郭麗麗 尹偉倫 郭大龍 侯小改(. 河南科技大學(xué)農(nóng)學(xué)院 洛陽 4703; . 北京林業(yè)大學(xué)生物科學(xué)與技術(shù)學(xué)院 北京 00083)
油用鳳丹牡丹不同種植時(shí)間根際細(xì)菌群落多樣性變化*
郭麗麗1尹偉倫2郭大龍1侯小改1
(1. 河南科技大學(xué)農(nóng)學(xué)院 洛陽 471023; 2. 北京林業(yè)大學(xué)生物科學(xué)與技術(shù)學(xué)院 北京 100083)
【目的】 土壤微生物在林業(yè)生態(tài)系統(tǒng)中具有重要的功能,解析油用鳳丹牡丹長期人工種植后根際土壤中細(xì)菌群落結(jié)構(gòu)多樣性變化情況,為揭示油用鳳丹牡丹長期連作后根際病害抑制性土壤形成的機(jī)制奠定基礎(chǔ)。【方法】 試驗(yàn)采集種植2、4、5、10和32年生鳳丹牡丹的根際土壤,應(yīng)用IlluminaMiSeq高通量測(cè)序技術(shù),分析土壤細(xì)菌16S rRNA基因V3+V4區(qū)域的豐富度和多樣性指數(shù),研究連作對(duì)鳳丹牡丹根際細(xì)菌群落結(jié)構(gòu)及多樣性的影響?!窘Y(jié)果】 源于不同種植時(shí)間(年限)的15個(gè)根際土壤樣本共獲得2 366個(gè)涵蓋24門、79綱、113目、117科、103屬的OTUs。鳳丹牡丹根際土壤中心優(yōu)勢(shì)菌群為: 變形菌門(34%)、酸桿菌門(14%)、浮霉菌門(14%)和放線菌門(10%)等。 綱層次上的優(yōu)勢(shì)菌群為: 變形菌門的δ-變形菌綱(26%)、α-變形桿菌綱(25%)、β-變形菌綱(15%)和γ-變形菌綱(15%); 酸桿菌門的酸桿菌綱(44%)和Solibacteres(14%); 浮霉菌門的浮霉菌綱(27%)和Planctomycetia(60%); 放線菌門的放線菌綱(25%)、酸微菌綱(18%)、嗜熱油菌綱(17%)、MB-A2-108(15%)、紅桿菌綱(10%)?!窘Y(jié)論】 不同種植年限鳳丹牡丹土壤中細(xì)菌優(yōu)勢(shì)菌群組成結(jié)構(gòu)變化較小,但菌群多樣性呈下降趨勢(shì);不同種植年限的土壤具有特異性、高豐度和低豐度細(xì)菌種屬。隨種植年限延長,酸桿菌門等細(xì)菌群落逐年積累,綠菌門和纖維桿菌門等特異性菌群出現(xiàn),放線菌門、變形菌門、浮霉菌門等菌群豐度逐年降低,疣微菌門等菌群消失的現(xiàn)象可能是造成多年連續(xù)單一種植鳳丹牡丹土壤細(xì)菌選擇性抑制生長以及土壤病害發(fā)生、土壤退化的重要原因之一。鳳丹牡丹根際微生物對(duì)維持根際土壤微環(huán)境具有重要的生態(tài)學(xué)意義。
鳳丹牡丹; 種植年限; 根際土壤; Illumina高通量測(cè)序; 細(xì)菌多樣性
油用牡丹(PaeoniaSect.Moutan)是結(jié)實(shí)能力強(qiáng)、可用來生產(chǎn)食用籽油的牡丹類型,產(chǎn)籽壽命長達(dá)30~50年(李育才, 2015)。目前,在我國具有良好油用表現(xiàn)的主要是鳳丹牡丹(Paeoniaostii)和紫斑牡丹(Paeoniarockii)。牡丹籽油富含亞麻酸等不飽和脂肪酸(Lietal.,2015a; 2015b),同時(shí)含有白藜蘆醇等藥用成分(Chenetal., 2016; Maoetal., 2017),具有降血脂、改善神經(jīng)功能、抑制癌細(xì)胞等功效(Suetal., 2016; Yuetal., 2017)。隨著油用牡丹種植規(guī)模的擴(kuò)大和種植時(shí)間的增加,牡丹植株呈現(xiàn)生長勢(shì)逐年衰弱,開花量和產(chǎn)籽量降低,病蟲害發(fā)生嚴(yán)重,甚至出現(xiàn)大片植株死亡等現(xiàn)象; 同時(shí),油用牡丹種苗基地培育牡丹種苗后,再次種植牡丹會(huì)出現(xiàn)種苗緩苗慢、生長勢(shì)差、根系不發(fā)達(dá)等情況(馬會(huì)萍等, 2011)。連作障礙已成為限制油用牡丹產(chǎn)業(yè)發(fā)展的重要因素。
