王 睿,王文娥,胡笑濤,楊 欣,黎會(huì)仙
?
微灌用施肥泵施肥比例與肥水比對(duì)過濾器堵塞的影響
王 睿,王文娥※,胡笑濤,楊 欣,黎會(huì)仙
(西北農(nóng)林科技大學(xué)旱區(qū)農(nóng)業(yè)水土工程教育部重點(diǎn)實(shí)驗(yàn)室,楊凌 712100)
為研究微灌用施肥泵施肥比例與肥水比對(duì)過濾器堵塞的影響,該文以疊片和網(wǎng)式過濾器為研究對(duì)象,結(jié)合比例式施肥泵的施肥特點(diǎn)及性能,通過調(diào)節(jié)不同施肥比例(2%、3%和4%)與吸入的肥水比(1∶4、1∶5和1∶6)對(duì)過濾器在施肥條件下的水頭損失、總過水流量及濾網(wǎng)(芯)附著物質(zhì)量進(jìn)行分析。結(jié)果表明:網(wǎng)式和疊片式過濾器對(duì)出口肥液濃度的使用范圍不一致,網(wǎng)式過濾器適用于肥液平均濃度在0.117%以下,疊片式過濾器適用于肥液平均濃度在0.067%以下。隨著肥液濃度的增大,濾網(wǎng)表面附著物質(zhì)量差異不顯著,濾芯疊片上附著物質(zhì)量差異顯著,最大附著物質(zhì)量是最小附著物質(zhì)量的11.4倍;疊片式過濾器抗堵塞性能遠(yuǎn)遠(yuǎn)優(yōu)于網(wǎng)式過濾器,當(dāng)肥液平均濃度最大為0.296%時(shí),疊片濾芯附著物質(zhì)量是網(wǎng)式濾網(wǎng)質(zhì)量的4.75倍,總過水量比網(wǎng)式過濾器大0.1 m3/h。研究可為水肥一體滴灌設(shè)備技術(shù)的推廣和應(yīng)用提供依據(jù)。
肥料;過濾器;泵;堵塞;水頭損失;微灌
微灌技術(shù)的推廣應(yīng)用需要配套設(shè)備性能優(yōu)良。滴灌條件下灌水器內(nèi)既有物理堵塞過程又存在化學(xué)堵塞過程,需加強(qiáng)過濾去除水中雜質(zhì)[1-5]。作為微灌系統(tǒng)中水質(zhì)處理設(shè)備的過濾器,其水力性能優(yōu)良才能保證系統(tǒng)運(yùn)行穩(wěn)定可靠[6]。微灌系統(tǒng)配套使用施肥裝置還可實(shí)現(xiàn)水肥一體化,其施肥均勻性是評(píng)價(jià)微灌系統(tǒng)性能的重要指標(biāo)。灌水施肥均勻性低可能導(dǎo)致作物產(chǎn)量和品質(zhì)下降,造成水肥利用效率降低[7]。施肥與過濾裝置的性能匹配時(shí)才能提高微灌系統(tǒng)運(yùn)行的穩(wěn)定性和灌溉施肥的均勻度。
李久生等[7]對(duì)滴灌系統(tǒng)施肥灌溉均勻性進(jìn)行了評(píng)估,認(rèn)為宜優(yōu)先選用肥液濃度恒定的施肥裝置,壓差式施肥罐的施肥變差系數(shù)約是灌水量變差系數(shù)的1.4倍,而文丘里施肥器和比例式施肥泵的施肥量變差系數(shù)與灌水量變差系數(shù)相當(dāng)。韓啟彪等[8]對(duì)3種比例式施肥泵的吸肥性能進(jìn)行了試驗(yàn)研究,分析了施肥泵入口流量和施肥量的影響因素,發(fā)現(xiàn)施肥量的大小和入口流量與壓差有關(guān)。阿不都沙拉木等[9]探討了120目(孔徑0.13m)以上的網(wǎng)式和疊片式過濾器對(duì)含藻類地表水的過濾效果,結(jié)果表明疊片式過濾器過濾效率是網(wǎng)式的2倍多,表面附著物是網(wǎng)式過濾器的2倍多,堵塞時(shí)間是網(wǎng)式過濾器的4倍。李楠等[10]探究了2種疊片式過濾器含沙量對(duì)其水頭損失大小的變化過程,結(jié)果表明加砂量達(dá)到一定量時(shí)水頭損失會(huì)出現(xiàn)激增。秦天云等[11]以網(wǎng)式和疊片式過濾器為研究對(duì)象,進(jìn)行了3種質(zhì)量濃度渾水工況下水頭損失和過濾性能的試驗(yàn),隨流量、含沙量的增大,過濾器初始水頭損失增大,過濾周期變短。涂攀峰等[12]研究了不同水中不溶物含量的水溶性肥料對(duì)滴灌施肥系統(tǒng)過濾器堵塞的影響,發(fā)現(xiàn)水不溶物的質(zhì)量分?jǐn)?shù)為2%以上時(shí),43 min內(nèi)均可使疊片式過濾器完全堵塞。目前對(duì)比例式施肥泵的研究多限于清水條件下的吸肥量、入口流量及壓差間的關(guān)系,過濾器抗堵塞方面的研究多是從水源中雜質(zhì)著手分析相關(guān)影響因素,對(duì)實(shí)際生產(chǎn)中采用的水肥一體條件下過濾器過濾性能、堵塞發(fā)展及施肥泵施肥過程變化的研究還不夠深入。
