• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    LiFePO4-Coated Li1.2Mn0.54Ni0.13Co0.13O2 as Cathode Materials with High Coulombic Efficiency and Improved Cyclability for Li-Ion Batteries

    2017-12-18 03:25:50HELeiXUJunMinWANGYongJianZHANGChangJin
    物理化學(xué)學(xué)報(bào) 2017年8期
    關(guān)鍵詞:富鋰庫(kù)侖電流密度

    HE Lei XU Jun-Min,2, WANG Yong-Jian ZHANG Chang-Jin,3,

    ?

    LiFePO4-Coated Li1.2Mn0.54Ni0.13Co0.13O2as Cathode Materials with High Coulombic Efficiency and Improved Cyclability for Li-Ion Batteries

    HE Lei1XU Jun-Min1,2,*WANG Yong-Jian1ZHANG Chang-Jin1,3,*

    (123)

    In this work, we present a new design for a surface protective layer formed by a facile aqueous solution process in which a nano-architectured layer of LiFePO4is grown on a Li-rich cathode material, Li1.2Mn0.54Ni0.13Co0.13O2. The coated samples are then calcined at 400 or 500 °C for 5 h. The sample after calcination at 400 °C demonstrates a high initial columbic efficiency of 91.9%, a large reversible capacity of 295.0 mAh?g?1at 0.1(1= 300 mA?g?1), and excellent cyclability with a capacity of 206.7 mAh?g?1after 100 cycles at 1. Meanwhile, voltage fading of the coated sample is effectively suppressed by protection offered by a LiFePO4coating layer. These superior electrochemical performances are attributed to the coating layer, which not only protects the Li-rich cathode material from side reaction with the electrolyte and maintains the stability of the interface structure, but also provides excess reversible capacity.

    Lithium-ion battery; Lithium-rich cathode materials; LiFePO4coating; High Columbic efficiency; Cyclability

    1 Introduction

    Lithium-ion batteries have been widely applied in portable electronic products and are prime candidates as the power source for electric vehicles owing to their superior performance characteristics, namely, long cycle life, high energy and power densities, and no memory effect1?3. Cathode materials as the key constituent part of lithium-ion batteries play a crucial role in determining the whole battery performance. Therefore, it is of great importance to develop cathode materials with large specific capacity to fulfill the requirements for advanced lithium-ion batteries. Among the various cathode materials being developed, the lithium-rich oxides, usually denoted as Li1+x/(x+2)M(2?2x)/(x+2)Mn2x/(x+2)O2orLi2MnO3?(1?)LiMO2(M represents the transition metal), are attracting intensive attention because of their excellent reversible capacity (~250 mAh?g?1)4?12.

    Although the Li-rich materials have the advantages of relatively high capacity and low cost, they suffer from several disadvantages, such as low initial coulombic efficiency, low rate capability and insufficient cyclability, which impose a great obstacle for their practical applications. It is well known that the particular electrochemical performance of the lithium-rich oxides including superior high capacity is mainly originated from an active process of Li2MnO3during the initial charge in the high potential range, which presents an irreversible removal of Li2O along with production of oxygen vacancies from the crystal lattice13,14. Due to this irreversible active reaction of Li2MnO3as well as the decomposition of the electrolyte in the high potential range, the lithium-rich oxides exhibit the low initial coulombic efficiency. The poor rate capability could be assigned to the obstruction of the electronic delocalization due to the introduction of Li and Mn ions in the transition metal layer and the increase of the surface resistance with cycling15?17. The poor cycling stability could correspond to the phase change from a layered to spinel structure during the subsequent cycling.

    To solve these problems, many efforts have been made in the past decade to stabilize the surface and the bulk phase structures of the lithium-rich oxides. One approach is to stabilize the crystal structure by cation doping in the bulk, including Mg-doping, Sn-doping, Ti-doping and Mo-doping12,18?20. Another and more effective way is deemed as the surface modification. As demonstrated in previous reports, surface coating of carbon, metal oxide (Al2O3, Cr2O3, ZrO2, MoO3)21?24, metal fluoride (AlF3, FeF3)25,26, metal phosphate (FePO4, SmPO4)27,28, and spinel11,29can substantially improve the initial discharge capacity and greatly enhance the cyclability, possibly due to the formation of a stable solid electrolyte interphase (SEI) film to alleviate the electrolyte decomposition and retain the oxide ion vacancies in the lattice at subsequent charge-discharge cycles. For example, Wu.30have reported that LiFePO4coated LiNi0.5Mn0.3Co0.2O2exhibits a higher reversible capacity and improved cycling performance in comparison with its pristine counterpart. To our knowledge, little work has been done on Li-rich cathodes modified with this stable cathode material, namely, LiFePO4for further enhancement of Li-ion batteries performance both of initial columbic efficiency and cyclability.

    In this study, we have designed a coated LiFePO4layered on Li1.2Mn0.54Ni0.13Co0.13O2a facile aqueous solution process. Subsequently, calcinations are conducted to enhance the interface interaction with polyanion penetration. Compared with the pristine sample, the LiFePO4coated Li1.2Mn0.54Ni0.13Co0.13O2shows significantly improved discharge capacity, coulombic efficiency and rate capability. The effect of the LiFePO4coating layer on the electrochemical performance of Li-rich cathode has been discussed in detail.

    2 Experimental

    2.1 Materials preparation

    Li1.2Mn0.54Ni0.13Co0.13O2(LMNCO) was synthesized by a sol-gel method using citric acid as the chelating agent. Stoichiometric amounts of LiCOOCH3?2H2O (Alfa Aesar, 99%), Ni(COOCH3)2?4H2O (Alfa Aesar, > 98%), Co(COOCH3)2?4H2O (Alfa Aesar, 98%), and Mn(COOCH3)2(Alfa Aesar, 99%) was dissolved in de-ionized water. Then the solution was added dropwisely into citric acid solution under continuous stirring. After being stirred thoroughly, the solution was heated at 80 °C and a continuous stirring was applied until a clear viscous gel was formed. The gel was dried in an oven at 80 °C to obtain the precursor powder. After heating at 480 °C in air for 5 h, the powder was ground and then calcined at 900 °C for 12 h in air. A 5% excess of lithium was used to compensate for lithium loss during the calcinations.

    For preparation of 5% () LiFePO4coated LMNCO composite, the required amounts of LiCOOCH3?2H2O and FeSO4?7H2O (Alfa Aesar, > 99%) were dissolved in de-ionized water, followed by adding NH4H2PO4(Alfa Aesar, ≥ 98%) solution under constantly stirring. The as-prepared LMNCO was dispersed in the above solution. Then, the mixture was heated at 80°C and stirred vigorously for 5 h. After that, the suspension was laid aside for 12 h, followed by centrifuging and washing the precipitates with de-ionized water and ethanol, and drying at 80°C overnight. After mild grinding, the as-obtained powder was further heated at 400 °C (LFP-400) and 500 °C (LFP-500) for 5 h in the flowing argon. The final amounts of LiFePO4in the composites (mass fraction) for the LFP-400 and LFP-500 samples are 4.95% and 4.8%, respectively.

