王瑾杰,丁建麗,張 喆,陳文倩
?
基于多源遙感數(shù)據(jù)的艾比湖流域鹽土SWAT模型參數(shù)修正
王瑾杰1,2,3,4,丁建麗1,2,4※,張 喆2,4,陳文倩2,4
(1. 新疆大學(xué)生態(tài)學(xué)科博士后科研流動(dòng)站,烏魯木齊 830046;2. 新疆大學(xué)資源與環(huán)境科學(xué)學(xué)院智慧城市與環(huán)境建模自治區(qū)普通高校重點(diǎn)實(shí)驗(yàn)室,烏魯木齊 830046;3. 新疆交通職業(yè)技術(shù)學(xué)院,烏魯木齊 831401; 4. 新疆大學(xué)綠洲生態(tài)教育部重點(diǎn)實(shí)驗(yàn)室,烏魯木齊 830046)
在SWAT(soil and water assessment tool)模型模擬地表分量過(guò)程中,常默認(rèn)土壤剖面電導(dǎo)率(electrical conductivity,EC)值為0或0.1,將其應(yīng)用于土壤鹽漬化程度較高的流域時(shí),不符合下墊面實(shí)際情況。為確保水文模擬逼近真實(shí)地表模擬過(guò)程,進(jìn)一步提高模擬精度,該文利用GF-1號(hào)衛(wèi)星16 m分辨率多光譜遙感影像結(jié)合分類回歸樹法反演艾比湖流域區(qū)域尺度0~100 cm土壤剖面電導(dǎo)率,模擬值與實(shí)測(cè)值均方根最大值誤差為4.81 dS/m,相對(duì)誤差最大值為15.17%。模擬值用于修正EC值,結(jié)果表明:EC值修正后的SWAT模型土壤水分模擬值,較修正前模擬值精度提高23.84個(gè)百分點(diǎn)。該方法在實(shí)現(xiàn)SWAT模型參數(shù)本地化的同時(shí),有效提高了土壤水分模擬精度,可為土壤鹽漬化區(qū)域水文模擬提供參考。
土壤;電導(dǎo)率;遙感;鹽漬化; SWAT模型;GF-1
地表分量模擬是地學(xué)研究領(lǐng)域中重要的組成部分,減少其不確定性、提高模擬精度是模擬過(guò)程中亟待解決的關(guān)鍵科學(xué)問(wèn)題。作為地表分量模擬模型之一[1],SWAT(soil and water assessment tool)綜合考慮了氣候、土壤、地形、植被、人類活動(dòng)等多種要素,是具有很強(qiáng)物理機(jī)制的長(zhǎng)時(shí)段流域分布式水文模型[2],已被廣泛應(yīng)用。
SWAT模型的功能和參數(shù)設(shè)置以雨量豐富的濕潤(rùn)地區(qū)為基礎(chǔ)[3],故在其他地區(qū)應(yīng)用時(shí)需根據(jù)地域特點(diǎn)對(duì)參數(shù)進(jìn)行本地化修正。例如:Andersson等[4]為適應(yīng)區(qū)域氣候變化,以非洲南部流域?yàn)槔龑r(shí)空動(dòng)態(tài)的泰森多邊形法嵌入氣象數(shù)據(jù)以提高SWAT模型模擬精度;Kim等[5-10]根據(jù)當(dāng)?shù)貜搅餮a(bǔ)給方式對(duì)融雪模塊進(jìn)行改進(jìn)以提高模擬精度;魏沖等[11]針對(duì)不同景觀格局,通過(guò)設(shè)置多套試驗(yàn)參數(shù),分析SWAT模型對(duì)不同景觀格局變化的敏感性,生成基于不同景觀格局的模擬結(jié)果;鄭捷等[12]對(duì)SWAT模型的農(nóng)作物耗水量參數(shù)進(jìn)行改進(jìn),在平原型灌溉區(qū)應(yīng)用時(shí)取得較好的結(jié)果。國(guó)內(nèi)外關(guān)于SWAT模型的改進(jìn)研究還有很多[13-18],但對(duì)下墊面土壤鹽堿化程度較高區(qū)域的土壤電導(dǎo)率參數(shù)修正方法鮮見報(bào)道。目前,SWAT模型土壤數(shù)據(jù)庫(kù)多采用與其土壤粒徑級(jí)配標(biāo)準(zhǔn)及土壤質(zhì)地標(biāo)準(zhǔn)相同的世界土壤數(shù)據(jù)庫(kù)(Harmonized World Soil Database,HWSD)制作而成,HWSD數(shù)據(jù)庫(kù)中的土壤剖面電導(dǎo)率(T_ECE)屬性字段在中國(guó)區(qū)域應(yīng)用時(shí),因?yàn)闆](méi)有更好的相關(guān)數(shù)據(jù)予以訂正,所以全部默認(rèn)為0或0.1。而土壤電導(dǎo)率(electrical conductivity,EC)直接影響土壤水分和徑流量的計(jì)算,采用HWSD默認(rèn)值,可能不適用于土壤鹽堿化程度較高的地區(qū)的地表分量模擬。
本文以土壤鹽漬化程度較高的新疆艾比湖流域?yàn)檠芯繀^(qū),基于GF-1衛(wèi)星16 m分辨率多光譜遙感影像,計(jì)算植被指數(shù)、土壤指數(shù)、鹽分系數(shù)及飽和度,結(jié)合分類回歸樹,建立反演艾比湖流域0~100 cm土壤剖面電導(dǎo)率模型;再利用反演的土壤剖面電導(dǎo)率數(shù)據(jù)修正HWSD數(shù)據(jù)庫(kù)中的EC值并重新計(jì)算SWAT土壤數(shù)據(jù)庫(kù)參數(shù)進(jìn)行土壤水分模擬;最后,將土壤電導(dǎo)率修正前后的SWAT模型土壤水分模擬結(jié)果與實(shí)測(cè)數(shù)據(jù)進(jìn)行對(duì)比,探索SWAT模型在干旱區(qū)高鹽漬土區(qū)域應(yīng)用時(shí)土壤電導(dǎo)率參數(shù)本地化方法,以期進(jìn)一步提高SWAT模型模擬精度,為SWAT模型在高鹽漬土區(qū)域地表分量的模擬提供參考。