土壤微生物及其生態(tài)功能變化是土壤質(zhì)量演變的關(guān)鍵因素(Beckersetal., 2017)之一,土壤根際微生物數(shù)量變化影響土壤養(yǎng)分的吸收和轉(zhuǎn)化(Fiereretal., 2012; Zhangetal., 2014)。一種植物若種植年限過長,養(yǎng)分消耗過多,不利于養(yǎng)分平衡供給,造成土壤微生物細(xì)菌與真菌種群結(jié)構(gòu)失衡,降低養(yǎng)分利用效率(Fiereretal., 2012; Qinetal., 2017; Sheetal., 2017; Tangetal., 2015; Zhangetal., 2014)。土壤微生物種群結(jié)構(gòu)失衡是導(dǎo)致土壤質(zhì)量下降,林木、作物、花卉等產(chǎn)生連作障礙的重要原因(Zhangetal., 2015; Fuetal., 2017; Tanetal., 2017; Chenetal., 2015)。根際微生物對(duì)促進(jìn)作物生長、減少病原微生物侵害以及維持根際微生態(tài)平衡等具有重要作用(Lietal., 2014; Zhouetal., 2014; Dongetal., 2016; Xiongetal., 2015)。為了明確出現(xiàn)上述情況的原因,筆者對(duì)油用牡丹土壤根際細(xì)菌作了研究。
鄭艷等(2016)采用Biolog ECO微平板和454焦磷酸測(cè)序技術(shù)研究了不同產(chǎn)區(qū)藥用牡丹根際土棲真菌的活性變化,發(fā)現(xiàn)牡丹道地產(chǎn)區(qū)微生物整體活性高于非道地產(chǎn)區(qū),根際土壤真菌在各產(chǎn)區(qū)呈現(xiàn)特異性分布,道地產(chǎn)區(qū)真菌系統(tǒng)發(fā)育相似性較高。韓繼剛等(2016)發(fā)現(xiàn)部分拮抗牡丹病原菌的多黏類芽孢桿菌,該類牡丹根際微生物對(duì)其種子萌發(fā)和幼苗生長具有一定促生作用。Xue等(2014)和王雪山等(2012)采用DGGE技術(shù)分別鑒定了不同種植年限觀賞牡丹根際土壤細(xì)菌群落結(jié)構(gòu)變化。傳統(tǒng)的土壤微生物研究方法有微生物平板培養(yǎng)法、Biolog鑒定系統(tǒng)法、生物標(biāo)記法等,這些方法往往過低估計(jì)土壤微生物群落結(jié)構(gòu)的組成,無法詳細(xì)描述土壤微生物菌群的生理差異(趙帆等, 2017)。
16S rRNA是原核生物核糖體30S小亞基的組成部分,其高變區(qū)基因序列隨菌種親緣關(guān)系不同有一定差異,是解釋細(xì)菌物種間差異的特征核酸序列,可作為細(xì)菌系統(tǒng)發(fā)育和分類鑒定的指標(biāo),鑒定樣本中的微生物種類(Peietal., 2010)。以16S rRNA測(cè)序分析為平臺(tái)的高通量測(cè)序技術(shù),可一次性獲得百萬條16S rRNA序列,進(jìn)行快速物種鑒定,具有樣本量少、高通量和高精確性等優(yōu)點(diǎn)(Beckersetal., 2017; Zarraonaindiaetal., 2015; Rinkeetal., 2013)。