    2.2 Morphology and structure characterizations

    Powder X-ray diffraction measurement was performed on Rigaku TTR3 (Japan) with high-intensity graphite monochromatized Curadiation between 10° and 80° at a scan rate of 2 (°)?min?1. The morphologies of the bare and coated samples were observed by Helios Nanlab 600i (Germany) scanning electron microscope (SEM) and JEM-2010 (Japan) high resolution transmission electron microscope (HRTEM). X-ray photoelectron spectroscopy of the samples was performed using Thermo ESCALAB 250 (USA) with monochromatic Alradiation.

    2.3 Electrochemical measurements

    The electrode materials were assembled into 2032 button cells for electrochemical measurements. A mixture of active material, carbon black (CB), and poly(vinyl difluoride) (PVDF) at a mass ratio of 75 : 15 : 10 was mixed in-methyl pyrrolidone (NMP) solution and pasted on an Al foil to prepare the working electrodes. The slurry was cast onto an Al foil and was then dried overnight in a vacuum oven at 120 °C. The loading mass of active material was adjusted to 3.6?3.9 mg. Pure lithium foil was used as a counter and reference electrode. The half-cell was composed of a cathode and a lithium metal anode separated by a Celgard 2400 porous polypropylene film separator. The electrolyte consisted of a solution of 1 mol?L?1LiPF6in ethylenecarbonate (EC)/dimethylcarbonate (DMC)/ diethyl- carbonate (DEC) (with mass ratio of 1 : 1 : 1). The batteries assembly was carried out in a glove box (M.BRAUN MB 20G, Germany) filled with high-purity argon. The galvano- static charge and discharge tests were performed between 2.0 and 4.8 V (Li+/Li) with a NEWARE CT-3008 instrument (Shenzhen, China) at room temperature. Electrochemical impedance spectra (EIS) were measured using a Zahner Zennium (Germany) electrochemical workstation in the frequency range of 1 MHz to 1 mHz, and the cyclic voltammetry (CV) measurement was conducted in the potential range of 2?4.8 V at a scan rate of 0.1 mV?s?1.

    3 Results and discussion

    Fig.1 shows the XRD patterns of the pristine and the LiFePO4coated LMNCO samples. The patterns of the pristine and LFP-400 samples can be indexed in characteristic of the O3 layered structure based on a hexagonal-NaFeO2with space group3. The weak superstructure reflections locating at around 20°?25° are corresponding to the Li+cation ordering in the transition metal layer (2/)31. Meanwhile, the separations between the adjacent peaks of (006)/(102) and (018)/(110) can be clearly observed, indicating a typical layered structure32.All the reflections are from the layered oxide without any peaks for olive phosphates, which is possibly due to the very low content of the LiFePO4layer coated on the surface of the LMNCO material. When the calcination temperature is 500 °C, the significantly weakening of superstructure reflections suggests that the structure of the solid solution is destroyed to some extent. The conductivity of the pristine sample is tested to be 0.12 S?m?1, while the value for the LFP-400 and LFP-500 samples are 1.84 × 10?3S?m?1and 0.88 × 10?3S?m?1, respectively.

    Fig.1 XRD patterns of the (a) Pristine, (b) LFP-400 and (c) LFP-500 samples.

    SEM images of the samples are shown in Fig.2. Fig.2(a) displays that the pristine sample is composed of uniformly distributed polyhedral particles. The diameters of the particles are ~250 nm with smooth facets and sharp edges. After the surface modification with LiFePO4, there is no apparent change in grain size. A tiny difference is that the surfaces of the pristine grains are smooth, while the surfaces of the coated samples are relatively coarse. From the SEM results, we expect that the LiFePO4coating of LMNCO can effectively decrease the direct contact area between the high-voltage cathode material and the electrolyte.

    Fig.2 SEM images of the (a, b) Pristine, (c, d) LFP-400 and (e, f) LFP-500 samples.

    To investigate the effective coating of LiFePO4on the surfaces of Li-rich particles, we carry out HRTEM characterizations for the pristine and coated samples. For the pristine sample (Fig.3(a)), a continuous interference fringe with a distance of 0.467 nm is found until the clear grain edge, which can be indexed to the (003) plane25. On the other hand, a distinct LiFePO4layer with a thickness of 7?10 nm appears on the top surface of LFP-400 and LFP-500 samples (Fig.3(b, c)). The distances between two lattice fringes on the internal and surface of the coated samples are 0.467 nm and 0.278 nm, corresponding to (003) plane of LMNCO and (301) plane of LiFePO433, respectively. The HRTEM give clear evidences of the existence of LiFePO4coating layers on the surface of the layered oxide. Fig.3(d) shows the results of EDS analysis. The EDS analysis reveals the presence of Ni, Co, Mn, O, Sm and P in the LFP-500 sample. The calculated molar ratio of Mn : Ni : Co is 0.54 : 0.19 : 0.18, which is very close to the chemical formula of Li1.2Mn0.54Ni0.13Co0.13O2(i.e., 0.54 : 0.13 : 0.13). The calculated atomic ratio of Fe : P is ~1 from the EDS analysis. These results indicate that the actual element compositions of the pristine and LFP-500 samples are well consistent with the original experimental project.

    In order to investigate the changes of surface properties and the chemical states of the elements in the surface coating layer, we perform the X-ray photoelectron spectroscopy measurements on the samples before and after the LiFePO4coating. As shown in Fig.4, the binding energy of P 2in the LFP-400 is about 133.4 eV, which is consistent with the value reported for P5+and PO43?. In the pristine sample, the P 2peaks are not detected34. There is an O 1peak at 529.35 eV in the pristine sample, which is shifted to 529.66 eV in the LFP-400 sample. The Fe 2spectrum consists of two parts, Fe 23/2and Fe 21/2, because of the spin–orbit coupling of the partially filled-orbitals (characteristic of transition metal ions). The Fe 23/2and Fe 21/2spectra are clearly seen at 711.04 eV and 724.9 eV, respectively, exhibiting the characteristic of Fe2+35,36. For Mn 2, the Mn 23/2peaks of the pristine and coated samples are located at 642.16 eV and 642.33 eV respectively, which indicates that the manganese ions are in a mixed valence of Mn4+with Mn3+37. The Ni 23/2peaks for both samples are located at 854.88 eV and 854.6 eV, respectively, while the difference between the binding energies of 21/2and 23/2levels is= 17.72 eV. Therefore, the valence state of Ni ions is +238,39. Comparatively, four signals are detected for Co 2core level. The positions of the satellite peaks and the values of, demonstrate that Co ions for both samples are in oxidation states between +2 and +340. Simultaneously considering the results of the TEM and XPS, it can be confirmed that LiFePO4has been successfully coated on the surface of the LMNCO.

    Fig.3 HRTEM images of the (a) Pristine, (b) LFP-400 and (c) LFP-500 samples, (d) EDS spectra of LFP-500 sample.

