許江海,趙易
(1. 杭州電子科技大學理學院,浙江 杭州 310018;2. 杭州師范大學理學院,浙江 杭州 311121)
|x|α的有理插值
許江海1,趙易2
(1. 杭州電子科技大學理學院,浙江 杭州 310018;2. 杭州師范大學理學院,浙江 杭州 311121)
在選取三角函數(shù)結點組的情況下,研究了Newman-α型有理算子逼近一類非光滑函數(shù)的收斂速度,給出了在該結點組下的有理函數(shù)的確切逼近階,并得到了該結果優(yōu)于結點組取作第一、二類Chebyshev結點組、等距結點組的有理插值等情形時的結論。
有理插值; Newman-α型有理算子; 逼近階
|E2(n-1)(X;x)|=
為方便證明定理,先給出如下引理。
現(xiàn)證明定理1。
證明由于
和|x|α都是偶函數(shù),故只考慮x∈[0,1]。
由此有
由結果3得
結合2)、3)有
|E2(n-1)(X;x)|=
|h2(n-1)(X;x)|=
結合4)、5)有
|E2(n-1)(X;x)|=
綜合上面5種情形有
|E2(n-1)(X;x)|=
定理1得證??梢宰C明定理1中的逼近階為最優(yōu),本文得到以下定理:
其中
有
由上式可得
定理得證。也說明定理1中的逼近階不可改進。
[1] BERNSTEIN S. Quelques remarques surl interpolation [J]. Mathematische Annalen, 1918, 79(1): 1-12.
[2] NEWMAN D J. Rational approximation to|x|[J]. The Michigan Mathematical Journal, 1964, 11(1): 11-14.
[3] BRUTMAN L, PASSOW E. Rational interpolation to|x|at the Chebyshev nodes [J]. Bulletin of the Australian Mathematical Society, 1997, 56(1): 81-86.
[4] BRUTMAN L. On rational interpolation to|x| at the adjusted Chebyshev nodes [J]. Journal of Approximation Theory, 1998, 95(1): 146-152.
[5] 張慧明,李建俊. |x|在第二類Chebyshev結點的有理逼近[J]. 鄭州大學學報(理學版),2010, 42(2): 1-3.
ZHANG H M, LI J J. Rational approximation to |x| at the Chebyshev nodes of the second kind [J]. Journal of Zhengzhou University (Natural Science Edition), 2010, 42(2): 1-3.
[6] MAO X. On Lagrange interpolation to|x|α(1<α<2)with equally spaced nodes [J]. Analysis in Theory and Applications, 2004, 20(3): 281-287.
[7] 張慧明,門玉梅,李建俊. |x|在正切結點組的有理插值[J]. 天津師范大學學報(自然科學版),2011, 31(4): 5-6.
ZHANG H M, MEN Y M, LI J J. On rational interpolation to |x| at nodes of tangent [J]. Journal of Tianjin Normal University (Natural Science Edition), 2011, 31(4): 5-6.
[8] ZHU L Y, DONG Z L. On Newman-type rational interpolation to |x| at the Chebyshev nodes of the second kind [J]. Analysis in Theory and Applications, 2006, 22(3): 262-270.
[9] 詹倩, 許樹聲. 基于一類新結點集的Newman型有理插值算子[J]. 數(shù)學進展,2014, 44(5): 757-764.
ZHAN Q, XU S S. Newman-type rational interpolation operator based on a new type set of nodes [J]. Advances in Mathematics, 2014, 44(5): 757-764.
[10] 張慧明,段生貴,李建俊. |x|α在第二類Chebyshev結點的有理插值[J]. 四川師范大學學報(自然科學版),2015, 38(6): 889-892.
ZHANG H M, DUAN S G, LI J J. On rational interpolation to |x|αat the Chebyshev nodes of the second kind [J]. Journal of Sichuan Normal University (Natural Science), 2015, 38(6): 889-892.
[11] 張慧明,李建俊. |x|α在 Chebyshev結點的有理插值[J]. 黑龍江大學自然科學學報,2016, 33(4): 491-495.
ZHANG H M, LI J J. On rational interpolation to |x|αat the Chebyshev nodes [J]. Journal of Natural Science of Heilongjiang University, 2016, 33(4): 491-495.
[12] WIELONSKY F. Rational approximation to the exponential function with complex conjugate interpolation points [J]. Journal of Approximation Theory, 2001, 111(2): 344-368.
[13] ISERLES A. Rational interpolation to exp(-x) with application to certain Stiff systems [J]. SIAM Journal on Numerical Analysis, 1981, 18(1): 1-12.
Onrationalinterpolationto|x|α
XUJianghai1,ZHAOYi2
(1. School of Science, Hangzhou Dianzi University, Hangzhou 310018,China;2. Faculty of Science, Hangzhou Normal University, Hangzhou 311121,China)
The convergence rate of a Newman-αtype rational operator approximating a class of nonsmooth functions is studied, and the exact approximation order of the rational function under the group of trigonometric functions is given. The result is superior to the case when the node group is taken as the first and the second Chebyshev nodes group, the rational interpolation of equidistant nodes group and so on.
rational interpolation;Newman-αtype rational operators;order of approximation
2017-04-02
國家自然科學基金 (11601110)
許江海(1992年生),男;研究方向函數(shù)逼近論及構造分析; E-mail: 857419568@qq.com
趙易(1976年生),女;研究方向函數(shù)逼近論及構造分析;E-mail: mathyizhao@126.com
O174.41
A
0529-6579(2017)06-0064-04