栗曉宇,耿愛(ài)軍,2※,侯加林,張 姬,張智龍
?
全自動(dòng)蒜種盒提取投放裝置設(shè)計(jì)與試驗(yàn)
栗曉宇1,耿愛(ài)軍1,2※,侯加林1,張 姬1,張智龍1
(1. 山東農(nóng)業(yè)大學(xué)機(jī)械與電子工程學(xué)院,泰安 271000;2. 山東省園藝機(jī)械與裝備重點(diǎn)實(shí)驗(yàn)室,泰安 271000)
針對(duì)目前大蒜播種機(jī)械自動(dòng)化程度低、蒜種鱗芽朝上率低的現(xiàn)狀,基于種盒式大蒜播種方式,設(shè)計(jì)了一種全自動(dòng)蒜種盒提取投放裝置。該裝置主要包括機(jī)架、地輪、地輪軸、測(cè)速編碼器、光電傳感器、控制箱、輸送裝置和提取投放裝置,能夠?qū)崿F(xiàn)蒜種盒自動(dòng)給進(jìn)、準(zhǔn)確抓取、平穩(wěn)輸送、精確投放等功能。設(shè)計(jì)了機(jī)械臂和機(jī)械手結(jié)構(gòu),通過(guò)理論分析建立了各關(guān)鍵部件參數(shù)數(shù)學(xué)模型,確定了機(jī)械臂和機(jī)械手工作參數(shù),探明了機(jī)組行進(jìn)速度對(duì)各舵機(jī)工作參數(shù)的影響規(guī)律,明確了影響蒜種盒投放間隙的因素。為了測(cè)試蒜種盒投放效果影響進(jìn)行了試驗(yàn),結(jié)果表明當(dāng)機(jī)組行進(jìn)速度為0.90 km/h,中心舵機(jī)、輔助舵機(jī)、控距舵機(jī)轉(zhuǎn)速分別為26.04、26.04、13.89 r/min時(shí)蒜種盒投放后銜接間隙平均值為5.6 mm,投放效果較優(yōu),滿(mǎn)足大蒜播種要求。該文研究結(jié)果可為實(shí)現(xiàn)大蒜播種自動(dòng)化提供參考。
農(nóng)業(yè)機(jī)械;設(shè)計(jì);農(nóng)作物;大蒜播種;蒜種盒;提取投放;自動(dòng)化
大蒜是中國(guó)主要經(jīng)濟(jì)作物之一,2016年主產(chǎn)區(qū)種植面積達(dá)到37.3~40.0萬(wàn)hm2[1-2]。大蒜播種時(shí)要求“根下芽上、直立播種”,長(zhǎng)期以來(lái)一直依靠人工種植,勞動(dòng)強(qiáng)度大,工作效率低。
國(guó)內(nèi)外高校及科研機(jī)構(gòu)對(duì)大蒜播種機(jī)及蒜種定向裝置進(jìn)行了諸多研究。Benjaphragairat等[3]基于10行大蒜播種機(jī)設(shè)計(jì)了一種排種器及其控制系統(tǒng),該播種機(jī)根據(jù)株距要求確定了排種器參數(shù)和作業(yè)速度,其田間適應(yīng)性受到限制,且蒜種入土姿態(tài)隨機(jī),出芽率僅為74.57%;Bakhtiari等[4]研發(fā)了一種大蒜播種機(jī)并進(jìn)行田間試驗(yàn),結(jié)果表明漏播率為12.23 %,傷種率為1.14 %,但沒(méi)有解決蒜種定向問(wèn)題;Brajesh等[5]設(shè)計(jì)了自走式大蒜播種機(jī),適用于小地塊播種,漏播率為2.67%,重播率為8%,播種機(jī)生產(chǎn)率為0.065 hm2/h,不具備蒜種定向機(jī)構(gòu),蒜種鱗芽朝向隨機(jī),不符合我國(guó)播種農(nóng)藝要求;Труфляк等[6]發(fā)明了一種手扶式大蒜精密播種機(jī),蒜種定向效果好,但工作效率低、勞動(dòng)強(qiáng)度大。Bakhitiari[7]基于對(duì)大蒜物理和氣動(dòng)特性的研究研制了一種氣吸式大蒜精密排種器,試驗(yàn)表明該排種器能夠解決單粒取種的問(wèn)題,但不具備鱗芽定向機(jī)構(gòu),其工作特性需進(jìn)一步試驗(yàn)和優(yōu)化等[8]研制了一種手動(dòng)式大蒜播種機(jī),田間試驗(yàn)表明其工作效率可達(dá)到理論值84.79%,該播種機(jī)自動(dòng)化程度低。