本試驗(yàn)將首部施肥裝置與過濾系統(tǒng)結(jié)合,探究在不同施肥比例與施肥泵吸入的肥水比組合下,施肥泵出口肥液的濃度對(duì)網(wǎng)式和疊片式過濾器堵塞程度的影響,對(duì)運(yùn)用比例式施肥泵進(jìn)行滴灌時(shí)過濾器的堵塞規(guī)律進(jìn)行分析,評(píng)估過濾器堵塞的風(fēng)險(xiǎn),旨在為運(yùn)用比例式施肥泵施肥裝置下水肥一體滴灌技術(shù)的推廣,同時(shí)為防止過濾器堵塞提供參考,為滴灌系統(tǒng)的正常運(yùn)行提供保障。
試驗(yàn)于2017年4—5月在甘肅省石羊河生態(tài)節(jié)水試驗(yàn)站內(nèi)進(jìn)行。試驗(yàn)站地處騰格里沙漠邊緣,平均海拔1 581 m,干旱指數(shù)5~25。年平均降雨量160 mm,年平均蒸發(fā)量2 000 mm以上,屬典型的干旱缺水地區(qū)。
試驗(yàn)平臺(tái)由水泵、比例式施肥泵、水表、壓力表、閥門、網(wǎng)式和疊片過濾器以及滴灌帶等組成,如圖1所示。
圖1 過濾器抗堵塞測(cè)試平臺(tái)
試驗(yàn)用施肥泵(楊凌啟豐現(xiàn)代農(nóng)業(yè)工程有限公司生產(chǎn))的設(shè)計(jì)流量20~2 500 L/h,施肥比例范圍2%~4%。網(wǎng)式、疊片式過濾器(揭陽市綠美節(jié)水科技有限公司)進(jìn)口直徑32 mm(120目孔徑0.13m),設(shè)計(jì)流量0.5~4.5 m3/h。采用內(nèi)鑲貼片式滴灌帶(楊凌豐源農(nóng)業(yè)科技工程有限公司生產(chǎn)),設(shè)計(jì)流量2 L/h。肥料采用大田常用磷酸二胺(主要成分P2O546%),常溫下為青綠色顆粒。
試驗(yàn)采用施肥泵施肥比例為2%(即:向施肥泵進(jìn)水管輸送98份水,施肥泵吸入備好的肥液2份)、3%(輸送97份水,吸入肥液3份)和4%(輸送96份水,吸入肥液4份)與施肥泵吸入的肥水比(溶解肥液中肥料與水的質(zhì)量比例)為1∶4、1∶5和1∶6組合下的9種處理,結(jié)合大田滴灌肥液濃度不宜超過0.3%,該試驗(yàn)選取的3種肥水比較合理。3條并聯(lián)支管上分別設(shè)網(wǎng)式、疊片式過濾器及不設(shè)過濾器(對(duì)照),共27個(gè)處理,支管后接50 m長(zhǎng)內(nèi)鑲貼片式滴灌帶,進(jìn)行過濾器抗堵塞試驗(yàn)測(cè)試。參考大田玉米水肥一體滴灌下磷肥施加量為1.8 kg/hm2,每次施磷肥3 kg。稱量3份各3 kg的固體顆粒肥料,分別加12、15、18 kg水?dāng)嚢杈鶆?,浸? h后,再次攪拌使肥料充分溶解于水,獲得肥水比1∶4、1∶5及1∶6,通過電導(dǎo)率儀測(cè)量溶液中的離子量來確定溶液中肥料的濃度[13-14],并通過電導(dǎo)率換算得到原液濃度分別為4.75%、3.94%及4.75%。各處理進(jìn)行3次重復(fù)。
設(shè)初始?jí)毫?.12 MPa,施肥泵兩端壓差0.02 MPa,通過調(diào)節(jié)閥門使毛管的首部壓力穩(wěn)定在0.06 MPa。每次灌水過程中,通過讀取安裝在過濾器兩端的精密壓力表(精確度0.25級(jí))值,監(jiān)測(cè)1 min內(nèi)過濾器兩端壓力的變化,并將壓力差MPa單位轉(zhuǎn)化為水頭損失m(0.01 MPa = 1 m)、通過安裝在過濾器后的水表,每3 min讀取1次流量,得到某時(shí)刻的瞬時(shí)流量;每次試驗(yàn)持續(xù)約0.5 h,每2 min取1次水樣(按取樣時(shí)間順序標(biāo)記),每個(gè)取樣點(diǎn)總共約15個(gè)樣品,整個(gè)試驗(yàn)過程中水溫變化不超過0.5 ℃,每次灌水結(jié)束后,將試驗(yàn)過程中收集的水樣用電導(dǎo)率儀(DDS-11A上海雷磁)測(cè)量電導(dǎo)率,通過電導(dǎo)率與濃度轉(zhuǎn)換公式將電導(dǎo)率轉(zhuǎn)換為磷肥的肥液濃度;將過濾器濾網(wǎng)(芯)置于通風(fēng)遮蔭處晾曬,稱量灌水前后干燥狀態(tài)下過濾器濾芯(網(wǎng))質(zhì)量,得到附著物凈質(zhì)量并定量分析網(wǎng)式、疊片式過濾器附著物質(zhì)量的顯著性。