目前關(guān)于油用牡丹土壤根際微生物菌群多樣性變化的研究尚顯薄弱,特別是隨著種植年限的延長,根際微生物群落結(jié)構(gòu)的動(dòng)態(tài)變化特征不清。本研究以16S rRNA基因V3—V4區(qū)為分子標(biāo)靶,采用高通量測(cè)序技術(shù),分析不同種植年限油用鳳丹牡丹根際細(xì)菌群落組成及多樣性變化,以闡明其根際細(xì)菌群落結(jié)構(gòu)隨種植年限的變化規(guī)律,為解決牡丹連作障礙提供科學(xué)依據(jù),為牡丹根際微生物資源的開發(fā)利用奠定基礎(chǔ)。
研究區(qū)設(shè)在洛陽國家牡丹園,位于洛陽市邙山中溝西(112°24′18.89″N,34.42′48.98″E),屬亞熱帶季風(fēng)型大陸氣候,該區(qū)域海拔218~229 m,年均氣溫14.86 ℃左右,極端低溫-15 ℃,極端高溫 42 ℃。年均降水量578.2 mm,年均蒸發(fā)量1 589.8 mm。區(qū)域內(nèi)土壤以紅黏土、黃褐土和褐土為主。調(diào)查發(fā)現(xiàn),園區(qū)高年栽植的油用牡丹生長勢(shì)及生產(chǎn)力出現(xiàn)一定程度的退化現(xiàn)象。
供試土壤取自洛陽國家牡丹園,園區(qū)坡度和耕作措施基本一致。選擇種植年限分別為2、4、5、10和32年的油用鳳丹牡丹根際土壤為研究對(duì)象,取樣時(shí)間為種籽收獲期(2016年8月)。每個(gè)種植年限按五點(diǎn)取樣法隨機(jī)選取3株長勢(shì)一致的植株(每處理3個(gè)重復(fù)),每株以主莖為中心,半徑約30~40 cm的范圍取土,取樣深度為0~20 cm,樣品采用四分法混勻,去除土壤雜質(zhì)后,分別裝入無菌牛皮紙袋,放入冰盒帶回實(shí)驗(yàn)室,-80 ℃保存。
1.3.1 土壤微生物基因組DNA提取及質(zhì)量檢測(cè) 采用FastDNA SPIN Kitfor Soil(USA)試劑盒提取不同種植年限的15個(gè)土壤樣本的總DNA; 采用1%瓊脂糖電泳和Agilent 2100 Bioanalyzer檢測(cè)DNA樣品是否有降解以及雜質(zhì); NanoPhotometer(IMPLEN,德國)分光光度計(jì)檢測(cè)DNA樣品純度; Qubit2.0 Flurometer檢測(cè)DNA樣品濃度; DNA 樣品于-20 ℃ 保存?zhèn)溆谩?/p>
1.3.2 PCR擴(kuò)增細(xì)菌16S rRNA基因V3—V4可變區(qū) 取10 ng土壤基因組DNA為模板,使用TaKaRaEXtaq酶,以16S rRNA基因V3—V4可變區(qū)341F(5′-CCCTACACGACGCTCTTCCGATCTG(barcode)CCTACGGGNGGCWGCAG-3′)和805R(5′-GACTGG AGTTCCTTGGCACCCGAGAATTCCAGACTACHGGGT ATCTAATCC-3′)為引物,擴(kuò)增16S rRNA基因序列V3—V4高變區(qū),富集目的片段(Langilleetal., 2013)。
1.3.3 16S rDNA文庫質(zhì)檢及測(cè)序 文庫構(gòu)建完成后,先使用Qubit 2.0進(jìn)行初步定量; 稀釋文庫至1 ng·μL-1,隨后使用Agilent 2100對(duì)文庫片段大小進(jìn)行檢測(cè),片段大小符合預(yù)期則使用Bio-RAD CFX 96熒光定量PCR儀進(jìn)行qPCR,對(duì)文庫的有效濃度進(jìn)行準(zhǔn)確定量,以保證文庫質(zhì)量。檢測(cè)合格的文庫采用IlluminaMiSeq對(duì)16S rRNA基因序列的V3—V4區(qū)進(jìn)行高通量測(cè)序。