Zhang Dengquan等[9]研制了一種大蒜直立栽種機(jī)構(gòu),直立率70.6%,尚未實(shí)現(xiàn)成果轉(zhuǎn)化;趙麗清等[10]基于機(jī)器視覺(jué)技術(shù),利用機(jī)械臂實(shí)現(xiàn)蒜種定向投放,維護(hù)成本較高,蒜瓣定向識(shí)別技術(shù)仍待優(yōu)化;王丹陽(yáng)等[11]研制了一種半自動(dòng)大蒜播種機(jī),采用種盒式大蒜播種方式,針扎式取蒜方式,實(shí)際應(yīng)用中易受外界環(huán)境約束;謝學(xué)虎等[12-13]設(shè)計(jì)了一種大蒜播種機(jī)種植機(jī)構(gòu),主要解決蒜種鱗芽直立度和弓背面朝向一致的問(wèn)題,其應(yīng)用受限于蒜種品種不同,需要進(jìn)一步研究;耿愛(ài)軍等[14-15]提出了種盒式大蒜播種方式,研制了種盒式大蒜播種機(jī),自動(dòng)化程度仍待提高;魏玉珍等[16-17]提出了3種直立方案,鱗芽朝上率均低于種盒式大蒜播種方式,該裝置結(jié)構(gòu)有待完善。針對(duì)上述現(xiàn)狀,本文設(shè)計(jì)了一種全自動(dòng)蒜種盒提取投放裝置,介紹了其工作原理和主要部件設(shè)計(jì)并進(jìn)行了試驗(yàn),以期為實(shí)現(xiàn)大蒜播種自動(dòng)化發(fā)展提供參考。
全自動(dòng)蒜種盒提取投放裝置如圖1所示。該裝置主要包括機(jī)架、地輪、地輪軸、測(cè)速編碼器、光電傳感器、控制箱、輸送裝置和提取投放裝置。編碼器用于檢測(cè)機(jī)組行進(jìn)速度[18-21];光電傳感器安裝在機(jī)架前端一側(cè),用于檢測(cè)蒜種盒位置信息[22-25];控制箱包括自動(dòng)控制系統(tǒng)[26-28]、蓄電池和行程開(kāi)關(guān)等部件;輸送裝置安裝在機(jī)架橫向兩端,由步進(jìn)電機(jī)驅(qū)動(dòng),實(shí)現(xiàn)蒜種盒自動(dòng)給進(jìn)功能;提取投放裝置主要包括底座、舵盤(pán)、中心舵機(jī)、機(jī)械臂、輔助舵機(jī)和機(jī)械手,底座固定在機(jī)架后端一側(cè),位于光電傳感器正前方,機(jī)械臂通過(guò)舵盤(pán)與安裝在底座上中心舵機(jī)的動(dòng)力輸出軸連接,機(jī)械手通過(guò)安裝在機(jī)械臂上端中央的輔助舵機(jī)與機(jī)械臂連接,如圖2所示。
1. 提取投放裝置 2. 蒜種盒 3. 光電傳感器 4. 輸送裝置 5. 控制箱 6. 機(jī)架 7. 測(cè)速編碼器 8. 地輪軸 9. 地輪
1. 底座 2. 中心舵機(jī) 3. 機(jī)械臂 4. 機(jī)械手 5. 輔助舵機(jī)
全自動(dòng)蒜種盒提取投放裝置適用于種盒式大蒜播種方式,由步進(jìn)電機(jī)提供動(dòng)力,單片機(jī)系統(tǒng)根據(jù)測(cè)速編碼器檢測(cè)到的地輪轉(zhuǎn)速來(lái)控制各舵機(jī)的轉(zhuǎn)速。當(dāng)光電傳感器檢測(cè)到蒜種盒時(shí)輸送帶停止運(yùn)輸,同時(shí)機(jī)械臂擺動(dòng)到蒜種盒上方,機(jī)械手垂直抓住蒜種盒后機(jī)械臂向后擺動(dòng),此過(guò)程中心舵機(jī)與輔助舵機(jī)協(xié)調(diào)配合使蒜種盒始終平行于地面;此時(shí)傳感器沒(méi)有檢測(cè)到蒜種盒,輸送裝置繼續(xù)運(yùn)輸蒜種盒,直到下一蒜種盒到位時(shí)停止。當(dāng)機(jī)械臂達(dá)到指定轉(zhuǎn)角時(shí)停止擺動(dòng),機(jī)械手張開(kāi),蒜種盒投放至地面,隨后機(jī)械臂立刻回?cái)[,抓取下一蒜種盒;投放后的蒜種盒與上一蒜種盒首尾銜接。