施肥均勻性是評(píng)價(jià)水肥一體滴灌系統(tǒng)性能和質(zhì)量的重要指標(biāo),施肥均勻性過低會(huì)造成作物的產(chǎn)量和質(zhì)量下降,使得肥料利用率過低,因此對(duì)滴灌系統(tǒng)施肥均勻性的評(píng)估是系統(tǒng)運(yùn)行管理的重要內(nèi)容[7,15]。相對(duì)于過濾系統(tǒng)而言,施肥泵出口肥液濃度的均勻性對(duì)過濾器性能是否有影響,需進(jìn)一步進(jìn)行驗(yàn)證。
1)克里斯琴森均勻系數(shù),其計(jì)算參照文獻(xiàn)[16]。
2)分布均勻度DU,參照文獻(xiàn)[17]計(jì)算。
3)統(tǒng)計(jì)均勻度,參照文獻(xiàn)[17]計(jì)算。
U=100′(1-C) (5)
式中C為變差系數(shù);S為觀測(cè)值的標(biāo)準(zhǔn)差;U為統(tǒng)計(jì)均勻度,%。
大田應(yīng)用水肥一體滴灌系統(tǒng)技術(shù)時(shí),首部樞紐的施肥設(shè)備與過濾設(shè)備串聯(lián)安裝,施肥設(shè)備出口肥液的濃度及未溶固體顆粒物含量等均會(huì)影響過濾設(shè)備正常運(yùn)行的時(shí)長(zhǎng),當(dāng)過濾設(shè)備發(fā)生一定程度的堵塞時(shí)也會(huì)引起局部壓力變化,引起滴灌帶流量及施肥裝置出口流量變化,需對(duì)2種裝置同時(shí)工作情況下,施肥裝置和過濾裝置運(yùn)行性能及二者相互影響過程進(jìn)行分析。
不同施肥比例、肥水比組合下的出口肥液平均濃度見表1,9組肥液平均濃度梯度間存在顯著性差異(<0.05),出口肥液濃度隨施肥比例和肥水比增大而增大。施肥比例4%時(shí),不同肥水比處理的出口肥液濃度的克里斯琴均勻系數(shù)存在顯著差異(<0.05),而施肥比例3%和2%時(shí),其克里斯琴均勻系數(shù)無顯著差異(>0.05)。綜上,施肥比例4%時(shí)1∶6肥水比處理與其他處理間的出口肥液濃度的均勻度存在顯著差異(<0.05),而施肥比例3%和2%間均勻度差異不顯著(>0.05)。因此得出施肥比例過大會(huì)降低施肥泵在運(yùn)行過程中吸取的吸肥量的均勻性,導(dǎo)致不同肥水比下的出口肥液濃度的均勻性較差。在實(shí)際施肥過程中,不建議選擇較大的施肥比例。
表1 不同施肥比例及吸入的肥水比下施肥泵出口肥液濃度均勻性
注:不同小寫字母表示處理間差異顯著(<0.05),下同。
Note: Different letters indicate significant difference among treatments(<0.05), same as below.
2.2.1 對(duì)網(wǎng)式過濾器水頭損失的影響
水頭損失大小是過濾器性能的關(guān)鍵參數(shù),通過對(duì)過濾器在不同肥液濃度下的水頭損失進(jìn)行分析,得出不同類型過濾器的肥液濃度適用范圍[18-23]。圖2是網(wǎng)式過濾器在9組出口肥液平均濃度梯度下的水頭損失變化過程。由圖2a知,在出口肥液濃度≥0.117%時(shí)(施肥比例4%與所有肥水比組合、施肥比例3%與肥水比1∶4),網(wǎng)式過濾器水頭損失在3 min左右出現(xiàn)拐點(diǎn),原因在于濾網(wǎng)二維過濾,使得肥液中的大部分顆粒雜質(zhì)在短時(shí)間內(nèi)大面積附著在清潔度(過濾原件的實(shí)際過水面積與其總過水面積之比)為1的濾網(wǎng)上,隨著濾網(wǎng)清潔度的降低,顆粒雜質(zhì)與濾網(wǎng)的接觸面積減小,只有少部分雜質(zhì)顆粒通過水流作用附著在未被附著的濾網(wǎng)表面。濃度<0.117% 時(shí)(施肥比例2%與所有肥水比組合、施肥比例3%與肥水比1∶6和1∶5)網(wǎng)式過濾器在運(yùn)行過程中水頭損失始終小于0.5 m。因此,在實(shí)際運(yùn)用過程中盡量避免短時(shí)高效的堵塞發(fā)生,選擇<0.117%的肥液濃度進(jìn)行施肥,此濾網(wǎng)孔徑小于液體中固體粒子的粒徑,起著篩網(wǎng)的篩析作用[24],此種情況下單位體積中的肥液大顆粒雜質(zhì)較少,短時(shí)期內(nèi)無法在濾網(wǎng)上形成“濾餅”,運(yùn)行期間內(nèi)不會(huì)發(fā)生堵塞,網(wǎng)式過濾器能長(zhǎng)時(shí)間發(fā)揮過濾功效。