1.3.4 信息分析流程 去除測(cè)序所得序列中低質(zhì)量堿基、接頭污染序列,數(shù)據(jù)過濾后得到可信目標(biāo)序列; 根據(jù)末尾重疊情況將雙端測(cè)序序列,利用算法PEAR進(jìn)行序列拼接(Zhangetal., 2014); 獲得的標(biāo)簽與參考數(shù)據(jù)庫中的OTUs序列進(jìn)行比對(duì),將相似度大于97%的序列歸為一類OTUs,將OTUs比對(duì)到數(shù)據(jù)庫中各物種相應(yīng)的序列進(jìn)行物種識(shí)別。利用QIIME 1.8.0軟件對(duì)拼接后的序列進(jìn)行OTUs交疊分析、聚類分析、系統(tǒng)發(fā)生樹構(gòu)建、Alpha多樣性、Beta多樣性等分析(Caporasoetal., 2010; Adleretal., 2013; Ahnetal., 2013)。
油用鳳丹牡丹根際細(xì)菌16S rRNA測(cè)序共獲得432.1 Mb原始序列片段,過濾掉接頭污染、低質(zhì)量、含N比例大于5%的序列后,獲得358.9 Mb Clean Reads(表1)。為反映Clean Data質(zhì)量,以Q30堿基百分比作為指標(biāo)進(jìn)行統(tǒng)計(jì),Q30堿基百分比越大說明測(cè)序錯(cuò)誤率小于0.1%的堿基在總堿基中的比例越大。圖1中所有樣本Clean Reads的錯(cuò)誤率均小于0.1%,Q30值均接近90%,說明測(cè)序質(zhì)量或者建庫質(zhì)量較高。同時(shí)每個(gè)樣本Q30堿基百分比非常相近,證明過濾后樣本均一性較好。序列雙端拼接共產(chǎn)生713 555條Tags,平均長度為449 bp。
表1 原始測(cè)序數(shù)據(jù)過濾統(tǒng)計(jì)分析①Tab.1 Statistical analysis resulted from sequencing data filtering
①CB:過濾后序列堿基數(shù)Data of clean bases; LQR:低質(zhì)量的Reads數(shù)Number of low-quality Reads; NR:含N比例大于5%的Reads數(shù)Number of Ns Reads; APR:接頭污染的Reads數(shù)Number of adapter polluted Reads; TAR:成功拼接的總序列數(shù)Number of total assembled Reads (Tags); AAL:序列拼接后長度的平均值A(chǔ)verage assembled length; SAL:序列拼接后長度的標(biāo)準(zhǔn)差Std of assembled length; Y2014、Y2012、Y2011、Y2006、Y1984分別代表2、4、5、10和32年生鳳丹牡丹的根際土壤樣品,1,2,3代表不同種植年限鳳丹牡丹根際土壤樣品3個(gè)重復(fù)。Y2014,Y2012,Y2011,Y2006 and Y1984 represent for samples from rhizosphere soil of 2, 4, 5, 10, 32 years old oil tree peony ‘Fengdan’, respectively. 1,2 and 3 represent biologic repetition.