機(jī)械手主要包括U形旋轉(zhuǎn)架、L形安裝板、控距舵機(jī)、異形齒盤(pán)、連架桿、連接臂和爪片,如圖3所示。爪片尺寸根據(jù)蒜種盒高度、重心位置等參數(shù)確定,尺寸為 40 mm′30 mm′2 mm,內(nèi)側(cè)涂覆有橡膠層,目的是增大爪片與蒜種盒間摩擦,防止在運(yùn)輸過(guò)程中掉落。連架桿、齒柄與連接臂鉸接安裝,三者構(gòu)成自由度為1的平行四邊形連桿機(jī)構(gòu)??鼐喽鏅C(jī)動(dòng)力輸出軸與異形齒盤(pán)連接,通過(guò)驅(qū)動(dòng)連桿機(jī)構(gòu)運(yùn)動(dòng)使機(jī)械手實(shí)現(xiàn)閉合、張開(kāi)動(dòng)作。以異形齒盤(pán)分度圓圓心為原點(diǎn),建立坐標(biāo)系如圖4所示。
1. U形旋轉(zhuǎn)架 2. L形安裝板 3. 控距舵機(jī) 4. 異形齒盤(pán) 5. 連架桿 6. 連接臂 7. 爪片
1. U shape rotating frame 2. L shape mounting panel 3. Distance controlling actuator 4. Special shaped gear disk 5. Connecting rod 6. Connecting arm 7. Claw
注:為控距舵機(jī)動(dòng)力輸出軸安裝距離,mm;0為爪片高度,mm,30 mm。
Note:represents installing distance of distance controlling actuator power output shaft, mm;0represents claw height; mm, 30 mm.
圖3 機(jī)械手結(jié)構(gòu)示意圖
Fig.3 Schematic diagram of manipulator structure
注:O為坐標(biāo)原點(diǎn);r為異形齒盤(pán)分度圓半徑,取12 mm;l為連架桿長(zhǎng)度,mm;c為連接臂長(zhǎng)度,mm;d為蒜種盒寬度,mm;s為爪片張開(kāi)和閉合時(shí)的距離差,mm;α為控距舵機(jī)初始角,(°);β為控距舵機(jī)終止角,(°);γ為連接臂與爪片夾角,取150°;BS為機(jī)械手張開(kāi)后寬度,mm。
以機(jī)械手為研究對(duì)象,其主要結(jié)構(gòu)參數(shù)計(jì)算方法如下
式中為控距舵機(jī)轉(zhuǎn)角,(°)。
根據(jù)式(1)和式(2),連接臂長(zhǎng)度范圍20~40 mm,連架桿長(zhǎng)度范圍30~50 mm時(shí),控距舵機(jī)初始角變化趨勢(shì)如圖5所示,控距舵機(jī)初始角隨著連接臂長(zhǎng)度增大而增大,隨著連架桿長(zhǎng)度的減小而增大。平行四連桿機(jī)構(gòu)中,以連接臂為最短桿,以連架桿為最長(zhǎng)桿,為滿(mǎn)足桿長(zhǎng)條件,保證機(jī)構(gòu)良好的傳力性能,選取連接臂長(zhǎng)度為30 mm,連架桿長(zhǎng)度為40 mm,此時(shí)26.75°。實(shí)際操作中要求爪片牢固抓緊蒜種盒以防止滑落,控距舵機(jī)初始角應(yīng)略小于理論值,因此初始角取25°。同時(shí),由于輸送帶上均勻分布有種盒定位板,爪片張開(kāi)和閉合時(shí)的距離差過(guò)大或過(guò)小都無(wú)法使機(jī)械手準(zhǔn)確抓取蒜種盒,當(dāng)距離差在10~15 mm范圍內(nèi)即可滿(mǎn)足工作要求。取控距舵機(jī)終止角=45°,將已知參數(shù)代入式(1)計(jì)算得距離差=11.38,符合設(shè)計(jì)要求。
圖5 連接臂長(zhǎng)度與連接桿長(zhǎng)度對(duì)控距舵機(jī)初始角α的影響