    The electrochemical performances of all samples are tested by galvanostatic charging and discharging in a voltage window of 2.0–4.8 V (Li+/Li) at room temperature. Fig.5(a) shows the initial charge/discharge curves of the pristine and coated samples at a low rate of 0.1(1= 300 mA?g?1). It can be seen that the pristine sample has a long plateau that begins at ~4.5 V during the first charge. The voltage plateau on the first charge corresponds to the removal of oxygen from the Li2MnO3component, which is accompanied by the diffusion of the transition metal ions from the surface to bulk41. Compared with the pristine sample, the coated samples display almost the same charge/discharge curves except for the additional plateau in the voltage range of 2.6?2.9 V during discharge, which contributes the excess reversible capacity for the coated samples. As can be seen, the LFP-400 sample delivers a higher first discharge capacity (295.0 mAh?g?1) than those of the pristine and LFP-500 sample, giving a high coulombic efficiency of 91.9%, whereas the pristine and LFP-500 samples deliver lower coulombic efficiency of 79.6% and 86.3%, respectively. As seen from the Table 1, the first discharge capacity and high coulombic efficiency of the LFP-400 sample are superior to the three typical LMNCO-based cathode materials12,24,29. This improvement demonstrates that the coated LiFePO4can effectively protect the layered core from erosion of electrolytes and stabilize the surface structure.

    Fig.4 XPS spectra of the (a) Pristine and (b) LFP-400 sample at the P 2p, O 1s, Fe 2p, Mn 2p, Ni 2p and Co 2p corelevels.

    Fig.5 (a) Charge/discharge curves of the Pristine, LFP-400 and LFP-500 samples at 0.1C; CV curves of the (b) Pristine,(c) LFP-400 and (d) LFP-500 samples at a scan rate of 0.1 mV?s?1.

    The CV curves of the pristine sample (Fig.5(b)) show two obvious oxidation peaks at ~3.9 V and ~4.6 V (Li+/Li) in the initial anodic scan, which are attributed to the reversible lithium intercalation/deintercalation in layered structure and the removal of lithium ions along with the simultaneous oxygen evolution, respectively. In the reversal scan, there is one reduction peak at ~3.2 V, which is ascribed to the Mn4+reduction to balance the charge of oxygen vacancies arising from the loss of oxygen in the first charge42. In the second scan, the CV features are significantly different from those observed in the first scan. The strongest peak at 4.6 V in the first scan disappears, indicating the irreversible reaction for Li2O removal from the crystal lattice. The CV curves of the coated samples shown in Fig.5(c, d) are similar to those of the pristine sample, except for the presence of one pair of redox peaks centered in the low voltage range of 2.6?2.9 V, which is the characteristic peak of the spinel phase. These peaks are corresponding to the reversible reaction of Mn3+/Mn4+couple, which is related to the Li+intercalation mechanism of the newly formed spinel phase component24.

    When the coated mass is further became to 2% () (LFP-2) and 10% () (LFP-10). The corresponding experimental results indicate that the electrochemical properties of these two samples are not comparable with those of the LFP-400 (shown in Fig.6). For instance, the LFP-2 exhibits a maximum capacity of 263.8 mAh?g?1and initial columbic efficiency of 80.3% at 0.1, and the LFP-10 exhibits a maximum capacity of 241.6 mAh?g?1and initial columbic efficiency of 80.1%. These are both smaller than the LFP-400 sample, so we deem that the best coated amount is 5% ().

    Table 1 Comparison of LFP-400 with some typical LMNCO-based materials in electrochemical performance.

    Fig.6 Charge/discharge curves of the LFP-2, LFP-400 and LFP-10 samples at 0.1C.

    The present work has provided evidence that high-rate discharge capacities could be achieved by LiFePO4coating on lithium-rich materials. Fig.7 shows a continuous cycling result at incremental rates from 0.1to 10then recovering back to 0.1. As can be seen, the LFP-400 sample exhibits the best rate performance among all samples, especially at 10. Such contrast observation might be related to the increasing the electrode/electrolyte contact area which may generate higher diffusion capability at an extremely high rate.

    It is generally known that voltage fading is a major issue of the Li-rich layered cathode materials43. The voltage fading could be caused by the deterioration of the electrode/electrolyte interface and the structure transforms from layered to spinel-like due to Mn ions migration. Fig.8 shows the voltage fading of the pristine and coated samples from the 10th cycle to the 100th cycle at 1rate in the voltage of 2.0?4.8 V. It is clear that, when the cycling number increases, the charge voltage increase to higher plateaus, meanwhile, the discharge voltage drop to lower plateaus for all samples. This indicates the enlargement of polarization. Serious voltage fading with cycling is observed in the pristine sample, owing to the continuous undesired layered-to-spinel phase transformation. However, the voltage fading of coated samples effectively slowed down, especially for the LFP-400 sample. Therefore, the LiFePO4coating layer is more beneficial for reducing the speed of voltage fading.

    Fig.7 Rate performances of the Pristine, LFP-400 and LFP-500 samples at various charge/discharge rates.

    Fig.8 Voltage profiles from galvanostatic cycling of the Pristine, LFP-400 and LFP-500 samples during different cycles at 1C rate in the potential range of 2.0–4.8 V.

    The cycle performances of the pristine and coated samples are evaluated at 1between 2.0 and 4.8 V. As shown in Fig.9(a), both of the coated samples deliver higher discharge capacity than the pristine sample. After 100 cycles, the LFP-400 sample exhibits a discharge capacity of 206.7 mAh?g?1, whereas the pristine and LFP-500 samples decay to 130.7 and 190.6 mAh?g?1. The interface layer with strong interaction can protect the cathode surface from further HF corrosion, which is favorable for ensuring the good cycle stability. To investigate the fast-charging ability, tests based on 5charge/discharge are conducted on the pristine and coated samples (Fig.9(b)). Fast extraction/insertion of Li+at high rates damages the fragile structure of pristine LMNCO, resulting in the obvious capacity fade on cycling26. Most surprisingly, the discharge capacity of the LFP-400 sample is 201.8 mAh?g?1and can retain 183.8 mAh?g?1after 50 cycles, while the corresponding discharge capacities of the LFP-500 sample are 121.1 and 168.1 mAh?g?1, respectively. However, the pristine sample can only deliver a discharge capacity of 151 mAh?g?1after 50 cycles. This superior reversible capacity and good cycling stability at high rates for the LFP-400 and LFP-500 are attributed to the fast Li+diffusion rate and structural features from the LiFePO4protective layer.

    Fig.9 Cycling performances of the Pristine, LFP-400 and LFP-500 samples cycled at 1C (a) and 5C (b) between the voltage limits of 2.0?4.8 V.

    Fig.10 Electrochemical impedance spectra (EIS) of the Pristine, LFP-400 and LFP-500 samples at a charge state of 4.1 V after 50 cycle in the frequency range of 1 MHz to 1 mHz.