圖1 Clean Reads質(zhì)量統(tǒng)計(jì)Fig.1 Distribution of Q30 rate虛線表示Q30比例為85%Dot line represents that the Q30 was 85%.
將油用鳳丹牡丹15個(gè)根際土壤樣本質(zhì)控序列按97%相似性進(jìn)行聚類,共獲得2 366個(gè) OTUs,分屬于24門,79綱、113目、117科、103屬。所有土壤樣本OUTs數(shù)目均介于800~950之間。2、4、5、10和32年生鳳丹牡丹根際土壤樣本分別獲得2 729、2 628、2 656、2 650、2 595個(gè)OTUs,所獲得的OUTs數(shù)目均一化較高(表2)。
根據(jù)樣品間OTUs交疊情況,分析不同種植年限共有和特有的OTUs數(shù)目,結(jié)合OTUs代表的物種,找出不同種植年限的核心及特異性微生物。結(jié)果表明,不同種植年限樣品之間存在共有細(xì)菌OTUs數(shù)量為758個(gè)(圖2)。32年連作土壤樣本特異性O(shè)TUs數(shù)量最多為310,2年為277,10年為248,5年和4年分別為199和176,表明不同種植年限鳳丹牡丹根際細(xì)菌多樣性存在一定差異。
表2 以 97%為閾值各樣品OTUs統(tǒng)計(jì)Tab.2 Statistical analysis of the OTUs with 97% threshold
圖2 不同種植年限油用鳳丹牡丹土壤細(xì)菌群落OTUs交疊維恩圖分析Fig.2 Venn diagram of bacterial OTUs in rhizosphere soil resulted from the overlapping analysis of oil tree peony ‘Fengdan’cropping continuously for different years
根據(jù)所有樣品在科水平上的物種注釋及豐度信息,選取豐度排名前25的科及其在每個(gè)樣品中的豐度信息繪制熱圖,并從分類信息和樣品間差異1個(gè)層面進(jìn)行聚類,找出樣品中聚集較多的物種(圖3)。結(jié)果表明,相同種植年限鳳丹牡丹根際微生物樣品基本上聚在一起,說明樣品間重復(fù)性較好。其中32年生鳳丹牡丹3個(gè)樣品單獨(dú)聚為一支,與其他年份間距離較遠(yuǎn),說明它們之間的菌群豐度差異顯著。從趨勢(shì)上看,微生物菌群豐度隨著種植年限的增加呈上升趨勢(shì),說明不同種植年限鳳丹牡丹根際微生物菌群多樣性存在差異。
15個(gè)不同種植年限油用鳳丹牡丹根際土壤樣本的細(xì)菌群落微生物多樣性的整體分布結(jié)果表明: 根際土壤樣本的中心優(yōu)勢(shì)細(xì)菌群落主要由放線菌門(Actinobacteria)、浮霉菌門(Planctomycetes)、酸桿菌門(Acidobacteria)、變形菌門(Proteobacteria)4個(gè)門類組成(圖4),說明以上4個(gè)門的細(xì)菌為鳳丹牡丹根際土壤樣本中較具優(yōu)勢(shì)的菌群。
不同種植年限鳳丹牡丹根際土壤樣品中門水平下的中心優(yōu)勢(shì)菌種分析結(jié)果表明,變形菌門(26%)、酸桿菌門(11%)、浮霉菌門(10%)和放線菌門(7%)所占比例較高; 擬桿菌門(Bacteroidetes)(4%)、厚壁菌門(Firmicutes)(3%)、疣微菌門(Verrucomicrobia)(3%)、芽單胞菌門(Gemmatimonadetes)(3%)、綠彎菌門(Chloroflexi)(2%)、硝化螺旋菌門(Nitrospirae)(1%)、裝甲菌門(Armatimonadetes)(1%)、迷蹤菌門(Elusimicrobia)(1%)、藍(lán)藻門(Cyanobacteria)(1%)有一定占比(圖5)。