機(jī)械臂依靠中心舵機(jī)的驅(qū)動(dòng)實(shí)現(xiàn)前后擺動(dòng)。機(jī)械手抓取蒜種盒時(shí)長(zhǎng)度和機(jī)械手張開(kāi)后寬度對(duì)機(jī)械臂的結(jié)構(gòu)參數(shù)有直接影響。工作時(shí)爪片抓取在蒜種盒的中間位置,如圖6所示。
注:h為蒜種盒高度,30 mm;p1為中心舵機(jī)動(dòng)力輸出軸到輸送裝置邊緣的距離,mm;p2為輔助舵機(jī)動(dòng)力輸出軸到機(jī)械臂頂端的距離,30 mm;p3為機(jī)械手提取蒜種盒時(shí)長(zhǎng)度,mm;D 為輸送帶寬度,600 mm;Lb為機(jī)械臂的長(zhǎng)度,mm;θ為提取蒜種盒時(shí)機(jī)械臂與機(jī)械手的夾角,(°)。
為防止機(jī)械手和蒜種盒在運(yùn)動(dòng)過(guò)程中與機(jī)械臂發(fā)生碰撞,保證機(jī)械臂運(yùn)動(dòng)過(guò)程中的穩(wěn)定性,機(jī)械臂結(jié)構(gòu)參數(shù)應(yīng)滿(mǎn)足以下條件
式中B為機(jī)械臂的寬度,mm;B為機(jī)械手張開(kāi)后寬度,mm。
考慮到單片機(jī)系統(tǒng)便于設(shè)置控制中心舵機(jī)和輔助舵機(jī)轉(zhuǎn)角,設(shè)定=60°。將已知參數(shù)代入式(4)~(7)中得到3=54.3,¢=201.5,B=80.6,L>427.8。結(jié)合實(shí)際需要,確定機(jī)械臂寬度B為85 mm,機(jī)械臂長(zhǎng)度L為435 mm。根據(jù)計(jì)算獲得機(jī)械臂的參數(shù),以及實(shí)際承重能力,選擇型號(hào)為L(zhǎng)F-20MG 舵機(jī),其基本參數(shù)為額定電壓6.6 V,扭矩1.96 N·m。
自動(dòng)控制系統(tǒng)的核心是單片機(jī)系統(tǒng),如圖7所示,主要包括信號(hào)處理單元[29]、步進(jìn)電機(jī)控制單元[30]、舵機(jī)控制[31]單元、模數(shù)轉(zhuǎn)換單元等。自動(dòng)控制系統(tǒng)工作流程如圖8所示。
注:A/D為模數(shù)轉(zhuǎn)換模塊;I/O為信號(hào)輸入/輸出端口。
本控制系統(tǒng)硬件部分主要包括 STC 5A60S2 單片機(jī)、ADC0832 轉(zhuǎn)換器、1 個(gè)電源開(kāi)關(guān)、1個(gè)行程開(kāi)關(guān)、1 個(gè)舵機(jī)控制板、1 個(gè)電機(jī)驅(qū)動(dòng)器、2 個(gè)步進(jìn)電機(jī)以及電源電路、放大電路等。系統(tǒng)工作時(shí),光電傳感器檢測(cè)蒜種盒有無(wú),若有蒜種盒,傳感器輸出電信號(hào),經(jīng)過(guò) A/D 轉(zhuǎn)換輸出低電平送入單片機(jī),命令驅(qū)動(dòng)輸送裝置的步進(jìn)電機(jī)停止轉(zhuǎn)動(dòng);同時(shí)測(cè)速編碼器將位移信息通過(guò)邏輯電路轉(zhuǎn)化為脈沖信號(hào)送入單片機(jī),單片機(jī)設(shè)定中心舵機(jī)、輔助舵機(jī)和控距舵機(jī)轉(zhuǎn)角,發(fā)出運(yùn)轉(zhuǎn)指令;若無(wú)蒜種盒,單片機(jī)持續(xù)接收高電平,命令步進(jìn)電機(jī)繼續(xù)轉(zhuǎn)動(dòng)。
為使蒜種盒在運(yùn)輸過(guò)程中始終保持水平狀態(tài),中心舵機(jī)和輔助舵機(jī)設(shè)定為轉(zhuǎn)速相同、轉(zhuǎn)向相反。1個(gè)完整的工作周期包括機(jī)械臂往復(fù)擺動(dòng)所用時(shí)間1和機(jī)械手提取投放蒜種盒用時(shí)2,時(shí)間內(nèi)機(jī)組行進(jìn)距離等于1個(gè)蒜種盒長(zhǎng)度,工作周期內(nèi)機(jī)械臂與機(jī)械手工作時(shí)間比為,各工作參數(shù)計(jì)算公式如下