艾比湖流域位于新疆維吾爾自治區(qū)博爾塔拉蒙古自治州境內(nèi)及周邊地區(qū)(圖1),流域三面環(huán)山,氣候變化劇烈,年降雨量稀少,日照時(shí)數(shù)充足,蒸發(fā)量大。流域內(nèi)有新疆最大的鹽水湖——艾比湖。近10 a來(lái),艾比湖及流域周邊生態(tài)環(huán)境急劇惡化,湖泊面積萎縮嚴(yán)重,導(dǎo)致干涸湖底面積不斷增加,湖濱荒漠化及周邊區(qū)域土壤鹽堿化程度不斷加劇。大面積裸露湖床及鹽殼受常年大風(fēng)影響,已使艾比湖成為中國(guó)西部沙塵暴、鹽塵暴主要策源地之一,嚴(yán)重影響天山北坡綠洲內(nèi)生態(tài)安全和可持續(xù)發(fā)展。模擬流域地表分量,可為解決流域相關(guān)地學(xué)問(wèn)題提供數(shù)據(jù)基礎(chǔ)。
注:1~30子流域編號(hào)
1.2.1 用于遙感反演土壤電導(dǎo)率的數(shù)據(jù)
本文利用多源遙感數(shù)據(jù)反演艾比湖流域土壤剖面電導(dǎo)率,涉及從中國(guó)衛(wèi)星工程應(yīng)用中心2014年6月4日采集的遙感圖像GF-1 16 m寬幅WFV多光譜遙感影像及野外實(shí)測(cè)土壤剖面電導(dǎo)率和土壤pH值數(shù)據(jù);其中植被指數(shù)、土壤指數(shù)、鹽分系數(shù)及飽和度數(shù)據(jù)基于文獻(xiàn)[19-20]方法采用GF-1號(hào)衛(wèi)星多波段組合計(jì)算生成。
植被指數(shù):NDVI=(4–3)/(4+3) DVI=4–3
土壤指數(shù):si1=(2·3)0.5
si2=(22+32+42)0.5
bi=(32+42)0.5
鹽分指數(shù):sr=(3–4)/(2 +4)
飽和度: int=(2+3)/2
式中2、3、4分別GF-1衛(wèi)星影像的綠光、紅光、近紅外波段;NDVI代表歸一化植被指數(shù);DVI代表差分植被指數(shù);si1代表通過(guò)紅、綠波段計(jì)算的土壤指數(shù);si2代表通過(guò)紅、綠及近紅外波段計(jì)算的土壤指數(shù);bi代表裸土指數(shù);int代表飽和度;sr代表鹽分指數(shù)。
GF-1衛(wèi)星反演艾比湖流域土壤剖面電導(dǎo)率精度采用2014年5月13日—5月21日38個(gè)野外實(shí)測(cè)數(shù)據(jù)與模擬結(jié)果進(jìn)行對(duì)比分析,野外采樣點(diǎn)分布見圖1。艾比湖流域綠洲區(qū)域田間采樣,分層采集,每個(gè)測(cè)量單元內(nèi)均勻布設(shè)3個(gè)點(diǎn),采集后將3個(gè)土樣均勻混合,實(shí)驗(yàn)室備制1∶5土水比浸提液,利用德國(guó)Cond 7310電導(dǎo)率測(cè)定儀測(cè)定土壤電導(dǎo)率、pH 值,測(cè)量?jī)x器精度可達(dá)小數(shù)點(diǎn)后3位。
1.2.2 用于SWAT模擬土壤水分的數(shù)據(jù)來(lái)源
驅(qū)動(dòng)SWAT模型需要3大數(shù)據(jù)庫(kù),分別為氣象數(shù)據(jù)庫(kù)、土壤數(shù)據(jù)庫(kù)和土地利用數(shù)據(jù)庫(kù)。每項(xiàng)數(shù)據(jù)庫(kù)都涉及眾多參數(shù)。其中,ASTER 30 m分辨率DEM數(shù)據(jù)來(lái)源于地理空間數(shù)據(jù)云,用于SWAT模型的流域劃分,并參與水文單元的劃分及計(jì)算;2010年多時(shí)相Landsat TM/ETM遙感影像,通過(guò)人工目視解譯生成的土地利用/覆被數(shù)據(jù)(Lucc)來(lái)源于中科院數(shù)據(jù)云(http://www.csdb.cn/),用于制作SWAT模型土地利用數(shù)據(jù)庫(kù);中國(guó)區(qū)域世界土壤數(shù)據(jù)庫(kù)(HWSD)來(lái)源于寒區(qū)旱區(qū)科學(xué)數(shù)據(jù)中心,用于制作SWAT模型土壤數(shù)據(jù)庫(kù);CMADS大氣數(shù)據(jù)集來(lái)源于寒區(qū)旱區(qū)科學(xué)數(shù)據(jù)中心,包括2008—2014年溫、壓、濕、風(fēng)、降水、太陽(yáng)輻射日尺度數(shù)據(jù),用于制作SWAT模型氣象數(shù)據(jù)庫(kù)。2008—2014年間日尺度土壤水分實(shí)測(cè)數(shù)據(jù),野外采集38個(gè)0~10 cm表層土壤樣本,烘干測(cè)定土壤水分,單位換算為mm。
1.3.1 土壤剖面電導(dǎo)率反演方法