圖2 網(wǎng)式過濾器水頭損失變化曲線
2.2.2 對(duì)疊片式過濾器水頭損失的影響
圖3是疊片式過濾器在9組出口肥液平均濃度梯度下的水頭損失變化過程。
圖3 疊片式過濾器水頭損失變化曲線
從圖中看出,在出口肥液濃度≥0.067%時(shí)(施肥比例4%與所有肥水比組合、施肥比例3%與肥水比1∶4和1∶5、施肥比例2%與肥水比1∶4),疊片式過濾器水頭損失值隨時(shí)間變化均呈現(xiàn)緩慢增加的趨勢(shì),出口肥液平均濃度越大,水頭損失增加趨勢(shì)越陡。由于濾芯有效過水面積(1600π)是濾網(wǎng)(46π)的35倍,濾芯的有效過水面積較大,濾芯上含有100片疊片,當(dāng)水流流經(jīng)疊片時(shí),利用外片壁和凹槽來聚集及截取雜物,以達(dá)到過濾的目的[25],未被堵塞的流道允許較大流量通過,因此相同肥液濃度下水頭損失增幅較小。肥液平均濃度在0.067%以下時(shí)(施肥比例2%與肥水比1∶5和1∶6、施肥比例3%與肥水比1∶6),在運(yùn)行過程中水頭損失始終小于0.5 m,但并不能保證隨著運(yùn)行時(shí)間的加長(zhǎng)水頭損失始終小于0.5 m,疊片式過濾器的堵塞是緩慢積累的過程,當(dāng)疊片式過濾器濾芯上雜質(zhì)顆粒累積到一定程度(肥液平均濃度≥0.67%),清潔度減小到一定值,水頭損失會(huì)逐漸增大。在實(shí)際運(yùn)用過程中,應(yīng)盡量避免選用水頭損失趨勢(shì)變化較陡的肥液濃度(≥0.067%)進(jìn)行施肥,否則導(dǎo)致運(yùn)行時(shí)間縮短,此種情況下隨著運(yùn)行時(shí)間的延長(zhǎng),過濾器能長(zhǎng)時(shí)間不發(fā)生堵塞,充分發(fā)揮其過濾功效。
對(duì)不同處理下的過濾器水頭損失進(jìn)行顯著性分析(表2),結(jié)果表明,肥液平均濃度≥0.117%時(shí)(施肥比例4%與所有肥水比組合、施肥比例3%與肥水比1∶4),網(wǎng)式過濾器發(fā)生堵塞,水頭損失出現(xiàn)顯著性差異;肥液平均濃度≥0.067%時(shí)(施肥比例4%與所有肥水比組合、施肥比例3%與肥水比1∶4和1∶5、施肥比例2%與肥水比1∶4),疊片式過濾器發(fā)生緩慢堵塞,水頭損失也均出現(xiàn)顯著性差異。可見,肥液平均濃度的增大對(duì)水頭損失大小的影響是顯著的,但肥液平均濃度差異顯著并不意味著過濾器水頭損失間也差異顯著,過濾器水頭損失與引起過濾器堵塞的肥液濃度臨界值關(guān)系密切。網(wǎng)式過濾器水頭損失差異(0.09~7.75 m)要大于疊片式(0.32~3.88 m),原因在于9組肥液平均濃度梯度下的濾網(wǎng)發(fā)生不同程度的堵塞后,有效過水面積每減小1個(gè)單位面積,它的相對(duì)有效過水面積(過濾元件實(shí)際有效過水面積與其總過水面積之比)差值要比疊片式相對(duì)有效過水面積差值大,表現(xiàn)在水頭損失上的差異就越顯著。同時(shí),隨著出口肥液濃度的增大,網(wǎng)式過濾器濾網(wǎng)表面附著物質(zhì)量的差異不顯著;而疊片式過濾器濾芯疊片上附著物質(zhì)量的差異顯著,最大附著物質(zhì)量是最小附著物質(zhì)量的11.4倍,是因?yàn)橥ㄟ^疊片式過濾器的肥料顆粒雜質(zhì)可附著的面積要比濾網(wǎng)大35倍,因此濾芯疊片上的附著物質(zhì)量要大于濾網(wǎng)上的附著物質(zhì)量。
表2 不同肥液濃度下過濾器水頭損失和表面附著物質(zhì)量
注:- 表示水頭損失≤1 m,濾網(wǎng)(芯)有效過水面積減小5%以下,附著物質(zhì)量忽略不計(jì)。
Note: - shows the filter water head loss value does not exceed 1 m, effective water area screen (core) was reduced more than 5% , and the weight of the filter surface attachment can be ignored.