式中為機(jī)組行進(jìn)速度,km/h;n為中心舵機(jī)轉(zhuǎn)速,r/min;n為輔助舵機(jī)轉(zhuǎn)速,r/min;n為控距舵機(jī)轉(zhuǎn)速,r/min。
在不同工作條件下(如蒜種盒長(zhǎng)度、行進(jìn)速度等),可以通過(guò)改變1、2、的取值調(diào)整各舵機(jī)轉(zhuǎn)速。當(dāng)蒜種盒長(zhǎng)度=600 mm時(shí),中心舵機(jī)和控距舵機(jī)轉(zhuǎn)速隨機(jī)組行進(jìn)速度變化規(guī)律如圖9所示,可知中心舵機(jī)轉(zhuǎn)速隨行進(jìn)速度變化的幅度較明顯,為實(shí)際舵機(jī)操作提供理論依據(jù)。
圖9 機(jī)組行進(jìn)速度對(duì)各舵機(jī)轉(zhuǎn)速影響
蒜種盒投放試驗(yàn)?zāi)康氖菧y(cè)試機(jī)組行進(jìn)速度對(duì)蒜種盒投放效果的影響。試驗(yàn)在山東農(nóng)業(yè)大學(xué)機(jī)電學(xué)院實(shí)驗(yàn)室進(jìn)行。以蒜種盒投放后銜接間隙作為試驗(yàn)指標(biāo),試驗(yàn)用蒜種盒長(zhǎng)度為 600 mm,設(shè)定機(jī)械臂與機(jī)械手工作時(shí)間比=4。行進(jìn)速度選取6個(gè)水平:0.36、0.54、0.72、0.90、1.08和1.26 km/h,由式(7)~(10)計(jì)算得相應(yīng)水平下中心舵機(jī)及輔助舵機(jī)轉(zhuǎn)速理論值分別為:10.42、15.63、20.83、26.04、31.25、36.46 r/min,控距舵機(jī)轉(zhuǎn)速分別為:5.56、8.33、11.11、13.89、16.67、19.44 r/min。每個(gè)水平投放15個(gè)蒜種盒,每組試驗(yàn)重復(fù)3次,使用鋼尺測(cè)量投放間隙,最終取平均值進(jìn)行統(tǒng)計(jì),蒜種盒投放結(jié)果如圖11所示。試驗(yàn)結(jié)果顯示隨著機(jī)組行進(jìn)速度增大,蒜種盒投放后銜接間隙逐漸增大;綜合考慮播種機(jī)工作效率和蒜種盒投放效果,機(jī)組行進(jìn)速度為0.90 km/h時(shí),銜接間隙為5.6 mm,投放效果較優(yōu),滿(mǎn)足大蒜播種要求。
圖10 全自動(dòng)蒜種盒提取投放裝置
圖11 蒜種盒投放后銜接間隙試驗(yàn)結(jié)果
1)設(shè)計(jì)了一種全自動(dòng)蒜種盒提取投放裝置,能夠?qū)崿F(xiàn)蒜種盒自動(dòng)給進(jìn)、準(zhǔn)確抓取、平穩(wěn)輸送、精確投放的功能,設(shè)計(jì)了輸送裝置、提取投放裝置以及自動(dòng)控制系統(tǒng)等關(guān)鍵部件。
2)建立了各關(guān)鍵部件參數(shù)數(shù)學(xué)模型,確定了機(jī)械手和機(jī)械臂結(jié)構(gòu)和工作參數(shù),探明了機(jī)組行進(jìn)速度與各舵機(jī)轉(zhuǎn)速間變化規(guī)律。
3)進(jìn)行了蒜種盒投放試驗(yàn),結(jié)果表明機(jī)組行進(jìn)速度為0.90 km/h,中心舵機(jī)、控距舵機(jī)轉(zhuǎn)速分別為26.04、26.04、13.89 r/min時(shí)投放后銜接間隙為5.6 mm,投放效果較優(yōu),能夠滿(mǎn)足大蒜播種要求。
針對(duì)不能徹底消除蒜種盒投放后銜接間隙的問(wèn)題,后續(xù)工作為研究舵機(jī)轉(zhuǎn)速控制算法的精確性、舵機(jī)轉(zhuǎn)速自動(dòng)控制方式等。
[1] 馬招弟,丁天嬌. 中國(guó)大蒜出口貿(mào)易現(xiàn)狀研究[J]. 農(nóng)村經(jīng)濟(jì)與科技,2017,28(2):64,266.