不同種植年限鳳丹牡丹根際土壤中優(yōu)勢(shì)細(xì)菌群落門水平下的優(yōu)勢(shì)度指數(shù)結(jié)果表明:不同種植年限鳳丹牡丹根際土壤中酸桿菌門、綠彎菌門、裝甲菌門、迷蹤菌門的優(yōu)勢(shì)度呈逐年上升趨勢(shì),其余細(xì)菌群落優(yōu)勢(shì)度呈逐年下降的趨勢(shì)。不同種植年限鳳丹牡丹根際土壤中酸桿菌門的優(yōu)勢(shì)度均高達(dá)41%以上。在32年生根際土壤樣本中,酸桿菌門的優(yōu)勢(shì)度高達(dá)78.3%,裝甲菌門的優(yōu)勢(shì)度較2年生增加近86%,并且檢測(cè)到了特異性優(yōu)勢(shì)細(xì)菌門類(綠菌門和纖維桿菌門),且二者優(yōu)勢(shì)度均為0.1%(表3)。32年生與小于10年生的鳳丹牡丹根際土壤樣本的比較分析發(fā)現(xiàn),隨著種植年限增加,除厚壁菌門的優(yōu)勢(shì)度變化不大外,其余根際優(yōu)勢(shì)細(xì)菌菌群多樣性均呈下降趨勢(shì)。其中,放線菌門、變形菌門、浮霉菌門、芽單胞菌門、硝化螺旋菌門等優(yōu)勢(shì)度下降趨勢(shì)明顯,放線菌門優(yōu)勢(shì)度下降比例高達(dá)90%,而疣微菌門、WS3、SBR1093及部分未知細(xì)菌甚至消失。推測(cè)隨著種植年限的增加,酸桿菌門、綠彎菌門、裝甲菌門等細(xì)菌的積累可能是導(dǎo)致鳳丹牡丹根際細(xì)菌群落多樣性下降的重要原因。
圖4 油用鳳丹牡丹根際土壤樣本中的優(yōu)勢(shì)細(xì)菌群落組成分布情況Fig.4 Distribution characteristics of predominant bacterial community composition in rhizosphere soil of oil tree peony ‘Fengdan’ cropping continuously for different years不同顏色分別代表在整棵樹里面比較重要的一些子樹,包含序列越多圓圈越大。 Different colors represent more important subtrees in the whole tree. The more sequences it contains, the larger the circles will be.
圖5 不同種植年限油用鳳丹牡丹根際土壤細(xì)菌門水平上的群落結(jié)構(gòu)特征Fig.5 Bacterial community composition at phylum level in rhizosphere soil of oil tree peony ‘Fengdan’cropping continuously for different years
表3 優(yōu)勢(shì)物種在門水平下的優(yōu)勢(shì)度指數(shù)Tab.3 Dominance index of dominant species at phylum level
不同種植年限鳳丹牡丹根際細(xì)菌群落在綱水平上的組成和優(yōu)勢(shì)菌屬所占比例較為一致,隸屬6個(gè)綱的細(xì)菌占據(jù)不同種植年限OTUs總數(shù)的30%以上。變形菌門的δ-變形菌綱(Deltaproteobacteria)(26%)、α-變形桿菌綱(Alphaproteobacteria)(25%)、β-變形菌綱(Betaproteobacteria)(15%)和γ-變形菌綱(Gammaproteobacteria)(15%); 酸桿菌門的酸桿菌綱(Acidobacteria)(44%)和Solibacteres(14%); 浮霉菌門的浮霉菌綱(Phycisphaerae)(27%)和Planctomycetia(60%); 放線菌門的放線細(xì)菌綱(Actinobacteria)(25%)、酸微菌綱(Acidimicrobiia)(18%)、嗜熱油菌綱(Thermoleophili)a(17%)、MB-A2-108(15%)、紅桿菌綱(Rubrobacteria)(10%)為綱層次上的優(yōu)勢(shì)菌(圖6)。