圖4為30 min內(nèi)有過濾器和無過濾器總過水量與出口肥液平均濃度的關(guān)系。當(dāng)出口肥液濃度最大為0.296%時(shí),網(wǎng)式過濾器濾網(wǎng)附著物質(zhì)量增加到0.96 g,網(wǎng)式過濾器流量由未堵塞情況下的0.4 m3/h下降到0.2 m3/h左右,降低了50%;相比網(wǎng)式過濾器,疊片式過濾器濾芯附著物質(zhì)量增加到4.56 g且附著物質(zhì)量是濾網(wǎng)附著物質(zhì)量的4.75倍,流量由未堵塞情況下的0.4 m3/h下降到0.3 m3/h左右,降低了25%,且總過水量比網(wǎng)式過濾器大0.1 m3/h。過濾器堵塞較嚴(yán)重,水頭損失大,濾網(wǎng)(芯)附著物質(zhì)量差異較大,且總過流量降低程度不同,原因在于濾芯疊片上的流道屬于三維過濾,肥液不僅能穿過未被堵塞的流道,且由于流道上的堵塞顆粒形狀不規(guī)則,水流也可通過流道與顆粒物的細(xì)小間隙穿過;濾網(wǎng)屬于平面過濾,一旦濾網(wǎng)上形成“濾餅”則水流很難通過。因此堵塞嚴(yán)重時(shí),網(wǎng)式過濾器總過流量變化較大,疊片式過濾器濾芯上的附著物雖然多但堵塞對(duì)總過流量的影響較小。
本次試驗(yàn)準(zhǔn)備過程中,在配置肥水比時(shí),由于每次所配原液的水溫、攪拌次數(shù)不同,不能保證肥料在水中的溶解程度完全相同,且在試驗(yàn)過程中原液中的顆粒雜質(zhì)會(huì)產(chǎn)生沉淀,使得施肥泵吸取的肥液具有偶然性,將采集肥液的時(shí)間間隔縮短,并進(jìn)行3次重復(fù),來減小偶然誤差。另外,對(duì)濾網(wǎng)(芯)附著物的干燥狀態(tài)把握不一,過濾器水頭損失大小不同,堵塞物附著在濾網(wǎng)(芯)上的厚度、多少也不同,相同風(fēng)干時(shí)間下,附著物中含有的水分也有所差異,因此過濾器濾網(wǎng)(芯)堵塞物的凈質(zhì)量存在誤差,但試驗(yàn)結(jié)束后盡量將濾網(wǎng)(芯)的風(fēng)干時(shí)間延長(zhǎng),以保證附著物水分含量降低,減小誤差;最后化學(xué)雜質(zhì)是引起過濾器堵塞的隱形因素,水中各種微生物、碳酸鹽與礦物質(zhì)相互作用形成沉淀物附著在濾網(wǎng)(芯)表面引起的[26-30],對(duì)于水肥一體灌溉過程中化學(xué)堵塞對(duì)過濾器產(chǎn)生的影響有待進(jìn)一步研究。
圖4 施肥泵出口肥液濃度與網(wǎng)式和疊片式過濾器流量之間的關(guān)系
不同施肥比例與吸入的肥水比組合下,研究不同出口肥液濃度對(duì)網(wǎng)式和疊片式過濾器堵塞的影響,結(jié)論如下:
1)滴灌系統(tǒng)在大田實(shí)際應(yīng)用中,網(wǎng)式、疊片式過濾器對(duì)出口肥液濃的使用范圍不一致。網(wǎng)式過濾器適用于肥液平均濃度在0.117%以下,疊片式過濾器適用于肥液平均濃度在0.067%以下,運(yùn)行期間內(nèi)不會(huì)發(fā)生堵塞,能長(zhǎng)期發(fā)揮過濾功效。
2)隨著肥液濃度的增大,網(wǎng)式過濾器濾網(wǎng)表面附著物質(zhì)量差異不顯著,濾芯疊片上附著物質(zhì)量差異顯著,最大附著物質(zhì)量是最小附著物質(zhì)量的11.4倍。
3)疊片式過濾器抗堵塞性能遠(yuǎn)遠(yuǎn)優(yōu)于網(wǎng)式過濾器,當(dāng)肥液平均濃度最大為0.296%時(shí),疊片濾芯附著物質(zhì)量是網(wǎng)式濾網(wǎng)質(zhì)量的4.75倍,總過水量比網(wǎng)式過濾器大0.1 m3/h。
[1] 劉璐,牛文全,武志廣,等. 施肥滴灌加速滴頭堵塞風(fēng)險(xiǎn)與誘發(fā)機(jī)制研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(1):228-236. Liu Lu, Niu Wenquan, Wu Zhiguang, et al. Risk and inducing mechanism of acceleration emitter clogging with fertigation through drip irrigation system[J]. Journal of Agricultural Machinery, 2017, 48(1): 228-236. (in Chinese with English abstract)
[2] 李康勇. 施肥對(duì)渾水滴灌滴頭堵塞的影響[D]. 楊凌:西北農(nóng)林科技大學(xué),2016. Li Kangyong. Influence of Fertigation on Labyrinth Channels Emitters Dlogging under Muddy Water Irrigation[D]. Yang-ling: Northwest A&F University, 2016. (in Chinese with English abstract)
[3] 王心陽. 迷宮流道灌水器抗堵塞性能影響因素研究[D]. 楊凌:西北農(nóng)林科技大學(xué),2015. Wang Xinyang. Affecting Factors About Anti-clogging Perfor-mance on Emitter with Labyrinth Channel[D]. Yang-ling: Northwest A & F University, 2015. (in Chinese with English abstract)
[4] 李康勇,牛文全,張若嬋,等. 施肥對(duì)渾水灌溉滴頭塞的加速作用[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(17):81-90. Li Kangyong, Niu Wenquan, Zhang Ruochan, et al. Acc-elerative effect of fertigation on emitter clogging by muddy water irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(17): 81-90. (in Chinese with English abstract)
[5] 劉燕芳,吳普特,朱德蘭,等. 溫室水肥滴灌系統(tǒng)迷宮式灌水器堵塞試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2014,45(12):50-55. Liu Yangfang, Wu Pute, Zhu Delan, et al. Greenhouse irrigation drip irrigation system of Labyrinth Emitter clogging test[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(12): 50-55. (in Chinese with English abstract)