[2] 王盛威,熊露,韓書(shū)慶,等. 2016年中國(guó)大蒜市場(chǎng)形勢(shì)分析及后市展望[J]. 農(nóng)業(yè)展望,2016,12(11):4-6.
[3] Benjaphragairat J, Sakurai H, Ito N. Study of the mechanics of a 5 hp power tiller attached to a 10-row garlic planter[J]. Agricultural Mechanization in Asia, 2010, 41(1): 40—44.
[4] Bakhtiari M R, Loghavi M. Development and evaluation of an innovative garlic clove precision planter[J]. Journal of Agricultural Science and Technology, 2010, 11(2): 125—136.
[5] Brajesh N, Atul K S, Rajesh K N, et al. Design, Development and Evaluation of Self Propelled Garlic (L.) Clove Planter[D]. Jabalpur: College of Agricultural Engineering Jabalpur, 2010.
[6] Труфляк Е В, Скоробогаченко И С, Сапрыкин В Ю. Ручная сеялка точно-ориентированного посева зубков чеснокаи луковиц[J]. Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета, 2014, 104(10): 1—17.
[7] Bakhtiari M R. Determining physical and aerodynamic properties of garlic to design and develop of a pneumatic garlic clove metering system[J]. Agricultural Engineering International: CIGR Journal, 2015, 17(1): 59—67.
[8] Gajakos A V ,Saraf V V ,Sinha S,et al. Performance evaluation of manually operated garlic planter[J]. International Journal of Agricultural Engineering, 2015, 8(1): 31—38.
[9] Zhang Dengquan, Wu, Yanjuan, Zhang Chuangkai. Vertical planting structure design for planter[J]. Applied Mechanics and Materials, 2014, 654: 87—90.
[10] 趙麗清,楊然兵,殷元元,等. 智能機(jī)械臂在大蒜播種機(jī)中的應(yīng)用[J]. 農(nóng)機(jī)化研究,2014,36(8):104—106. Zhao Liqing, Yang Ranbing, Yin Yuanyuan, et al. The application of the intelligent mechanical arm in the planting of garlic[J]. Journal of Agricultural Mechanization Research, 2014, 36(8): 104—106. (in Chinese with English abstract)
[11] 王丹陽(yáng),錢(qián)彬彬,胡旭,等. 半自動(dòng)大蒜栽植機(jī)關(guān)鍵部件的設(shè)計(jì)與試驗(yàn)研究[J]. 沈陽(yáng)農(nóng)業(yè)大學(xué)學(xué)報(bào),2014,45(5):566—572.Wang Danyang, Qian Binbin, Hu Xu, et al. Key components design and experimental research of a semi-automatic garlic transplanter[J]. Journal of Shenyang Agricultural University, 2014, 45(5): 566—572. (in Chinese with English abstract)
[12] 謝學(xué)虎,張永,劉召,等. 大蒜播種機(jī)種植機(jī)構(gòu)的設(shè)計(jì)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(1):34—39. Xie Xuehu, Zhang Yong, Liu Zhao, et al. Design of planting mechanism for garlic planter[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(1): 34—39. (in Chinese with English abstract)
[13] 謝學(xué)虎. 大蒜播種機(jī)播種機(jī)構(gòu)設(shè)計(jì)[D]. 呼和浩特:內(nèi)蒙古農(nóng)業(yè)大學(xué),2015. Xie Xuehu. Design of Seeding Mechanism for Garlic Sowing Machine[D]. Huhhot: Inner Mongolia Agricultural University, 2015. (in Chinese with English abstract)
[14] 耿愛(ài)軍,張兆磊,宋占華,等. 蒜種盒機(jī)械投放過(guò)程運(yùn)動(dòng)學(xué)分析與參數(shù)優(yōu)化試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(5):29—35. Geng Aijun, Zhang Zhaolei, Song Zhanhua, et al. Kinematic analysis and parameter optimized experiment of garlic box release process[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(5): 29—35. (in Chinese with English abstract)
[15] 張兆磊,耿愛(ài)軍,李汝莘,等. 蒜種振動(dòng)排序裝置設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)機(jī)化研究,2015,37(08):138—147. Zhang Zhaolei, Geng Aijun, Li Rushen, et al. Design and test of the garlic seed sequencing vibration machine[J]. Journal of Agricultural Mechanization Research, 2015, 37(08): 138—147. (in Chinese with English abstract)
[16] 魏玉珍,鄒棟林,劉勇蘭,等. 大蒜芽端篩選及直立種植方案探究[J]. 農(nóng)機(jī)化研究,2017,39(10):113—118.