    Electrochemical impedance spectroscopy (EIS) spectra are measured for the pristine and coated samples after 50 charge-discharge cycles at 1in order to find out the underlying reason of the improvement in high-rate capability. Before the EIS measurements, all samples are charged to 4.1 V at 1rate to reach an identical status. As shown in Fig.10, both Nyquist plots are composed of two semicircles and one slope, which can be explained by using the equivalent circuits (the insets in Fig.10): the first semicircle (at high frequency region) is ascribed to the lithium ion diffusion resistance through the surface layer (f), the second semicircle (at medium-to-low frequency region) is assigned to the charge transfer resistance (ct) at electrolyte-electrode interfacial, and the slope at the low frequency region is attributed to lithium ion diffusion Warburg impedance (w) in the bulk material24,44. All EIS spectra are fitted using the equivalent circuit shown the inset of Fig.10. The fitting results offandctfor all samples are tabulated in Table 2. It is obvious that the value offfor pristine sample is beyond 28.7 Ω, while those for the LFP-400 and LFP-500 samples are 7.0 and 7.7 Ω, respectively. For thect, it is about 125.7 Ω for the pristine sample, much larger than the LiFePO4coated samples. Especially for the LFP-400 sample, the value ofctis only 63.2 Ω. Among the three samples, the LFP-400 sample exhibits the lowestfandctvalues. This means that the side reaction between cathode electrode and electrolyte is markedly suppressed by LiFePO4coating layer. The lowerfandctvalues could accelerate the Li+diffusion rate at the electrode/electrolyte interface, and then are beneficial to enhancing the electrochemical properties of LMNCO during cycling45. Therefore, it is reasonable to conclude that the improvement of the electrochemical reaction activity and ion diffusion are responsible for the high coulombic efficiency, good cycle stability and remarkable fast-charging ability of the LFP-400 sample.

    Table 2 Fitted impedance parameters of the Pristine, LFP-400 and LFP-500 samples.

    4 Conclusions

    In summary, we have successfully prepared LiFePO4- coated Li1.2Mn0.54Ni0.13Co0.13O2by a facile aqueous solution method. The LFP-400 sample exhibits a high coulombic efficiency, high reversible capacity, good cycle stability and small voltage fading, which may eventually lead to advanced Lithium-ion batteries that meet the requirements of electric vehicles and renewable energy storage. Such an enhanced performance is associated with the active surface protective layer LiFePO4. The same strategy adopted in this work could also be extended to other high energy cathode materials with either high potential or high capacity.

    (1) Armstrong, A. R.; Lyness, C.; Panchmatia, P. M.; Islam, M. S.; Bruce, P. G.. 2011,, 223. doi:10.1038/nmat2967

    (2) Chiang, Y. M.2010,, 1485. doi: 10.1126/science.1198591

    (3) Gu, M.; Belharouak, I.; Genc, A.; Wang, Z.; Wang, D.; Amine, K.; Gao, F.; Zhou, G.; Thevuthasan, S.; Baer, D. R.; Zhang, J. G.; Browning, N. D.; Liu, J., Wang, C.. 2012,, 5186.10.1021/nl302249v

    (4) Johnson, C. S.; Kim, J. S.; Lefief, C.; Li, N.; Vaughey, J. T.. 2004,, 1085. doi: 10.1016/j.elecom.2004.08.002

    (5) Wei,G. Z.; Xia, L.; Ke, F. S.; Huang, L.; Li, J. T.; Wang, Z. X.; Zhou, Z. Y.; Sun, S. G.2010,, 4364. doi: 10.1002/adma.201001578

    (6) Yu, H. J.; Zhou, H. S.. 2012,, 15507. doi: 10.1039/c2jm33484d

    (7) Kang, S. H.; Sun, Y. K.; Amine, K.. 2003,, A183. doi: 10.1149/1.1594411

    (8) Zhu, Z. Y.; Zhu, L. W.2014,, 178. doi: 10.1016/j.jpowsour.2014.01.068

    (9) Oh, P.; Ko, M.; Myeong, S.; Kim, Y.; Cho, J.. 2014,, 1400631. doi: 10.1002/aenm.201470087

    (10) He, F.; Wang, X. Q.; Du, C. Q.; Baker, A. P.; Wu, J. W.; Zhang, X. H.2015,, 484. doi: 10.1016/j.electacta.2014.11.139

    (11) Yang, C.; Zhang, Q.; Ding, W. X.; Zang, J.; Lei, M.; Zheng, M. S.; Dong, Q. F.2015,, 7554. doi: 10.1039/c5ta00009b

    (12) Jin, X.; Xu, Q. J.; Liu, H. M.; Yuan, X. L.; Xia, Y. Y.2014,, 19. doi: 10.1016/j.electacta.2014.05.043

    (13) Armstrong, A. R.; Holzapfel, M.; Novak, P.; Johnson, C. S.; Kang, S. H.; Thackeray, M. M.; Bruce, P. G.2006,, 8694.10.1021/ja062027+

    (14) Lu, Z.; Dahn, J. R.2002,, A815. doi: 10.1149/1.1480014

    (15) Xu, B.; Fell, C. R.; Chi, M.; Meng, Y. S.. 2011,, 2223. doi: 10.1039/C1EE01131F

    (16) Cong, L.; Lei, K. X.; Wang, J. W.; Wang, J. B.; Meng, H. J.; Chen. F. Y.; Chen, J.2016,, 2216. [叢 亮, 雷凱翔, 王紀(jì)偉, 王建斌, 孟煥菊, 程方益, 陳 軍. 科學(xué)通報(bào), 2016,, 2216.] doi: 10. 1360/N972016-00325

    (17) Yabuuchi, N.; Yoshii, K.; Myung, S. T.; Nakai, I.; Komaba, S.. 2011,, 4404. doi:10.1021/ja108588y

    (18) Zhao, Y. J.; Xia, M. H.; Hu, X. S.; Zhao, Z. K.; Wang, Y.; Lv, Z.2015,, 1167. doi: 10.1016/j.electacta.2015.05.068

    (19) Yamamoto, S.; Noguchi, H.; Zhao, W.2015,, 76. doi: 10.1016/j.jpowsour.2014.12.038

    (20) Du, J. Y.; Shan, Z. Q.; Zhu, K. L.; Liu, X. Y.; Tian, J. H.; Du, H. Y.. 2015,,1037. doi: 10.1007/s10008-014-2706-6

    (21) Kang, S. F.; Li, B.; Qin, H. F.; Fang, Y.; Li, X.; Wang, Y. G.. 2015,, 525. doi: 10.1007/s10008-014-2585-x

    (22) Li, B.; Li, C.; Cai, J. J.; Zhao, J. B.2015,, 21290. doi: 10.1039/c5ta06387f

    (23) Lee, H. J.; Park, Y. J.2013,, 222. doi: 10.1016/j.jpowsour.2013.01.154

    (24) Wang, C. L.; Zhou, F.; Chen, K. M.; Kong J. Z.; Jiang, Y. X.; Yan, G. Z.; Li J. X.; Yu, C.; Tang, W. P.2015,, 1171. doi: 10.1016/j.electacta.2015.07.167

    (25) Sun Y. K.; Lee, M. J.; Yoon, C. S.; Hassoun, J.; Amine, K.; Scrosati, B.2012,, 1192. doi: 10.1002/adma.201104106

    (26) Zhao, T. L.; Li, L.; Chen, R. J.; Wu, H. M.; Zhang, X. X.; Chen, S.; Xie, M.; Wu, F.; Lu, J.; Amine, K.2015,, 164. doi: 10.1016/j.nanoen.2015.04.013

    (27) Wang, Z. Y.; Liu, E. Z.; He, C. N.; Shi, C. S.; Li, J. J.; Zhao, N. Q.2013,, 25. doi: 10.1016/j.jpowsour.2013.02.022

    (28) He, L.; Xu, J. M; Han, T.; Han, H.; Wang, Y. J.; Yang, J.; Wang, J. R.; Zhu, W. K.; Zhang, C. J.; Zhang, Y. H.2017,, 5267. doi: 10.1016/j.ceramint.2017.01.052