土壤剖面電導(dǎo)率空間分異研究主要有傳統(tǒng)的土壤采樣方法、電磁感應(yīng)技術(shù)及遙感評(píng)估方法[21-25]。丁建麗等[26-27]基于遙感特征空間理論,利用LandsatTM數(shù)據(jù)和長(zhǎng)時(shí)間序列的野外實(shí)測(cè)數(shù)據(jù)構(gòu)建了多種綠洲土壤鹽分遙感監(jiān)測(cè)指數(shù)模型。Li等[28-29]利用EM38大地電導(dǎo)率儀和線性預(yù)測(cè)模型來(lái)獲取剖面土壤表觀電導(dǎo)率,并利用克里格法和分類回歸樹法模擬三維土體電導(dǎo)率的空間變化特征。劉廣明等[30]2015年以中原黃泛區(qū)河南省封丘縣為研究區(qū),基于土壤電導(dǎo)率發(fā)生機(jī)理,利用地形、植被指數(shù)、土壤指數(shù)、鹽分系數(shù)、地下水位及礦化度等因素構(gòu)建了土壤鹽分綜合評(píng)估模型,反演區(qū)域土壤鹽分均方根誤差為0.72~1.27 dS/m之間,取得良好效果。
基于上述研究,本文利用劉廣明等[30]基于土壤鹽漬化發(fā)生機(jī)理反演土壤電導(dǎo)率的方法,以GF-1衛(wèi)星16 m高分辨率遙感影像的多波段組合計(jì)算的土壤指數(shù)、植被指數(shù)、鹽分系數(shù)及飽和度作為自變量,將野外采樣得到的各層土壤電導(dǎo)率作為因變量,按不同土層輸入分類回歸樹(classification and regression tree,CART)軟件建模,建立基于分類回歸統(tǒng)計(jì)規(guī)則的線性模型,具體通過(guò)Cubist2.08數(shù)據(jù)挖掘軟件實(shí)現(xiàn)。再將線性模型和自變量圖像輸入ENVI軟件進(jìn)行計(jì)算,輸出各層土壤電導(dǎo)率空間分布圖,最終獲取0~100 cm艾比湖流域土壤剖面電導(dǎo)率空間數(shù)據(jù),用以代替與HWSD土壤數(shù)據(jù)庫(kù)中0~100 cm剖面EC值,從而實(shí)現(xiàn)利用高分辨率遙感數(shù)據(jù)修正SWAT土壤數(shù)據(jù)庫(kù)參數(shù)的目的。
1.3.2 SWAT模型地表分量模擬
SWAT模型通過(guò)建模模擬流域內(nèi)產(chǎn)水、產(chǎn)沙等物理過(guò)程的發(fā)生。建模需根據(jù)流域內(nèi)足以影響水文過(guò)程的不同土地利用方式、土壤屬性間的區(qū)域性差異將流域劃分成若干子流域,在子流域劃分的基礎(chǔ)上,將包含唯一土地覆蓋、土壤和管理措施的區(qū)域再劃分成若干水文響應(yīng)單元。水文響應(yīng)單元?jiǎng)t是流域進(jìn)行模擬產(chǎn)水、產(chǎn)沙、營(yíng)養(yǎng)物質(zhì)循環(huán)等計(jì)算的最小單元。SWAT模型進(jìn)行水文模擬可劃分為2個(gè)階段:1)控制子流域水流、泥沙等向主河道輸入的陸地階段;2)流域河網(wǎng)中水流、泥沙等向出水口運(yùn)移的水文循環(huán)匯流階段。兩個(gè)階段模擬完成后即完成了地表分量的模擬。本文選用ARCSWAT2009結(jié)合ARCGIS9.3 Desktop計(jì)算空間數(shù)據(jù);利用SPAW v6.02計(jì)算土壤參數(shù)。
利用相對(duì)誤差(relative error,RE)和均方根誤差(root mean square error,RMSE)檢驗(yàn)電導(dǎo)率和土壤水分模擬精度。
SWAT模擬眾多地表分量,本文采用與模擬結(jié)果時(shí)間相匹配的野外實(shí)測(cè)土壤水分?jǐn)?shù)據(jù)進(jìn)行對(duì)比分析,利用實(shí)測(cè)數(shù)據(jù)與模擬值RE和RmSE對(duì)SWAT模擬土壤水分結(jié)果進(jìn)行評(píng)價(jià)。
利用GF-1衛(wèi)星影像數(shù)據(jù)結(jié)合分類回歸樹法分別建立艾比湖流域土壤剖面電導(dǎo)率反演模型,計(jì)算公式如下:
EC1=113.74+1939.31int+2159.39bi+45.11DVI+
632.27NDVI–366.37si1–2554.20si2+575.14sr (1)
EC2=2.12–310.46int–388.56DVI+198.54NDVI–
64.92si1+331.90si2+142.13sr (2)
EC3=3.328–355.49int–173.70DVI–12.15NDVI–
9.01si1+230.19si2–3.47sr (3)
EC4=–2.58–135.79int+18.65bi–50.94DVI–
23.18NDVI+14.41si1+58.23si2–21.97sr (4)
EC5=–186.17–856.71int–633.08bi–243.12DVI (5)
EC6=491.84+805.93int+767.60bi+137.16DVI–
248.68NDVI–1259.23si1–155.08si2+230.86sr (6)
式中EC1~EC6代表0~10、>10~20、>20~40、>40~60、>60~80和>80~100 cm土壤電導(dǎo)率,dS/m。