[17] 魏玉珍,鄒棟林,劉勇蘭,等. 大蒜直立篩選方法探究及其裝置設(shè)計(jì)[J]. 農(nóng)機(jī)化研究,2017,39(5):122—125.
[18] 杜穎財(cái),王希軍,王樹(shù)潔,等. 增量式編碼器自動(dòng)檢測(cè)系統(tǒng)[J]. 電子測(cè)量與儀器學(xué)報(bào),2012,26(11):993—998.Du Yingcai, Wang Xijun, Wang Shujie, et al. Auto detection system of incremental encoder[J]. Journal of Electronic Measurement and Instrumentation, 2012, 26(11): 993—998. (in Chinese with English abstract)
[19] 王群京,陳麗霞,李爭(zhēng),等. 基于光電傳感器編碼的永磁球形步進(jìn)電機(jī)運(yùn)動(dòng)控制[J]. 中國(guó)電機(jī)工程學(xué)報(bào),2005,25(13):113—117. Wang Qunjing, Chen Lixia, Li Zheng, et al. The control of a permentmagnet spherical stepper motor based on the coder of optoelectronic sensors[J]. Chinese Journal of Electrical Engineering, 2005, 25(13): 113—117. (in Chinese with English abstract)
[20] 李建勛. 數(shù)字電路與邏輯設(shè)計(jì)[M]. 北京:北京科學(xué)出版社,1981.
[21] 喬治·埃利斯. 控制系統(tǒng)設(shè)計(jì)指南[M]. 北京:機(jī)械工業(yè)出版社,2016.
[22] 江曉軍. 光電傳感與檢測(cè)技術(shù)[M]. 北京:機(jī)械工業(yè)出版社,2011.
[23] 余愿. 傳感器原理與檢測(cè)技術(shù)[M]. 湖北:華中科技大學(xué)出版社,2017.
[24] 趙麗清,馬志勇. 大蒜播種機(jī)裝盤(pán)系統(tǒng)蒜瓣定向識(shí)別算法的研究[J]. 農(nóng)機(jī)化研究,2013,35(06):163—166.
[25] 楊清明. 基于圖像處理的大蒜播種機(jī)排序機(jī)構(gòu)設(shè)計(jì)[D]. 南京:南京農(nóng)業(yè)大學(xué),2010.
[26] 陳忠平. 基于Proteus的51系列單片機(jī)設(shè)計(jì)與仿真[M]. 北京:電子工業(yè)出版社,2015.
[27] 郝向澤,何旭鵬,鄒翌,等. 基于光電傳感器的精密播種機(jī)排種性能監(jiān)測(cè)系統(tǒng)的研究[J]. 華南農(nóng)業(yè)大學(xué)學(xué)報(bào),2017,38(01):120—124.
[28] 張志良. 80C51單片機(jī)實(shí)用教程:基于Keil C和Proteus[M].北京: 高等教育出版社,2016.
[29] 陳生潭. 信號(hào)與系統(tǒng)[M]. 西安: 電子科技大學(xué)出版社,2014.
[30] 王鴻鈺. 步進(jìn)電機(jī)控制技術(shù)入門(mén)[M]. 上海: 同濟(jì)大學(xué)出版社,2009.
[31] 劉沛堯,彭舒崗,李建民,等. 數(shù)字舵機(jī)精確控制法研究與實(shí)現(xiàn)[J]. 計(jì)算機(jī)測(cè)量與控制,2014,22(7):2097—2099.Liu Peiyao, Peng Shugang, Li Jianmin, et al. Research and implementation for method of precise digital control of steering gear[J]. Computer measurement and control, 2014, 22(7):2097-2099.
[32] 郭天祥. 新概念51單片機(jī)C語(yǔ)言教程[M]. 北京:電子工業(yè)出版社,2009.