圖6 不同種植年限油用鳳丹牡丹根際土壤細(xì)菌綱水平上的群落結(jié)構(gòu)特征Fig.6 Bacterial community composition at class level in rhizosphere soil of oil tree peony ‘Fengdan’ cropping continuously for different years
Alpha多樣性分析樣品內(nèi)菌種類別的豐富度和菌種數(shù)目的均勻度。Alpha多樣性越高,細(xì)菌種類越豐富,群落越穩(wěn)定。Shannon 和Simpson指數(shù)評(píng)價(jià)群落物種組成的均勻度,Observed species和Chao1指數(shù)反映群落物種豐富度。不同種植年限間油用鳳丹牡丹根際土壤樣本中Shannon 和Simpson指數(shù)表現(xiàn)出相同的變化規(guī)律,說明處理間差異不顯著,不同樣品均勻度較高。32年生鳳丹牡丹根際土壤樣本的Chao 1指數(shù)和Observed species指數(shù)與其他4個(gè)種植年限相比最小,說明連作降低了細(xì)菌群落多樣性。因此,種植年限影響細(xì)菌的豐富度和多樣性,但其影響程度在不同連作年限間差異較大(圖7)。
圖7 不同種植年限油用鳳丹牡丹土壤微生物α多樣性分析Fig.7 α-diversity analysis of soil microbes in rhizosphere soil of oil tree peony ‘Fengdan’ cropping continuously for different years
基于PCoA主坐標(biāo)分析樣品間菌群Beta多樣性差異評(píng)估不同種植年限鳳丹牡丹根際細(xì)菌群落的差異變化結(jié)果表明,不同種植年限土壤細(xì)菌群落在分布上存在差異,32年生土壤樣本的細(xì)菌群落在PC1軸上的投影相對(duì)比較接近,全部分布在圖8的右邊居中,且與圖8左方4個(gè)處理相距較遠(yuǎn); 左方4個(gè)年份細(xì)菌群落結(jié)構(gòu)聚在一起,十分接近,說明種植年限影響鳳丹牡丹根際土壤中細(xì)菌群落的變化(圖8)。
圖8 不同種植年限油用鳳丹牡丹根際土壤細(xì)菌主坐標(biāo)分析Fig.8 Principal coordinate analysis of soil bacteria in rhizosphere soil of oil tree peony ‘Fengdan’ cropping continuously for different years
連作障礙指同一種植物或近緣植物在同一地塊上連續(xù)多年種植后,表現(xiàn)出生育狀況變差、病蟲害嚴(yán)重、產(chǎn)量降低、品質(zhì)變劣的現(xiàn)象(Xiaoetal., 2012)。連作障礙導(dǎo)致產(chǎn)量下降的原因主要是由于單一作物多年連續(xù)種植導(dǎo)致植物根際分泌物及植株殘?bào)w隨種植年限增加逐年積累,造成土壤微生物區(qū)系紊亂(Wangetal., 2015; Kessleretal., 2012; Qietal., 2009)。根際微生態(tài)系統(tǒng)的失衡導(dǎo)致土傳病原菌大量繁殖的同時(shí)抑制有益拮抗菌的生長,造成植物生長發(fā)育不良,影響產(chǎn)量及品質(zhì)形成(Tanetal., 2017; 董林林等, 2017; 納小凡等, 2016; Dongetal., 2016; Mazzolaetal., 2012)。