為滿足HWSD數(shù)據(jù)庫(kù)的分層要求,將0~10、>10~20、>20~40 cm空間電導(dǎo)率數(shù)據(jù)加載入ARCGIS進(jìn)行圖層疊加,通過(guò)柵格計(jì)算器取其平均值作為修正HWSD數(shù)據(jù)庫(kù)0~30 cm土壤電導(dǎo)率數(shù)據(jù)。再將>40~60、>60~80和>80~100 cm空間數(shù)據(jù)進(jìn)行疊加取平均值,作為修正HWSD數(shù)據(jù)庫(kù)>30~100 cm土壤電導(dǎo)率數(shù)據(jù)。受野外實(shí)測(cè)數(shù)據(jù)限制,為滿足HWSD土壤數(shù)據(jù)庫(kù)分層標(biāo)準(zhǔn),本文用最接近HWSD 數(shù)據(jù)庫(kù)分層標(biāo)準(zhǔn)的野外實(shí)測(cè)數(shù)據(jù)0~40、>40~100 cm土壤電導(dǎo)率代替HWSD數(shù)據(jù)庫(kù)0~30、>30~100 cm的土壤電導(dǎo)率數(shù)據(jù)進(jìn)行修正。
GF-1衛(wèi)星影像反演得到艾比湖流域土壤鹽漬化空間分布圖覆蓋研究區(qū)3/4以上區(qū)域,為獲取覆蓋整個(gè)艾比湖流域的土壤剖面電導(dǎo)率數(shù)據(jù),均勻選取反演土壤剖面電導(dǎo)率圖層中500個(gè)樣點(diǎn)作為克里金空間插值的土壤樣本,得到完全覆蓋整個(gè)流域的土壤剖面電導(dǎo)率空間數(shù)據(jù)如圖2所示。
本文采用艾比湖流域2014年5月13日—21日38個(gè)野外實(shí)測(cè)土壤剖面鹽分?jǐn)?shù)據(jù)對(duì)GF-1衛(wèi)星結(jié)合分類回歸樹法建立的線性模型模擬值進(jìn)行驗(yàn)證,結(jié)果見表1。RMSE為1~5 dS/m,RE低于16%,以RE小于30%為標(biāo)準(zhǔn)[24],模擬結(jié)果較好。>40~100 cm模擬值較0~40 cm更接近實(shí)測(cè)值,主要是由于表層土壤鹽分分布空間差異較大。
統(tǒng)計(jì)艾比湖流域0~40、>40~100 cm實(shí)測(cè)土壤剖面電導(dǎo)率值和pH值數(shù)據(jù)的最大值、最小值、平均值、中位數(shù)、標(biāo)準(zhǔn)差、變異系數(shù)、峰度等指標(biāo)(表2)。結(jié)果顯示,土壤剖面EC變化范圍在0.173~118.49dS/m之間,且最大、最小值都在表層土壤,流域表層土壤鹽漬化程度在水平方向上存在較大空間分異。流域不同深度土壤電導(dǎo)率平均值為4.174~8.827 dS/m,且隨土壤深度的增加而減少,呈現(xiàn)鹽分向土壤表層聚集趨勢(shì)。流域土壤電導(dǎo)率變異系數(shù)隨土壤深度的增加而減少,且差異達(dá)50%以上,表層和底層變異系數(shù)分別為1.46和0.77,均呈中等變異強(qiáng)度。研究區(qū)0~40、>40~100 cm土層峰度值分別為14.33和3.69,差異明顯,說(shuō)明表層土壤鹽分含量較高,底部鹽分含量相對(duì)較低,鹽分有向表層聚集的特征。區(qū)域內(nèi)土壤剖面pH值為7.394~9.597,0~40、 >40~100 cm土層pH值的平均值分別為8.241和8.235,其變化趨勢(shì)隨著土壤深度的增加而增大,但變化差異相對(duì)較小;峰度值依然表現(xiàn)為表層較高,底層較小,且上下層變化差異較大。土壤鹽漬化是由土壤底層或地下水中溶解的可溶性鹽分沿土壤毛管空隙上升至地表,水分蒸發(fā)而鹽分留存在地表累積,從而引起地表鹽分的聚集。艾比湖屬博爾塔拉河下游,河水長(zhǎng)期注入湖中,導(dǎo)致湖濱及周邊地區(qū)地下水位上升,使地下水及土壤中鹽分帶入地表,導(dǎo)致艾比湖周邊土壤鹽漬化程度最高。由表1可知,0~40 cm土壤電導(dǎo)率模擬值與實(shí)測(cè)值RMSE較大,主要由研究區(qū)表層土壤電導(dǎo)率空間分布差異顯著導(dǎo)致;>40~100 cm土壤電導(dǎo)率模擬值與實(shí)測(cè)值RMSE為1.149 dS/m;土壤電導(dǎo)率模擬值與實(shí)測(cè)值RE均低于20%,模擬結(jié)果與丁建麗等[24]在新疆渭-庫(kù)綠洲典型鹽漬土區(qū)域土壤電導(dǎo)率模擬結(jié)果類似。
圖2 基于Kriging插值的艾比湖流域不同土層EC分布 Fig.2 Kriging spatial interpolation map of soil EC at different layers in Ebinur Lake Watershed
表1 艾比湖流域土壤剖面電導(dǎo)率精度驗(yàn)證
表2 不同土壤深度電導(dǎo)率和pH值數(shù)據(jù)統(tǒng)計(jì)
利用GF-1衛(wèi)星反演的0~100 cm土壤剖面電導(dǎo)率數(shù)據(jù)代替HWSD土壤數(shù)據(jù)庫(kù)中0~100 cm的T_ECE字段,重新計(jì)算SWAT土壤數(shù)據(jù)庫(kù)中0~30、>30~100 cm土壤層有效持水量(SOL_AWC1、SOL_AWC2)參數(shù),結(jié)果見表3。利用修正后T_ECE字段重新計(jì)算SWAT土壤數(shù)據(jù)庫(kù)各項(xiàng)參數(shù)時(shí)發(fā)現(xiàn):1)土壤電導(dǎo)率數(shù)據(jù)雖然只影響土壤層有效持水量,其他各項(xiàng)參數(shù)不發(fā)生變化,但土壤層有效持水量直接影響SWAT模擬地表徑流和土壤水分的精度;2)流域表層土壤電導(dǎo)率數(shù)值較高,SOL_AWC隨EC值而變化;不同土壤質(zhì)地SOL_AWC隨EC值變化特性不同。流域30~100 cm鹽分分布差異較小,變化范圍在1.27~4.51 dS/m之間。因此,下層土壤有效持水量SOL_AWC2變化幅度相對(duì)較小(0~0.033 mm)。