栗曉宇,耿愛(ài)軍,侯加林,張 姬,張智龍. 全自動(dòng)蒜種盒提取投放裝置設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(23):32-37. doi:10.11975/j.issn.1002-6819.2017.23.005 http://www.tcsae.org
Li Xiaoyu, Geng Aijun, Hou Jialin, Zhang Ji, Zhang Zhilong. Design and experiment of full-automatic lifting and releasing device of garlic seed box[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(23): 32-37. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.23.005 http://www.tcsae.org
Design and experiment of full-automatic lifting and releasing device of garlic seed box
Li Xiaoyu1, Geng Aijun1,2※, Hou Jialin1, Zhang Ji1,Zhang Zhilong1
(1.271000,;2.271000,)
Garlic is one of the major cash crops in China, and it is mainly distributed in Shandong, Henan and Jiangsu Provinces. Single grain sowing is crucial for garlic planting, it needs to follow the agronomic requirements of root down and scaly bud upward, and therefore garlic planting mainly uses artificial means, but this method has shortcomings of strong labor intensity and low efficiency. Correspondingly, some developed countries like America and Korea have realized garlic planting mechanization in 1950-1960s, which have extensive arable land and indefinite requirement of garlic scaly bud direction when planting, and thus foreign garlic planting machinery is not suited to China’s national conditions. In recent years, the garlic planter is developed towards automation and intelligence. However, existing garlic planter is hard to distinguish the direction of garlic scaly bud, and it also has complex structure and low efficiency. The scaly bud direction distinguishing is a core technology of garlic planter, and it is also the most difficult technical operation. Therefore, how to ensure direction of the garlic seed scaly bud in the process of planting has been a key technical problem of garlic planter. According to present condition, a full-automatic extraction and release device of garlic seed box was designed based on garlic seed box method, and it can automatically track driving according to the travel speed of machine. The full-automatic extraction and release device of garlic seed box consists of drive system, conveying device, extraction and release device, speed encoder, photoelectric sensor and MCU (micro-controller unit) system. The drive system consists of stepper motor, sprocket and chain, and it has 2 parts, and one provides transmission power for the whole machine walking, and the other controls conveying device working. The conveying device consists of conveying belt, roll shaft and bearing housing, the conveying belt is transversely mounted on the frame through roll shaft and bearing housing, and its working state is controlled by MCU system. The conveying device mainly carries out transverse transportation of garlic seed boxes. The extraction and release device consists of steering wheel, central actuator, mechanical arm, auxiliary actuator and manipulator, among which the manipulator consists of U shape rotating frame, L shape mounting panel, distance controlling actuator, special shaped gear disk, connecting rod, connecting arm and claws, and it mainly realizes the functions of garlic seed boxes precision capture, smooth traffic and seamless release. The velocity measurement encoder is used for detecting unit movement speed, and provides speed messages to central actuator and distance controlling actuator. The photoelectric sensor is used to detect whether the garlic box is in place. The garlic seed box planting method reduces the damage of garlic seed and improves work efficiency, and solves the problem of the direction of garlic seed. This paper designed mechanical arm and manipulator, the mathematical model of each key component was established through the theory analysis, and thus the structure and working parameters of mechanical arm and manipulator were determined. At the same time, the influence rule of the speed of device marching on operation parameters of mechanical arm and manipulator was proved, and the influencing factors of the clearance of adjacent garlic seed boxes were specified. The test was carried out for testing the influence of the speed of device marching on the clearance of adjacent garlic seed boxes after they were released. The results showed that when the speed of marching is 0.90 km/h, and the speeds of central actuator, auxiliary actuator and distance controlling actuator are 26.04, 26.04, and 13.89 r/min, respectively, the clearance of adjacent garlic seed boxes is less, which is 5.6 mm, and the release effect is better. The machine has better stability and release effect, and work efficiency of device has been improved obviously. The research results can provide reference for realizing automation of garlic planting.
agricultural machinery; design; crops; garlic planting; garlic seed boxes; lifting and releasing; automation
10.11975/j.issn.1002-6819.2017.23.005
S223.2+5
A
1002-6819(2017)-23-0032-06
2017-06-10
2017-11-22
山東省農(nóng)機(jī)裝備研發(fā)創(chuàng)新計(jì)劃項(xiàng)目(2016YF009);山東省重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2016GNC112004);國(guó)家特色蔬菜產(chǎn)業(yè)技術(shù)體系項(xiàng)目資助(CARS-24-D-01);山東農(nóng)業(yè)大學(xué)“雙一流”園藝機(jī)械裝備協(xié)同創(chuàng)新團(tuán)隊(duì)(SYL2017XTTD07)
栗曉宇,主要從事農(nóng)業(yè)機(jī)械研究。Email:lixiaoyu@sdau.edu.cn
耿愛(ài)軍,副教授,主要從事農(nóng)業(yè)機(jī)械設(shè)計(jì)及理論的研究。Email:gengaj@sdau.edu.cn