    (29) Chen, Y. F.; Xie,K.;Zheng, C. M.;Ma, Z. Y.;Chen, Z. X.2014,, 16888. doi: 10.1021/am504412n

    (30) Wu, Z. Z.; Ji, S. P.; Liu, T. C.; Duan, Y. D.; Xiao, S.; Lin, Y.; Xu, K.; Pan, F.. 2016,, 6357. doi: 10.1021/acs.nanolett.6b02742

    (31) Shi, S. J.; Tu, J. P.; Zhang, Y. D.; Zhang, Y. J.; Gu, C. D.; Wang, X. L.2013,, 828. doi: 10.1016/j.electacta.2013.08.002

    (32) Liu, J.; Manthiram, A.. 2010,, 3961. doi: 10.1039/b925711j

    (33) Gao, H. Y.; Zhe, H.; Zhang, K. Cheng, F. Y.; Chen, J.. 2013,, 3040. doi: 10.1039/c3cc40565f

    (34) Wu, Y.; Murugan, A. V.; Manthiram, A.. 2008,, A635. doi: 10.1149/1.2948350

    (35) Bhuvaneswari, M. S.; Bramnik, N. N.; Ensling, D.; Ehrenberg, H.; Jaegermann, W.2008,, 553. doi: 10.1016/j.jpowsour.2008.01.090

    (36) Li, X. L.; Jin, H. C.; Liu, S.; Xin, S.; Meng, Y.; Chen, J. J.2015,, 116.10.1039/C4TA04358H

    (37) Ivanova, S.; Zhecheva, E.; Stoyanova, R.; Nihtianova, D.; Wegner, S.; Tzvetkova, P.; Simova, S.2011,, 25170.10.1021/jp208976h

    (38) Kang, S. H.; Kim, J.; Stoll, M. E.; Abraham, D.; Sun, Y. K.; Amine, K.2002,, 41. doi: 10.1016/S0378-7753(02)00360-9

    (39) Yu, C.; Li, G.; Guan, X.; Zheng, J.; Li, L.; Chen, T.2012,, 283. doi: 10.1016/j.electacta.2012.06.084

    (40) Dahéron, L.; Dedryvère, R.; Martinez, H.; Ménétrier, M.; Denage, C.; Delmas, C.; Gonbeau, D. Chem. Mater. 2008, 20, 583. doi: 10.1021/cm702546s

    (41) Kim, J. M.; Kumagai, N.; Chung, H. T.2006,, A494. doi: 10.1149/1.2336988

    (42) Wang, Q. Y.; Liu, J.; Murugan, A. V.; Manthiram, A.2009,, 4965. doi: 10.1039/b823506f

    (43) Croy, J. R.; Kim, D.; Balasubramanian, M.; Gallagher, K.; Kang, S. H.; Thackeray, M. M.. 2012,, A781. doi: 10.1149/2.080206jes

    (44) He, W.; Yuan, D. D.; Qian, J. F.; Ai X. P.; Yang, H. X.; Cao, Y. L.2013,, 11397. doi: 10.1039/c3ta12296d

    (45) Kim, H. S.; Kong, M. Z.; Kim, K.; Kim, I. J.; Gu, H. B.2007,, 917. doi: 10.1016/j.jpowsour.2007.06.028

    LiFePO4包覆的Li1.2Mn0.54Ni0.13Co0.13O2鋰離子電池正極材料:增強(qiáng)的庫(kù)倫效率和循環(huán)性能

    何 磊1徐俊敏1,2,*王永建1張昌錦1,3,*

    (1中國(guó)科學(xué)院強(qiáng)磁場(chǎng)科學(xué)中心,合肥 230031;2鄭州大學(xué)物理工程學(xué)院,材料物理教育部重點(diǎn)實(shí)驗(yàn)室,鄭州 450052;3南京大學(xué)人工微結(jié)構(gòu)科學(xué)與技術(shù)協(xié)同創(chuàng)新中心,南京 210093)

    采用簡(jiǎn)單水溶液法制備LiFePO4包覆的Li1.2Mn0.54Ni0.13Co0.13O2富鋰正極材料,包覆后的材料分別經(jīng)過400 °C或500 °C煅燒處理5 h。測(cè)試結(jié)果顯示,400 °C煅燒處理的包覆樣品在0.1(1= 300 mA?g?1)電流密度下充放電時(shí),首次庫(kù)侖效率可以高達(dá)91.9%,同時(shí),首次放電比容量可達(dá)到295.0 mAh?g?1。此外,該包覆樣品還具有良好的循環(huán)性能,在1電流密度下循環(huán)100次放電比容量仍可保持在206.7 mAh?g?1。進(jìn)一步的研究發(fā)現(xiàn)LiFePO4的包覆不僅可以提高Li1.2Mn0.54Ni0.13Co0.13O2富鋰材料的首次庫(kù)侖效率和循環(huán)穩(wěn)定性能,而且還能夠有效抑制材料在充放電過程中的電壓衰減。上述電化學(xué)性能的有效提升主要?dú)w因于LiFePO4包覆層可以阻礙Li1.2Mn0.54Ni0.13Co0.13O2富鋰材料與電解液之間的直接接觸,減少副反應(yīng)的發(fā)生,增強(qiáng)材料表面的結(jié)構(gòu)穩(wěn)定性,同時(shí)還可以為富鋰材料提供額外的可逆容量。

    鋰離子電池;富鋰正極材料;磷酸鐵鋰包覆;高庫(kù)侖效率;循環(huán)性能

    O646;O614;O469

    10.3866/PKU.WHXB201704145

    March 2, 2017;

    March 27, 2017;

    April 14, 2017.

    Corresponding authors.XU Jun-Min, Email: junminxu@zzu.edu.cn; Tel: +86-371-67767670. ZHANG Chang-Jin, Email:zhangcj@hmfl.ac.cn;

    Tel: +86-551-65595655.

    The project was supported by the Scientific Research Grant of Hefei Science Center of Chinese Academy of Sciences (2015SRG-HSC025) and National Natural Science Foundation of China (U1532267, 11504379).

    中國(guó)科學(xué)院合肥科學(xué)中心科學(xué)研究項(xiàng)目(2015SRG-HSC025)和國(guó)家自然科學(xué)基金(U1532267, U11504379)資助