[6] 王軍,劉煥芳,成玉彪,等. 國(guó)內(nèi)微灌用過濾器的研究與發(fā)展現(xiàn)狀綜述[J]. 節(jié)水灌溉,2003(5):34-35. Wang Jun, Liu Huanfang, Cheng Yubiao, et al. Review of research and development of domestic micro-irrigation filter[J]. Journal of Water-saving Irrigation, 2003(5): 34-35. (in Chinese with English abstract)
[7] 李久生,杜珍華,栗巖峰. 地下滴灌系統(tǒng)施肥灌溉均勻性的田間試驗(yàn)評(píng)估[J]. 農(nóng)業(yè)工程學(xué)報(bào),2008,24(4):83-87. Li Jiusheng, Du Zhenhua, Li Yanfeng. Field evaluation of ferigation uniformity of subsurface drip irrigation systems[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2008, 24(4): 83-87. (in Chinese with English abstract)
[8] 韓啟彪,吳文勇,劉洪祿,等. 三種水力驅(qū)動(dòng)比例式施肥泵吸肥性能試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2010,26(2):43-47. Han Qibiao, Wu Wenyong, Liu Honglu, et al. Experoment on fertilizer suction performance of three hydraylic driven pumps[J]. Transactions of the Chinese Society of Agricul-tural Engineering (Transactions of the CSAE), 2010, 26(2): 43-47. (in Chinese with English abstract)
[9] 阿不都沙拉木,彭立新,崔春亮. 微灌系統(tǒng)中疊式和網(wǎng)式過濾器對(duì)含藻類地表水過濾效果的分析[C]. 中國(guó)水利學(xué)會(huì)第二屆青年科技論壇論文集. 鄭州:黃河水利出版社,2005:11.
[10] 李楠,翟國(guó)亮,張文正,等. 微灌用疊片過濾器的過濾性能試驗(yàn)研究[J]. 灌溉排水學(xué)報(bào),2016,35(11):52-56. Li Nan, Zhai Guoliang, Zhang Wenzheng, et al. Filtration performance of disc filter for micoirrigation[J]. Journal of Irrigation and Drainage, 2016, 35(11): 52-56. (in Chinese with English abstract)
[11] 秦天云,王文娥,胡笑濤. 滴灌系統(tǒng)網(wǎng)式和疊片式過濾器水力性能試驗(yàn)研究[J]. 灌溉排水學(xué)報(bào),2017,36(1):57-62. Qin Tianyun, Wang Wene, Hu Xiaotao. Hydraulic perfor-mance of screen and disc filter for drip irrigation [J]. Journal of Irrigation and Drainage, 2017, 36(1): 57-62. (in Chinese with English abstract)
[12] 涂攀峰,鄧蘭生,龔林,等. 水溶肥中水不溶物含量對(duì)滴灌施肥系統(tǒng)過濾器堵塞的影響[J]. 磷肥與復(fù)肥,2012,27(1):72-73. Tu Panfeng, Deng Lansheng, Gong Lin, et al. Effect of water-insoluble substance content in water-soluble fertilizers on the filter clogging in fertigation system[J]. Phosphate and Compound Fertilizer, 2012, 27(1): 72-73. (in Chinese with English abstract)
[13] Phene C J, Yue R, Wu I P, et al. Distribution uniformity of subsurface drip irrigation system[R]. St Joseph, Mich: ASAE Paper No. 922569, 1992.
[14] Machado Rui M A, Oliveira Maria Do Rosario G. Tomato root distribution, yield and fruit quality under different subsurface drip irrigation regimes and depths[J]. Irrigation Science,2005,24(1):15-24.
[15] 周舟,傅澤田,王秀,等. 滴灌施肥機(jī)灌水與施肥均勻性試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2009,25(5):7-13. Zhou Zhou, Fu Zetian, Wang Xiu, et al. Experiment of fertigation uniformity of drip fertigation machine[J]. Trans-actions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(5): 7-13. (in Chinese with English abstract)
[16] Christiansen J E. Hydraulics of sprinkling systemforirrig-ation[J]. Amer Soc Civ Eng, 1942, 107: 221-239.