表3 艾比湖流域土壤剖面電導(dǎo)率修正前后 SWAT不同土層有效持水量參數(shù)計(jì)算結(jié)果
利用各項(xiàng)數(shù)據(jù)建立驅(qū)動(dòng)SWAT模型的土壤、土地利用及氣象3大數(shù)據(jù)庫(kù),利用GF-1反演土壤剖面電導(dǎo)率數(shù)據(jù)對(duì)土壤數(shù)據(jù)庫(kù)參數(shù)進(jìn)行修正,修正前、后SWAT模擬土壤水分結(jié)果如圖3所示。EC值修正前、后土壤水分模擬值與實(shí)測(cè)值間的相對(duì)誤差及均方根誤差如表4所示。
圖3 土壤剖面電導(dǎo)率修正前后SWAT土壤水分模擬值與實(shí)測(cè)值的比較
采用2014年5月13日—21日38個(gè)野外實(shí)測(cè)土壤水分?jǐn)?shù)據(jù)對(duì)土壤電導(dǎo)率修正前后的SWAT模擬土壤水分結(jié)果進(jìn)行精度驗(yàn)證(表4),修正后較修正前更接近實(shí)測(cè)值。修正前、后土壤水分模擬值與實(shí)測(cè)值間的RE分別為63.04%和39.20%,RMSE分別為1.79和1.34 mm。土壤電導(dǎo)率修正后SWAT模擬土壤水分精度還有待進(jìn)一步提高,但在土壤鹽漬化程度較高的區(qū)域,通過(guò)高分辨率遙感影像反演艾比湖流域土壤電導(dǎo)率修正HWSD中T_ECE參數(shù)的方法,較T_ECE參數(shù)未修正前SWAT模擬土壤水分精度提高23.84個(gè)百分點(diǎn),可見利用GF-1衛(wèi)星反演的土壤剖面電導(dǎo)率數(shù)據(jù)修正EC值默認(rèn)為0的SWAT土壤數(shù)據(jù)庫(kù),可有效提高土壤含水量模擬精度。
表4 艾比湖流域SWAT模型EC值修正前后土壤水分精度驗(yàn)證
模型參數(shù)修正作為一種典型的從源頭減少不確定性、提高模擬精度的方法,使地表水文模擬過(guò)程更接近研究區(qū)下墊面實(shí)際情況。本研究利用GF-1遙感影像結(jié)合其他多源遙感數(shù)據(jù),運(yùn)用分類回歸樹法對(duì)艾比湖流域土壤剖面電導(dǎo)率進(jìn)行建模,反演得到艾比湖流域0~100 cm土壤電導(dǎo)率數(shù)值,并利用實(shí)測(cè)值對(duì)反演結(jié)果進(jìn)行精度驗(yàn)證,其相對(duì)誤差分別為15.17%和1.66%。利用遙感反演土壤電導(dǎo)率數(shù)據(jù)對(duì)SWAT模型的土壤持水量參數(shù)進(jìn)行了修正,結(jié)果顯示,SWAT模型參數(shù)修正后土壤水分模擬值較未修正模擬值更接近實(shí)測(cè)值,模擬結(jié)果精度相對(duì)誤差減少了23.84個(gè)百分點(diǎn),說(shuō)明該方法對(duì)提高模擬精度具有較好效果。另外,除通過(guò)參數(shù)本地化修正外,還需深入研究SWAT模擬土壤水分的方法,從機(jī)理出發(fā)進(jìn)行改進(jìn),進(jìn)一步提高模擬精度將成為今后的研究重點(diǎn)。
[1] 王中根,劉昌明,黃友波. SWAT模型的原理、結(jié)構(gòu)及應(yīng)用研究[J]. 地理科學(xué)進(jìn)展,2003,22(1):79-86. Wang Zhonggen, Liu Changming, Huang Youbo. The theory of SWAT model and its application in Heihe basin[J]. Progress in Geography, 2003, 22(1): 79-86. (in Chinese with English abstract)
[2] 楊桂蓮,郝芳華,劉昌明,等. 基于SWAT模型的基流估算及評(píng)價(jià):以洛河流域?yàn)槔齕J]. 地理科學(xué)進(jìn)展,2003,22(5):463-471. Yang Guilian, Hao Fanghua, Liu Changming, et al. The study on baseflow estimation and assessment in SWAT--Luohe basin as an example[J]. Progress in Geography, 2003, 22(5): 463-471. (in Chinese with English abstract)
[3] 李碩,賴正清,王橋,等. 基于SWAT模型的平原河網(wǎng)區(qū)水文過(guò)程分布式模擬[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(6): 106-112. Li Shuo, Lai Zhengqing, Wang Qiao, et al. Distributed simulation for hydrological process in plain river network region using SWAT model[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(6): 106-112. (in Chinese with English abstract)