    猜你喜歡
    富鋰庫(kù)侖電流密度
    1976年唐山強(qiáng)震群震后庫(kù)侖應(yīng)力演化及其與2020年古冶5.1級(jí)地震的關(guān)系
    地震研究(2021年1期)2021-04-13 01:04:46
    富鋰錳基正極材料zMnOx·(1-z)Li[Ni0.2Li0.2Mn0.6]O2的電化學(xué)性能
    汽車電器(2018年1期)2018-06-05 01:23:04
    基于WIA-PA 無線網(wǎng)絡(luò)的鍍鋅電流密度監(jiān)測(cè)系統(tǒng)設(shè)計(jì)
    滾鍍過程中電流密度在線監(jiān)控系統(tǒng)的設(shè)計(jì)
    電流密度對(duì)鍍錳層結(jié)構(gòu)及性能的影響
    電流密度對(duì)Fe-Cr合金鍍層耐蝕性的影響
    改進(jìn)共沉淀法合成富鋰正極材料Li1.2Mn0.6Ni0.2O2及性能表征
    基于粘彈庫(kù)侖應(yīng)力變化的后續(xù)最大地震震級(jí)估計(jì)及2008、2014年于田2次7.3級(jí)地震之間關(guān)系的討論
    富鋰錳基正極材料性能改性的研究進(jìn)展
    一種周期庫(kù)侖作用勢(shì)優(yōu)化法的改進(jìn)
    午夜福利在线免费观看网站| 脱女人内裤的视频| 国产麻豆69| 99香蕉大伊视频| 欧美日韩福利视频一区二区| 丝袜人妻中文字幕| 一本色道久久久久久精品综合| 亚洲国产精品一区三区| www.熟女人妻精品国产| 人妻人人澡人人爽人人| 欧美日韩av久久| 欧美性长视频在线观看| 午夜两性在线视频| 亚洲精品一区蜜桃| 国产真人三级小视频在线观看| 90打野战视频偷拍视频| 久久免费观看电影| 亚洲av日韩在线播放| 欧美精品一区二区免费开放| 两人在一起打扑克的视频| 欧美大码av| 两个人看的免费小视频| 久久人人爽av亚洲精品天堂| 一本综合久久免费| 天堂俺去俺来也www色官网| 国产xxxxx性猛交| 成人亚洲精品一区在线观看| 亚洲人成电影观看| 亚洲五月婷婷丁香| 久久精品久久久久久噜噜老黄| 欧美另类亚洲清纯唯美| 久久国产精品人妻蜜桃| 啦啦啦中文免费视频观看日本| 丁香六月欧美| 美国免费a级毛片| 色老头精品视频在线观看| 国产视频一区二区在线看| 国产高清视频在线播放一区 | 一区二区日韩欧美中文字幕| 91精品三级在线观看| 中国美女看黄片| 亚洲精品国产一区二区精华液| 又黄又粗又硬又大视频| 欧美av亚洲av综合av国产av| 精品国产一区二区三区久久久樱花| 视频区图区小说| av国产精品久久久久影院| 不卡一级毛片| 国产亚洲欧美在线一区二区| 一进一出抽搐动态| 国产亚洲精品一区二区www | 午夜精品国产一区二区电影| av有码第一页| 国产成人免费观看mmmm| 国产精品久久久久久精品电影小说| 午夜影院在线不卡| 一级片免费观看大全| 亚洲avbb在线观看| 亚洲熟女毛片儿| 欧美老熟妇乱子伦牲交| 亚洲熟女精品中文字幕| 大片免费播放器 马上看| 99久久人妻综合| 亚洲国产日韩一区二区| 久久天躁狠狠躁夜夜2o2o| 亚洲精品在线美女| 天天躁日日躁夜夜躁夜夜| 男女国产视频网站| 制服人妻中文乱码| 99国产精品99久久久久| 大片免费播放器 马上看| 一本大道久久a久久精品| 国产精品久久久久久精品电影小说| 妹子高潮喷水视频| 女人高潮潮喷娇喘18禁视频| kizo精华| 亚洲欧美精品自产自拍| 美女扒开内裤让男人捅视频| 亚洲成人免费电影在线观看| 亚洲久久久国产精品| 成年人黄色毛片网站| 亚洲精品久久午夜乱码| 国产精品久久久久久精品古装| 老汉色av国产亚洲站长工具| 久久这里只有精品19| 99久久99久久久精品蜜桃| 久久精品国产a三级三级三级| 日韩熟女老妇一区二区性免费视频| av福利片在线| 国产免费一区二区三区四区乱码| 日本欧美视频一区| 纵有疾风起免费观看全集完整版| av天堂久久9| 麻豆乱淫一区二区| 亚洲精品国产精品久久久不卡| 久久精品久久久久久噜噜老黄| 中文字幕高清在线视频| 精品亚洲成a人片在线观看| 91av网站免费观看| 国产亚洲欧美精品永久| 九色亚洲精品在线播放| 在线天堂中文资源库| 国产极品粉嫩免费观看在线| 人妻人人澡人人爽人人| 女人高潮潮喷娇喘18禁视频| 免费在线观看完整版高清| 纵有疾风起免费观看全集完整版| 桃花免费在线播放| 丝袜美足系列| 少妇 在线观看| 大型av网站在线播放| 日韩大片免费观看网站| 亚洲专区字幕在线| 久久人人97超碰香蕉20202| 十八禁网站网址无遮挡| 精品熟女少妇八av免费久了| 亚洲精品久久午夜乱码| 久久精品亚洲熟妇少妇任你| 久久精品国产a三级三级三级| 亚洲av日韩精品久久久久久密| av福利片在线| 99国产精品99久久久久| av天堂在线播放| 国产成人精品在线电影| 国产成人一区二区三区免费视频网站| 久久99热这里只频精品6学生| 老司机亚洲免费影院| 纯流量卡能插随身wifi吗| 女人被躁到高潮嗷嗷叫费观| 久久国产精品男人的天堂亚洲| 日本黄色日本黄色录像| 永久免费av网站大全| 人人妻人人澡人人看| 亚洲av电影在线观看一区二区三区| 久久久久网色| 亚洲国产欧美日韩在线播放| 国产免费av片在线观看野外av| 男女之事视频高清在线观看| e午夜精品久久久久久久| 日日摸夜夜添夜夜添小说| 日韩中文字幕欧美一区二区| 丝袜喷水一区| 啦啦啦 在线观看视频| 男女边摸边吃奶| 国产成人免费观看mmmm| 真人做人爱边吃奶动态| 另类精品久久| 久久久久久久大尺度免费视频| 美女扒开内裤让男人捅视频| 欧美另类一区| netflix在线观看网站| 亚洲精品中文字幕在线视频| 在线永久观看黄色视频| 亚洲一码二码三码区别大吗| 亚洲天堂av无毛| 精品卡一卡二卡四卡免费| 国产真人三级小视频在线观看| 亚洲精品久久久久久婷婷小说| 一级毛片女人18水好多| 国产日韩欧美在线精品| 最黄视频免费看| 一本久久精品| 精品少妇黑人巨大在线播放| 精品久久蜜臀av无| 欧美日韩亚洲高清精品| 亚洲国产欧美一区二区综合| 国产99久久九九免费精品| www.