[17] Kruse E G. Describing irrigation efficiency and uniformity[J]. J Irrig Drain Div, 1978, 104(1): 35-41.
[18] 宗全利,劉飛,劉煥芳,等. 大田滴灌自清洗網(wǎng)式過濾器水頭損失試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(16):86-92. Zong Quanli, Liu Fei, Liu Huanfang, et al. Experiments on water head loss of self-cleaning screen filter for irrigation in field[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(16): 86-92. (in Chinese with English abstract)
[19] 鄭鐵剛,劉煥芳,宗全利,等. 微灌用自吸自動(dòng)網(wǎng)式過濾器水頭損失的試驗(yàn)研究[J]. 石河子大學(xué)學(xué)報(bào):自然科學(xué)版,2008,26(6):772-775. Zheng Tiegang, Liu Huanfang, Zong Quanli, et al. Experimental studies on head loss of self Cleaning water screen filter in micro-irrigation[J]. Journal of Shihezi University: Natural Science, 2008, 26(6): 772-775. (in Chinese with English abstract)
[20] 劉煥芳,王軍,胡九英,等. 微灌用網(wǎng)式過濾器局部水頭損失的試驗(yàn)研究[J]. 中國(guó)農(nóng)村水利水電,2006(6):57-60. Liu Huanfang, Wang Jun, Hu Jiuying, et al. The Experi-mental study on local head loss of screen filter in micro irrigation[J]. China Rural Water and Hydropower, 2006(6): 57-60. (in Chinese with English abstract)
[21] 駱秀萍,劉煥芳,宗全利,等. 微灌自清洗網(wǎng)式過濾器水頭損失的試驗(yàn)研究[J]. 石河子大學(xué)學(xué)報(bào),2008,26(6): 772-775.Luo Xiuping, Liu Huanfang, Zong Quanli, et al. Experiments and studies on the micro-irrigation self-cleaning screen filter[J]. Journal of Shihezi University,2008,26(6):772-775. (in Chinese with English abstract)
[22] 張文正,翟國(guó)亮,呂謀超,等. 微灌條件下三種過濾器過濾效果試驗(yàn)研究[J]. 灌溉排水學(xué)報(bào),2017,36(4):88-93. Zhang Wenzheng, Zhai Guoliang, Lü Mouchao, et al. Experiment study on the efficacy of sandfilter, screen filter and disc filter for removing silts from the yellow river water for micro-irrigation[J]. Journal of Irrigation and Drainage, 2017, 36(4): 88-93. (in Chinese with English abstract)
[23] 鄭鐵剛,劉煥芳,宗全利. 微灌用過濾器過濾性能分析及應(yīng)用選型研究[J]. 水資源與水工程學(xué)報(bào),2008,19(4):36-39,45. Zheng Tiegang, Liu Huanfang, Zong Quanli. Analysis and research for the filtering quality and type-selecting of emitter in micro-irrigation[J]. Journal of Water Resources & Water Engineering, 2008, 19(4): 36-39,45. (in Chinese with English abstract)
[24] 楊洪飛,宗全利,劉貞姬,等. 大田滴灌用網(wǎng)式過濾器濾網(wǎng)堵塞成因分析[J]. 節(jié)水灌溉,2017(2):94-98. Yang Hongfei, Zong Quanli, Liu Zhenji, et al. The analysis of clogging factor for fliter screen in field irrigation system[J]. Journal of Water-saving Irrigation, 2017(2): 94-98. (in Chinese with English abstract)
[25] 肖新棉,董文楚,楊金忠,等. 微灌用疊片式砂過濾器性能試驗(yàn)研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2005,21(5):81-84. Xiao Xinmian, Dong Wenchu, Yang Jinzhong, et al. Experi-mental study on characteristics of laminated sand filter for micro-irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2005, 21(5): 81-84. (in Chinese with English abstract)
[26] 王天志,王迪,徐飛鵬,等. 高鈣鎂離子地下水滴灌施肥系統(tǒng)堵塞效應(yīng)[J]. 排灌機(jī)械工程學(xué)報(bào),2017,35(4):345-350. Wang Tianzhi, Wang Di, Xu Feipeng, et al. Clogging risk and combined effect of fertigation system in groundwater containing high content of Ca2+and Mg2+[J]. JDIME, 2017, 35(4): 345-350. (in Chinese with English abstract)
[27] Bucks D A, Nakayama F S, Gilbert R G. Truckle irrigation water quality and preventive maintenance[J]. Agricultural Water Management, 1979, 2(2): 149-162
[28] 薛翔,國(guó)攀,楊振杰,等. 農(nóng)業(yè)灌溉水源對(duì)灌溉設(shè)備堵塞的影響[J]. 安徽農(nóng)業(yè)科學(xué),2015,43(33):363-366. Xue Xiang, Guo Pan, Yang Zhengjie, et al. Impact of agricultural irrigation water on irrigati on equipment jams[J]. Journal of Anhui Agri, 2015, 43(33): 363-366. (in Chinese with English abstract)
[29] 鄧忠,翟國(guó)亮,宗潔,等. 微灌系統(tǒng)堵塞機(jī)理分析與微灌過濾器研究進(jìn)展[J]. 節(jié)水灌溉,2014(8):71-74. Deng Zhong, Zhai Guoliang, Zong Jie, et al. Clogging mechanism analysis of micro-irrigation system and the advance of research on micro-irrigation filter[J]. Journal of Water-saving Irrigation, 2014(8): 71-74. (in Chinese with English abstract)
[30] 周博. 滴灌系統(tǒng)灌水器生物堵塞特性、評(píng)估及機(jī)理研究[D].北京:中國(guó)農(nóng)業(yè)大學(xué),2016. Zhou Bo. Characteristics, Evaluation and Mechanism of Bio-clogging Process in Drip Irrigation Emitters[D]. Beijing: China Agricultural University, 2016. (in Chinese with English abstract)
王 睿,王文娥,胡笑濤,楊 欣,黎會(huì)仙.微灌用施肥泵施肥比例與肥水比對(duì)過濾器堵塞的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(23):117-122. doi:10.11975/j.issn.1002-6819.2017.23.015 http://www.tcsae.org