[4] Andersson J C M, Zehnder A J B, Bernhard W, et al. Improved SWAT model performance with time-dynamic voronoi tessellation of climatic input data in southern Africa1[J]. Jawra Journal of the American Water Resources Association, 2012, 48(3): 480-493.
[5] Kim S B, Shin H J, Park M, et al. Assessment of future climate change impacts on snowmelt and stream water quality for a mountainous high-elevation watershed using SWAT[J]. Paddy and Water Environment, 2015, 13(4): 1-13.
[6] Ficklin D L, Barnhart B L. SWAT hydrologic model parameter uncertainty and its implications for hydroclimatic projections in snowmelt-dependent watersheds[J]. Journal of Hydrology, 2014, 519(2): 2081-2090.
[7] Grusson Y, Sun X, Gascoin S, et al. Assessing the capability of the SWAT model to simulate snow, snow melt and streamflow dynamics over an alpine watershed[J]. Journal of Hydrology, 2015, 531(3): 574-588.
[8] Wang X, Melesse A M. Evaluation of the SWAT model's snowmelt hydrology in a northwestern Minnesota watershed[J]. Transactions of the Asabe, 2005, 48(48): 1359-1376.
[9] Dewalle D R, Rango A. Snowmelt-Runoff Model (SRM) Principles of Snow Hydrology [M]. Cambridge: Cambridge University Press, 2008: 306-364.
[10] Fuka D R, Easton Z M, Brooks E S. A simple process-based snowmelt routine to model spatially distributed snow depth and snowmelt in the SWAT Model[J]. Journal of the American Water Resources Association, 2012, 48(6): 1151-1161.
[11] 魏沖,宋軒,陳杰. SWAT模型對(duì)景觀格局變化的敏感性分析:以丹江口庫(kù)區(qū)老灌河流域?yàn)槔齕J]. 生態(tài)學(xué)報(bào),2014,34(2): 517-525. Wei Chong, Song Xuan, Chen Jie. Sensitivity analysis of swat model on changes of landscape pattern: A case study from Lao Guanhe Watershed in Danjiangkou Reservoir Area[J]. Acta Ecologica Sinica, 2014, 34(2): 517-525. (in Chinese with English abstract)
[12] 鄭捷,李光永,韓振中,等. 改進(jìn)的SWAT模型在平原灌區(qū)的應(yīng)用[J]. 水利學(xué)報(bào),2011,42(1):88-97. Zheng Jie, Li Guangyong, Han Zhengzhong, et al. Application of modified SWAT model in plain irrigation district[J]. Journal of Hydraulic Engineering, 2011, 42(1): 88-97. (in Chinese with English abstract)
[13] Ahl R S, Woods S W, Zuuring H R. Hydrologic calibration and validation of SWAT in a snow-dominated rocky mountain watershed, Montana, U.S.A. 1[J]. Jawra Journal of the American Water Resources Association, 2008, 44(6): 1411-1430.