自偷自拍.com| 欧美在线一区亚洲| 真人做人爱边吃奶动态| 国产淫语在线视频| 欧美日韩福利视频一区二区| 久久国产精品影院| 国产亚洲欧美在线一区二区| 成人影院久久| 天天躁狠狠躁夜夜躁狠狠躁| 如日韩欧美国产精品一区二区三区| 国产免费一区二区三区四区乱码| 欧美黄色片欧美黄色片| 爱豆传媒免费全集在线观看| 热re99久久精品国产66热6| 久久女婷五月综合色啪小说| 亚洲国产中文字幕在线视频| 欧美 日韩 精品 国产| 日韩欧美免费精品| 丰满迷人的少妇在线观看| 国产精品影院久久| 久久精品成人免费网站| 国产亚洲精品一区二区www | 亚洲国产看品久久| 日韩制服丝袜自拍偷拍| 乱人伦中国视频| 国产一区二区三区综合在线观看| 一区二区三区精品91| 国产日韩一区二区三区精品不卡| 美女国产高潮福利片在线看| 国产精品麻豆人妻色哟哟久久| 免费观看av网站的网址| 最新在线观看一区二区三区| 色老头精品视频在线观看| 捣出白浆h1v1| 国产精品 欧美亚洲| 国产高清视频在线播放一区 | 精品国内亚洲2022精品成人 | av不卡在线播放| 亚洲第一青青草原| 亚洲国产欧美在线一区| 欧美日韩黄片免| 美女脱内裤让男人舔精品视频| av天堂久久9| 新久久久久国产一级毛片| 欧美日韩成人在线一区二区| 色婷婷久久久亚洲欧美| 90打野战视频偷拍视频| 高潮久久久久久久久久久不卡| 免费黄频网站在线观看国产| 日本一区二区免费在线视频| 久久久精品区二区三区| av超薄肉色丝袜交足视频| 国产1区2区3区精品| 亚洲精品久久成人aⅴ小说| 女警被强在线播放| 久久久精品区二区三区| 美女大奶头黄色视频| 真人做人爱边吃奶动态| 99精品欧美一区二区三区四区| 少妇的丰满在线观看| 欧美日韩黄片免| 满18在线观看网站| 欧美乱码精品一区二区三区| 捣出白浆h1v1| 丰满迷人的少妇在线观看| 欧美精品高潮呻吟av久久| 欧美精品一区二区免费开放| 国产精品免费视频内射| 高清黄色对白视频在线免费看| 久久青草综合色| 日韩电影二区| 亚洲免费av在线视频| 超碰97精品在线观看| 成年美女黄网站色视频大全免费| 美女福利国产在线| 少妇 在线观看| 五月开心婷婷网| 亚洲欧洲日产国产| 亚洲欧美色中文字幕在线| 伊人亚洲综合成人网| 搡老乐熟女国产| 老司机靠b影院| 国产精品自产拍在线观看55亚洲 | 美女午夜性视频免费| 满18在线观看网站| 亚洲国产中文字幕在线视频| 手机成人av网站| 精品视频人人做人人爽| 国产黄色免费在线视频| 中国国产av一级| 婷婷色av中文字幕| 日本黄色日本黄色录像| 国产精品秋霞免费鲁丝片| 精品国产国语对白av| 男人添女人高潮全过程视频| 国产一区二区在线观看av| 午夜两性在线视频| 久久天躁狠狠躁夜夜2o2o| 国产亚洲精品一区二区www | 欧美黄色片欧美黄色片| 男女国产视频网站| 亚洲精品久久成人aⅴ小说| 免费不卡黄色视频| 自线自在国产av| 大香蕉久久成人网| 国产视频一区二区在线看| 亚洲精品中文字幕一二三四区 | 久久精品国产a三级三级三级| 国产黄频视频在线观看| 国产精品免费视频内射| av网站免费在线观看视频| 亚洲国产欧美网| 日本精品一区二区三区蜜桃| 欧美中文综合在线视频| 美女中出高潮动态图| 精品国产一区二区久久| 老司机影院成人| 热99久久久久精品小说推荐| 午夜老司机福利片| 久久精品亚洲熟妇少妇任你| 日韩电影二区| 免费人妻精品一区二区三区视频| 丁香六月欧美| 91成人精品电影| 电影成人av| 亚洲精品久久午夜乱码| 国产精品久久久av美女十八| 亚洲国产精品一区二区三区在线| 免费不卡黄色视频| 汤姆久久久久久久影院中文字幕| 伦理电影免费视频| 欧美日韩黄片免| 亚洲人成77777在线视频| 日韩大片免费观看网站| 一边摸一边做爽爽视频免费| 人人妻人人澡人人爽人人夜夜| 亚洲综合色网址| 夜夜骑夜夜射夜夜干| 巨乳人妻的诱惑在线观看| 久久免费观看电影| 久久99热这里只频精品6学生| 国产在线一区二区三区精| 久久精品国产亚洲av高清一级| 久久99热这里只频精品6学生| av欧美777| 久久香蕉激情| 无限看片的www在线观看| 久久毛片免费看一区二区三区| 日韩一卡2卡3卡4卡2021年| 黑人巨大精品欧美一区二区mp4| 欧美日韩中文字幕国产精品一区二区三区 | 91大片在线观看| 人人妻,人人澡人人爽秒播| a级毛片在线看网站| 国产免费视频播放在线视频| 精品视频人人做人人爽| 欧美日韩一级在线毛片| 搡老熟女国产l中国老女人| 久久毛片免费看一区二区三区| av福利片在线| 国产免费一区二区三区四区乱码| 亚洲精品久久成人aⅴ小说| 国产欧美日韩一区二区精品| 亚洲av片天天在线观看| 久久亚洲精品不卡| 波多野结衣一区麻豆| 久久精品亚洲熟妇少妇任你| 1024香蕉在线观看| 国产成人一区二区三区免费视频网站| 手机成人av网站| 国产一区二区三区在线臀色熟女 | 无限看片的www在线观看| 蜜桃在线观看..| 欧美人与性动交α欧美精品济南到| 国产亚洲精品一区二区www | 色播在线永久视频| 久热这里只有精品99| av福利片在线| 色婷婷久久久亚洲欧美| 久久久水蜜桃国产精品网| 午夜激情久久久久久久| 丝瓜视频免费看黄片| 久久香蕉激情| 亚洲全国av大片| 日韩有码中文字幕| 亚洲 国产 在线| 久久精品久久久久久噜噜老黄| 12—13女人毛片做爰片一| 成人手机av| 亚洲中文字幕日韩| 国产一区二区三区av在线| 天堂俺去俺来也www色官网| 亚洲精品日韩在线中文字幕| 国产亚洲av高清不卡| 这个男人来自地球电影免费观看| 性色av一级| 国产成人影院久久av| 久久人人爽人人片av| a级毛片在线看网站| 777久久人妻少妇嫩草av网站| 啪啪无遮挡十八禁网站| 久久人人爽人人片av| 视频在线观看一区二区三区| 国产日韩欧美视频二区| 欧美亚洲 丝袜 人妻 在线| 亚洲精品成人av观看孕妇| 亚洲精华国产精华精| 国产精品99久久99久久久不卡| 一级片免费观看大全| 亚洲欧美精品综合一区二区三区| 18在线观看网站| 亚洲成人免费电影在线观看| 成人黄色视频免费在线看| 丝袜在线中文字幕| 99久久国产精品久久久| 国产野战对白在线观看| 少妇的丰满在线观看| 天天影视国产精品| 日本猛色少妇xxxxx猛交久久| 久久亚洲精品不卡| 亚洲国产精品一区三区| 啦啦啦 在线观看视频| 免费一级毛片在线播放高清视频 | www日本在线高清视频| 国产免费福利视频在线观看| 国产精品一区二区精品视频观看| 