Wang Rui, Wang Wene, Hu Xiaotao, Yang Xin, Li Huixian.Impact of fertilizer proportion and fertilizer-water ratio on clogging of filter by fertilizer pump in microirrigation [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(23): 117-122. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.23.015 http://www.tcsae.org
Impact of fertilizer proportion and fertilizer-water ratio on clogging of filter by fertilizer pump in microirrigation
Wang Rui, Wang Wene※, Hu Xiaotao, Yang Xin, Li Huixian
(712100,)
Fertilization uniformity is an important index to evaluate the performance of the micro irrigation system and understanding the hydraulic performance of water treatment equipment in drip irrigation system is a prerequisite to ensure the stable operation of the system. For the popularization and application of water and fertilizer development of drip irrigation technology, we carried out a test to investigate the effect of fertilization proportion and fertilization-water ratio on clogging of filter by fertilizer pump in microirrigation system. The pump selected was commonly used 120 mesh (diameter 0.13m) screen type and disc filter. The test was carried out in the Key Laboratory of Arid Agricultural Water and Soil Engineering of Ministry of education, the Northwest A&F University. The fertilization proportion was 2%, 3% and 4%. The inhaled fertilizer and water ratio was 1:4, 1:5 and 1:6. Water samples were collected to determine the fertilizer concentration at fertilization pump outlet. The concentration of phosphate was determined by an ion conductivity instrument. The uniformity of fertilizer concentration at outlet was assessed by Christensen coefficient, distribution uniformity and statistical uniformity. The results showed that the fertilizer concentration at outlet was different significantly among the 9 treatments. It increased with the increase of fertilizer proportion and inhaled fertilizer and water ratio. At the fertilizer proportion of 4%, the Christensen coefficient significantly differed among the treatments of fertilizer and water ratio. No significant difference was found for the Christensen coefficient at the fertilizer proportion of 2% and 3%. Thus, the high fertilizer proportion could greatly affect the fertilizer concentration uniformity at outlet and we do not recommend the high fertilizer proportion. The water head loss of screen filter became stable at about 3 min for the treatment of the fertilizer concentration equalling to or higher than 0.117%. When the concentration smaller than 0.117%, the water head loss was less than 0.5 m for the screen filter. For the disc filter, the water head loss increased slowly when the fertilizer concentration at outlet was not smaller than 0.067%. But, when the fertilizer concentration at outlet was smaller than 0.067% the water head loss was less than 0.5 m. To avoid filter clogging at a short time, the fertilizer concentration at outlet smaller than 0.117% and 0.067% was recommended respectively for the screen filter and the disc filter. The range of water head loss for the screen filter (0.09-7.75 m) was higher than that for the disc filter (0.32-3.88 m). With the increase of fertilizer concentration at outlet the surface attachment weight was not significantly different for the screen filter but significantly different for the disc filter. The max surface attachment weight was as 11.4 times as the min one. The flow rate of the screen filter decreased from 0.4 m3/h to 0.2 m3/h when the fertilizer concentration at outlet was the highest (0.296%). The flow rate of the disc filter decreased from 0.4 m3/h to 0.3 m3/h when the surface attachment weight increased to 4.56 g. The anti-clogging performance of disc filter was much better than the screen filter when the maximum average fertilizer concentration at outlet was 0.296%. The research can provide the technique support for the popularization and application of integrated water and fertilization technology of drip irrigation equipment.
fertilizers; filters; pumps; clogging; water head loss; microirrigation
10.11975/j.issn.1002-6819.2017.23.015
S275.6
A
1002-6819(2017)-23-0117-06
2017-07-12
2017-10-10
公益性行業(yè)(農(nóng)業(yè))科研專項(xiàng)(201503125);“十三五”國(guó)家重點(diǎn)研發(fā)計(jì)劃(2016YFC0400200)
王 睿,陜西咸陽人,研究方向:節(jié)水灌溉新技術(shù)。 Email:289335390@qq.com
王文娥,教授,河南人,博士生導(dǎo)師,研究方向:節(jié)水灌溉新技術(shù)。Email:wangwene@nwsuaf.edu.cn