[14] Krysanova V, Müller-Wohlfeil D I, Becker A. Development and test of a spatially distributed hydrological/water quality model for mesoscale watersheds[J]. Ecological Modelling, 1998, 106(2): 261-289.
[15] Sophocleous M. Two-way coupling of unsaturated-saturated flow by integrating the SWAT and MODFLOW models with application in an irrigation district in arid region of West China[J]. Journal of Arid Land, 2011, 3(3): 164-173.
[16] 李潤(rùn)奎,朱阿興,秦承志,等. 土壤數(shù)據(jù)對(duì)分布式流域水文模型模擬效果的影響[J]. 水科學(xué)進(jìn)展,2011,22(2): 168-174. Li Runkui, Zhu Axing, Qin Chengzhi, et al. Effects of spatial detail of soil data on distributed hydrological modeling[J]. Advances in Water Science, 2011, 22(2): 168-174. (in Chinese with English abstract)
[17] 胡連伍,王學(xué)軍,羅定貴,蔣穎. 不同子流域劃分對(duì)流域徑流、泥沙、營(yíng)養(yǎng)物模擬的影響-豐樂(lè)河流域個(gè)例研究[J]. 水科學(xué)進(jìn)展,2007(2):235-240. Hu Lianwu, Wang Xuejun, Luo DingGui, Jiang Yin. Effect of sub-watershed partitioning on flow, sediment and nutrient predictions: Case study in Fengle river watershed[J]. Advances in Water Science, 2007(2): 235-240. (in Chinese with English abstract)
[18] 黃清華,張萬(wàn)昌.SWAT分布式水文模型在黑河干流山區(qū)流域的改進(jìn)及應(yīng)用[J]. 南京林業(yè)大學(xué)學(xué)報(bào):自然科學(xué)版,2004,28(2):22-26. Huang Qinhua, Zhang Wanchang. Improvement and application of GIS-based distributed SWAT hydrological modeling on high altitude, cold, semi-arid catchment of heihe river basin,China[J]. Journal of Nanjing Forestry University: Natural Sciences, 2004, 28(2): 22-26. (in Chinese with English abstract)
[19] Metternicht G I, Zinck J A. Remote sensing of soil salinity: Potentials and constraints[J]. Remote Sensing of Environment, 2003, 85(1): 1-20.
[20] Toomanian N, Jalalian A, Khademi H, et al. Pedodiversity and pedogenesis in Zayandeh-rud Valley, Central Iran[J]. Geomorphology, 2006, 81(3/4): 376-393.
[21] Cruz-Cárdenas G, López-Mata L, Ortiz-Solorio C A, et al. Interpolation of Mexican soil properties at a scale of 1:1,000,000[J]. Geoderma, 2014, 213(1): 29-35.
[22] Singh A. Estimating long-term regional groundwater recharge for the evaluation of potential solution alternatives to waterlogging and salinisation[J]. Journal of Hydrology, 2011, 406(3/4): 245-255.
[23] 張東,塔西甫拉提·特依拜,張飛,等. 分?jǐn)?shù)階微分在鹽漬土高光譜數(shù)據(jù)預(yù)處理中的應(yīng)用[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(24):151-160
Zhang Dong, Taxipulati·Teyibai, Zhang Fei, et al. Application of fractional differential in preprocessing hyperspectral data of saline soil[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(24): 151-160. (in Chinese with English abstract)
[24] 丁建麗,瞿娟,孫永猛,等. 基于MSAVI-WI特征空間的新疆渭干河—庫(kù)車河流域綠洲土壤鹽漬化研究[J]. 地理研究,2013,32(2):223-232. Ding Jianli, Qu Juan, Sun Yongmeng, et al. The retrieval model of soil salinization information in arid region based on MSAVI-WI feature space: A case study of the delta oasis in Weigan-Kuqa watershed[J]. Geographical Research, 2013, 32(2): 223-232. (in Chinese with English abstract)
[25] Allbed A, Kumar L, Aldakheel Y Y. Assessing soil salinity using soil salinity and vegetation indices derived from IKONOS high-spatial resolution imageries: Applications in a date palm dominated region[J]. Geoderma, 2014, 230/231 (7): 1-8.
