]. Mol Hum Reprod, 2013, 19(10):655-664.
[13] Pepe GJ, Albrecht ED. Actions of placental and fetal adrenal steroid hormones in primate pregnancy[J]. Endocr Rev, 1995, 16(5):608-648.
[14] Shifren JL, Tseng JF, Zaloudek CJ, et al. Ovarian steroid regulation of vascular endothelial growth factor in the human endometrium: implications for angiogenesis during the menstrual cycle and in the pathogenesis of endometriosis[J]. J Clin Endocrinol Metab, 1996, 81(8):3112-3118.
[15] Albrecht ED, Pepe GJ. Estrogen regulation of placental angiogenesis and fetal ovarian development during primate pregnancy[J]. Int J Dev Biol, 2010, 54(2-3):397-408.
[16] Prabhushankar R, Krueger C, Manrique C. Membrane estrogen receptors: their role in blood pressure regulation and cardiovascular disease[J]. Curr Hypertens Rep, 2014, 16(1):408.
[17] Reyes MR, Sifuentes-Alvarez A, Lazalde B. Estrogens are potentially the only steroids with an antioxidant role in pregnancy:invitroevidence[J]. Acta Obstet Gynecol Scand, 2006, 85(9):1090-1093.
[18] Oron G, Ben-Haroush A, Hod M, et al. Serum-soluble CD40 ligand in normal pregnancy and in preeclampsia[J]. Obstet Gynecol, 2006, 107(4):896-900.
[19] Jobe SO, Tyler CT, Magness RR. Aberrant synthesis, metabolism, and plasma accumulation of circulating estrogens and estrogen metabolites in preeclampsia implications for vascular dysfunction[J]. Hypertension, 2013, 61(2):480-487.
[21] Di Leva G, Piovan C, Gasparini P, et al. Estrogen mediated-activation of miR-191/425 cluster modulates tumorigenicity of breast cancer cells depending on estrogen receptor status[J]. PLoS Genet, 2013, 9(3):e1003311.
[22] Dai R, Phillips RA, Zhang Y, et al. Suppression of LPS-induced interferon-γ and nitric oxide in splenic lymphocytes by select estrogen-regulated miRNAs: a novel mechanism of immune modulation[J]. Blood, 2008, 112(2):4591-4597.
[24] Zappia E, Casazza S, Pedemonte E, et al. Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy[J]. Blood, 2005, 106(5):1755-1761.
[25] T?gel F, Hu Z, Weiss K, et al. Administered mesenchymal stem cells protect against ischemic acute renal failure through differentiation-independent mechanisms[J]. Am J Physiol Renal Physiol, 2005, 289(1):F31-F42.
[26] Sun L, Akiyama K, Zhang H, et al. Mesenchymal stem cell transplantation reverses multiorgan dysfunction in systemic lupus erythematosus mice and humans[J]. Stem Cells, 2009, 27(6):1421-1432.
[27] Kasper G, Dankert N, Tuischer J, et al. Mesenchymal stem cells regulate angiogenesis according to their mecha-nical environment[J]. Stem Cells, 2007, 25(4):903-910.
[28] Ishii M, Shibata R, Numaguchi Y, et al. Enhanced angiogenesis by transplantation of mesenchymal stem cell sheet created by a novel magnetic tissue engineering me-thod[J]. Arterioscler Thromb Vasc Biol, 2011, 31(10): 2210-2215.
[29] Chen J, Park HC, Addabbo F, et al. Kidney-derived mesenchymal stem cells contribute to vasculogenesis, angiogenesis and endothelial repair[J]. Kidney Int, 2008, 74(7):879-889.
[30] Castrechini NM, Murthi P, Gude NM, et al. Mesenchymal stem cells in human placental chorionic villi reside in a vascular niche[J]. Placenta, 2010, 31(3):203-212.
[31] Liao J, Chen X, Li Y, et al. Transfer of bone-marrow-derived mesenchymal stem cells influences vascular remodeling and calcification after balloon injury in hyperlipidemic rats[J]. J Biomed Biotechnol, 2012, 2012:165296.
[32] Liu L, Zhao G, Fan H, et al. Mesenchymal stem cells ameliorate Th1-induced pre-eclampsia-like symptoms in mice via the suppression of TNF-α expression[J]. PLoS One, 2014, 9(2):e88036.
[33] Chen FP, Hu CH, Wang KC. Estrogen modulates osteogenic activity and estrogen receptor mRNA in mesenchymal stem cells of women[J]. Climacteric, 2013, 16(1):154-160.
[34] Hong L, Krishnamachari Y, Seabold D, et al. Intracellular release of 17-β estradiol from cationic polyamidoamine dendrimer surface-modified poly (lactic-co-glycolic acid) microparticles improves osteogenic differentiation of human mesenchymal stromal cells[J]. Tissue Eng Part C Me-thods, 2011, 17(3):319-325.
[35] Chen HY, Zhang X, Chen SF, et al. The protective effect of 17β-estradiol against hydrogen peroxide-induced apoptosis on mesenchymal stem cell[J]. Biomed Pharmacother, 2012, 66(1):57-63.
Estradiol promotes growth of decidua derived mesenchymal stem cells by inhibiting miR-16 via estrogen receptor α
ZHANG Ying, ZHAO Guang-feng, LI Jie
(TheAffiliatedHospitalofNanjingUniversityMedicalSchool,Nanjing210008,China.E-mail:zhy7359@sina.com)
AIM: To study the effect of estradiol (E2) on the viability of mesenchymal stem cells (MSCs) derived from the decidua of the placenta by regulating the expression of microRNA-16 (miR-16).METHODSThe concentration of E2in the peripheral blood of normal pregnant women and the patients with severe preeclampsia (PE) was measured. The effects of E2at different concentrations on the viability of MSCs were analyzed. The effect of E2at different concentrations on the expression of miR-16 in the MSCs was detected, and which estrogen receptor (ER) mediated the regulatory effect of E2on miR-16 expression was determined.RESULTSThe concentration of E2in peripheral blood of the patients with severe PE was significantly decreased (P<0.01). After treatment with E2at 5, 10 and 100 nmol/L for 48 h, the viability of MSCs was increased (P<0.05). The expression level of miR-16 was down-regulated in the MSCs treated with E2at 5, 10 and 100 nmol/L for 12 h. After treatment with E2at 10 nmol/L for different time (0 h, 3 h, 6 h, 12 h and 24 h), the expression level of miR-16 in the MSCs showed a clear time-dependent downward trend. E2significantly promoted the viability of MSCs, and the cell viability was significantly reversed after miR-16 pretreatment. Pretreatment with estrogen receptor antagonists ICI 182780 and tamoxifen for 6 h attenuated the inhibitory effect of E2on miR-16 expression. Only ERα agonist propyl pyrazole triol significantly inhibited the expression of miR-16 in MSCs but ERβ agonist diarylpropionitrile did not.CONCLUSIONE2promotes the growth of decidua-derived MSCs by inhibiting miR-16 via ERα.
Estradiol; MicroRNA-16; Preeclampsia; Mesenchymal stem cells
1000- 4718(2017)12- 2227- 06
2017- 04- 10
2017- 08- 07
國家自然科學(xué)基金資助項目(No. 81401223)
△通訊作者 Tel: 025-83106666; E-mail: zhy7359@sina.com
R363.2; R714.2
A
10.3969/j.issn.1000- 4718.2017.12.018
(責(zé)任編輯: 陳妙玲, 羅 森)