一区二区三区精品91| 另类精品久久| 一进一出抽搐动态| 亚洲成人免费av在线播放| 在线av久久热| 日韩视频在线欧美| 一级毛片电影观看| 久久中文看片网| 9色porny在线观看| 美女高潮到喷水免费观看| 啦啦啦在线免费观看视频4| 一二三四社区在线视频社区8| 一级毛片女人18水好多| 国产男女超爽视频在线观看| 高清欧美精品videossex| 狠狠狠狠99中文字幕| 老司机在亚洲福利影院| 久久性视频一级片| 在线亚洲精品国产二区图片欧美| 99热网站在线观看| 久久精品熟女亚洲av麻豆精品| 欧美另类一区| 亚洲成av片中文字幕在线观看| 国产av国产精品国产| 国产精品一区二区在线观看99| 咕卡用的链子| 满18在线观看网站| 亚洲熟女毛片儿| 欧美日韩视频精品一区| 亚洲精品一区蜜桃| 午夜激情久久久久久久| 久久亚洲国产成人精品v| 9色porny在线观看| 日韩熟女老妇一区二区性免费视频| 黑人操中国人逼视频| 丝袜美腿诱惑在线| 黄色视频在线播放观看不卡| 超色免费av| 老汉色∧v一级毛片| 一区二区av电影网| 欧美av亚洲av综合av国产av| 男女高潮啪啪啪动态图| 91精品三级在线观看| 亚洲精品av麻豆狂野| 久久女婷五月综合色啪小说| 女性被躁到高潮视频| 亚洲一区二区三区欧美精品| 超碰97精品在线观看| 99久久国产精品久久久| 亚洲第一av免费看| 搡老乐熟女国产| 成年人免费黄色播放视频| 90打野战视频偷拍视频| 久久精品国产综合久久久| 国产伦人伦偷精品视频| 精品卡一卡二卡四卡免费| 亚洲中文av在线| 91老司机精品| 考比视频在线观看| e午夜精品久久久久久久| 伊人久久大香线蕉亚洲五| 国产欧美日韩一区二区精品| 国产日韩欧美视频二区| 亚洲av电影在线进入| av国产精品久久久久影院| 亚洲成人国产一区在线观看| 国产亚洲午夜精品一区二区久久| 老熟妇仑乱视频hdxx| 在线观看免费日韩欧美大片| 老熟妇乱子伦视频在线观看 | 欧美黄色淫秽网站| 男人添女人高潮全过程视频| 久久久久久久久免费视频了| 久久精品人人爽人人爽视色| 久久精品亚洲熟妇少妇任你| 黄片大片在线免费观看| 亚洲精品国产av蜜桃| 欧美黄色淫秽网站| 91麻豆精品激情在线观看国产 | 国产精品一区二区在线观看99| 热99国产精品久久久久久7| 这个男人来自地球电影免费观看| 久久人人97超碰香蕉20202| av又黄又爽大尺度在线免费看| 国产又色又爽无遮挡免| 91精品国产国语对白视频| 免费女性裸体啪啪无遮挡网站| 少妇 在线观看| 最黄视频免费看| 一个人免费看片子| 中国国产av一级| 欧美日韩中文字幕国产精品一区二区三区 | 成人影院久久| 久久久久精品人妻al黑| 超碰成人久久| 欧美精品一区二区免费开放| videos熟女内射| 男女高潮啪啪啪动态图| 女性生殖器流出的白浆| 色老头精品视频在线观看| 久久九九热精品免费| av天堂在线播放| 国产精品欧美亚洲77777| 日韩,欧美,国产一区二区三区| 中文字幕精品免费在线观看视频| 久久久久久久久久久久大奶| 秋霞在线观看毛片| 国产精品偷伦视频观看了| 亚洲精品中文字幕在线视频| 国产av一区二区精品久久| 亚洲男人天堂网一区| 两个人看的免费小视频| 人妻一区二区av| 欧美久久黑人一区二区| kizo精华| 精品第一国产精品| 人人妻人人爽人人添夜夜欢视频| 中国国产av一级| 国产在线视频一区二区| 国产99久久九九免费精品| 日本黄色日本黄色录像| 久久青草综合色| 亚洲av电影在线进入| 欧美精品啪啪一区二区三区 | 最新在线观看一区二区三区| 日本欧美视频一区| av一本久久久久| 亚洲成av片中文字幕在线观看| 一区二区三区四区激情视频| 国产一区二区三区在线臀色熟女 | 久久中文看片网| 亚洲色图综合在线观看| 亚洲性夜色夜夜综合| 久久 成人 亚洲| 日韩视频一区二区在线观看| 日韩免费高清中文字幕av| 日本a在线网址| 欧美日韩精品网址| 这个男人来自地球电影免费观看| 亚洲熟女毛片儿| 香蕉国产在线看| 每晚都被弄得嗷嗷叫到高潮| 男人操女人黄网站| 久久久久久久国产电影| 菩萨蛮人人尽说江南好唐韦庄| 国产一区有黄有色的免费视频| 日本撒尿小便嘘嘘汇集6| 青春草视频在线免费观看| 国产人伦9x9x在线观看| 99精品欧美一区二区三区四区| 久久午夜综合久久蜜桃| 少妇精品久久久久久久| 狂野欧美激情性xxxx| 美女午夜性视频免费| 欧美精品av麻豆av| 捣出白浆h1v1| 9191精品国产免费久久| 色94色欧美一区二区| 99九九在线精品视频| 99精国产麻豆久久婷婷| av不卡在线播放| 母亲3免费完整高清在线观看| 黄网站色视频无遮挡免费观看| av福利片在线| 国产xxxxx性猛交| 熟女少妇亚洲综合色aaa.| h视频一区二区三区| 大片电影免费在线观看免费| 91成人精品电影| 视频区图区小说| 国产在线一区二区三区精| 各种免费的搞黄视频| 亚洲视频免费观看视频| 中文字幕av电影在线播放| 国产男女超爽视频在线观看| 日韩免费高清中文字幕av| 国产成人精品无人区| av免费在线观看网站| 久久精品成人免费网站| 免费在线观看影片大全网站| 国产97色在线日韩免费| 蜜桃在线观看..| 久久综合国产亚洲精品| 国产精品二区激情视频| 精品卡一卡二卡四卡免费| 一级片免费观看大全| 国产精品国产三级国产专区5o| 日本猛色少妇xxxxx猛交久久| 欧美老熟妇乱子伦牲交| 中文字幕av电影在线播放| 男女无遮挡免费网站观看| 久久99热这里只频精品6学生| 午夜福利乱码中文字幕| 亚洲欧洲精品一区二区精品久久久| 久久久久精品人妻al黑| 99久久综合免费| av有码第一页| 日韩免费高清中文字幕av| 中国美女看黄片| 欧美日韩亚洲高清精品| 热99re8久久精品国产| 国产成人系列免费观看| 精品久久蜜臀av无| 国产视频一区二区在线看| 极品人妻少妇av视频| 国产免费av片在线观看野外av| av天堂久久9| 大香蕉久久网| 国产精品熟女久久久久浪| 电影成人av| 中文字幕制服av| 国产男女内射视频| 成年人免费黄色播放视频| 热re99久久国产66热| 亚洲av日韩在线播放| 黄网站色视频无遮挡免费观看| 精品国产一区二区三区久久久樱花| 九色亚洲精品在线播放| 中国美女看黄片| 另类精品久久| 99热国产这里只有精品6| 国产亚洲av片在线观看秒播厂|