[26] 丁建麗,姚遠(yuǎn),王飛. 干旱區(qū)土壤鹽漬化特征空間建模[J]. 生態(tài)學(xué)報(bào),2014,34(16):4620-4631. Ding Jianli,Yao Yuan, Wang Fei. Detecting soil salinization in arid regions using spectral feature space derived from remote sensing data[J]. Acta Ecologica Sinica, 2014, 34(16): 4620-4631. (in Chinese with English abstract)
[27] 王飛,丁建麗,伍漫春. 基于NDVI-SI特征空間的土壤鹽漬化遙感模型[J]. 農(nóng)業(yè)工程學(xué)報(bào),2010,26(8):168-173. Wang Fei, Ding Jianli, Wu Manchun. Remote sensing monitoring models of soil salinization based on NDVI-SI feature space[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(8): 168-173. (in Chinese with English abstract)
[28] Li H Y, Shi Z, Webster R, et al. Mapping the three- dimensional variation of soil salinity in a rice-paddy soil[J]. Geoderma, 2013, 195/196(1): 31-41.
[29] 吳亞坤,劉廣明,楊勁松,等. 基于多源數(shù)據(jù)的中原黃泛區(qū)土壤鹽分空間變異分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(5):115-120. Wu Yakun, Liu Guangming, Yang Jinsong, et al. Spatial variability of soil salinity based on multi-source data for typical zone of flood area of the Yellow river in central China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(5): 115-120. (in Chinese with English abstract)
[30] 劉廣明,楊勁松. 土壤含鹽量與土壤電導(dǎo)率及水分含量關(guān)系的試驗(yàn)研究[J]. 土壤通報(bào),2001,32(z1):85-87. Liu Guangming, Yang Jinsong. Study on the correlation of soil salt content with electric conductivity and soil water content[J]. Chinese Journal of Soil Science 2001, 32(z1): 85-87. (in Chinese with English abstract)
王瑾杰,丁建麗,張 喆,陳文倩. 基于多源遙感數(shù)據(jù)的艾比湖流域鹽土SWAT模型參數(shù)修正[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(23):139-144. doi:10.11975/j.issn.1002-6819.2017.23.018 http://www.tcsae.org
Wang Jinjie, Ding Jianli, Zhang Zhe, Chen Wenqian. SWAT model parameters correction based on multi-source remote sensing data in saline soil in Ebinur Lake Watershed[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(23): 139-144. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.23.018 http://www.tcsae.org
SWAT model parameters correction based on multi-source remote sensing data in saline soil in Ebinur Lake Watershed
Wang Jinjie1,2,3,4, Ding Jianli1,2,4※, Zhang Zhe2,4, Chen Wenqian2,4
(1.830046,;2.830046,; 3.831401,; 4.830046,)
SWAT model is one of the most widely used hydrological models in the world. The electrical conductivity (EC) is defaulted as 0 or 0.1, which might be not suitable for the soils with high salinity. In this study, we tested the feasibility of SWAT model with default EC values in simulating soil moisture and proposed a method to modify model parameters. The study area was Ebinur Lake Watershed. The watershed was located in Xinjiang with little rainfall and full sunshine. The evaporation was high. In the recent 10 years, the environment around the watershed was deteriorated, threatening sustainable development. The soil EC inversion was obtained by GF-1 16 m WFV hyperspectral remote sensing images. Different bands were used for calculation of vegetation index, soil index, salinity index and saturation. Then, these were used to build EC inversion model by the classification and regression tree method. The inversion values were compared with measured values. Then, the EC values were used to replace those in the Harmonized World Soil Database. Then, the EC distribution in Ebinur Lake Watershed was obtained. Then, the SWAT model driven by soil database, land use database and meteorological database was used for soil moisture simulation. For soil moisture simulation, meteorological database, soil database and land use database were used. The Landsat TM/ETM remote sensing images were used for land use classification. CMADS including temperature, pressure, wind speed, precipitation and radiation was used for meteorological database establishment. Soil EC and moisture were determined in 38 field sampling points. The measurements were used for model accuracy verification. The results showed that the root mean square error was 4.81 and 1.15 dS/m for soil depths of 0-40 and 40-100 cm, respectively. The relative error was 15.2% and 1.66%, respectively. The results showed the EC simulation by the model based on the index such as vegetation index, soil index, salinity index and saturation and EC was well. The surface had higher error since the surface soil had the high variation with coefficient of variation of 1.46. The T_ECE was modified by recalculating parameters in SWAT soil database. Then, soil moisture was calculated. The relative error was 63.04% and 39.20% before and after modification, respectively. The root mean square error was 1.79 and 1.34 mm before and after modification, respectively. It indicated that the modification was effective in improving soil moisture simulation accuracy by the SWAT model. The method proposed here is helpful in SWAT model use in saline soils.
soils; electrical conductivity; remote sensing; salinization; SWAT model; GF-1
10.11975/j.issn.1002-6819.2017.23.018
S155.2+93; S127
A
1002-6819(2017)-23-0139-06
2017-04-29
2017-10-10
國(guó)家自然科學(xué)基金項(xiàng)目(41771470、U1303381、41261090);自治區(qū)重點(diǎn)實(shí)驗(yàn)室專項(xiàng)基金(2016D03001);自治區(qū)科技支疆項(xiàng)目(201591101);教育部促進(jìn)與美大地區(qū)科研合作與高層次人才培養(yǎng)項(xiàng)目
王瑾杰,陜西人,講師,博士,主要從事干旱區(qū)水資源遙感。Email:skytian552@sohu.com
丁建麗,山東人,教授,博導(dǎo),主要從事干旱區(qū)資源環(huán)境遙感。Email:watarid@xju.edu.cn