根際微生物群落結(jié)構(gòu)失調(diào)是牡丹連作障礙形成的重要因素(楊瑞先等, 2017)。牡丹根系分泌物刺激或抑制微生物生長的次級(jí)代謝物質(zhì)的產(chǎn)生,引起根際土壤理化性質(zhì)的改變,導(dǎo)致根際微生物種群結(jié)構(gòu)發(fā)生變化(史冬燕等, 2013; 覃逸明等, 2009)。不同牡丹品種根際微生物的數(shù)量存在明顯差異,觀賞品種根際微生物數(shù)量少于藥用品種(康業(yè)斌等, 2006)。Xue等(2014)采用變性梯度凝膠電泳(DGGE)技術(shù)鑒定了5、12和25年生觀賞牡丹根際土壤細(xì)菌群落結(jié)構(gòu)變化,發(fā)現(xiàn)種植年限影響牡丹根際微生物群落結(jié)構(gòu)變化,種植年限越長,其根際土壤中細(xì)菌和真菌群落結(jié)構(gòu)多樣性水平越低。王雪山等(2012)采用DGGE方法評(píng)價(jià)了3、5、8、12、20 年的牡丹根際土壤微生物種群結(jié)構(gòu),發(fā)現(xiàn)牡丹根際土壤細(xì)菌多樣性變化不顯著,而真菌多樣性水平隨種植年限的增加而降低,菌群結(jié)構(gòu)趨于簡單。
本研究采用16S rRNA高通量測(cè)序技術(shù),評(píng)價(jià)了2、4、5、10和32年生的油用鳳丹牡丹根際細(xì)菌群落多樣性變化,發(fā)現(xiàn)連續(xù)種植導(dǎo)致油用鳳丹牡丹根際土壤細(xì)菌群落的中心優(yōu)勢(shì)菌種主要有變形菌門、酸桿菌門、浮霉菌門和放線菌門,土壤細(xì)菌優(yōu)勢(shì)菌群結(jié)構(gòu)組成變化較小,但菌群多樣性隨種植年限的增加呈下降趨勢(shì)。酸桿菌門等細(xì)菌群落的逐年積累,綠菌門和纖維桿菌門等特異性菌群的出現(xiàn),放線菌門、變形菌門、浮霉菌門等菌群豐度的逐年降低,以及疣微菌門等菌群的消失,可能是造成油用鳳丹牡丹連作障礙形成的重要原因。研究選用了種植年限長達(dá)32年的鳳丹牡丹根際土壤樣本,通過高通量測(cè)序的方法,對(duì)土壤微生物群落結(jié)構(gòu)的組成及豐度差異進(jìn)行了評(píng)價(jià),對(duì)牡丹連作障礙形成原因的研究進(jìn)行了補(bǔ)充。
研究表明酸桿菌門具有以葉綠素為基礎(chǔ)的光合能力、降解植物殘?bào)w多聚物、參與單碳化合物代謝等功能(Pankratovetal., 2011; Kanokratanaetal., 2011)。接種放線菌菌劑,可促進(jìn)丹參(Salviamiltiorrhiza)生長、提高丹參產(chǎn)量及抗病蟲能力,調(diào)節(jié)丹參根域微生態(tài)平衡(段佳麗等, 2015)。變形菌在硫氧化、碳固定及污水生物修復(fù)過程中發(fā)揮重要功能(Lenketal., 2011; Padhietal., 2013)。本研究發(fā)現(xiàn)不同種植年限油用鳳丹牡丹根際土壤中的中心優(yōu)勢(shì)菌群中,酸桿菌門優(yōu)勢(shì)度呈逐年上升,放線菌門、變形菌門、浮霉菌門優(yōu)勢(shì)度逐年下降,推測(cè)隨著種植年限的增加,微生物多樣性的下降可能是導(dǎo)致油用鳳丹牡丹連作障礙的主要原因之一。
油用鳳丹牡丹根際土壤中酸桿菌門、綠彎菌門、裝甲菌門、迷蹤菌門等細(xì)菌群落的逐年積累,綠菌門和纖維桿菌門等特異性菌群的出現(xiàn),放線菌門、變形菌門、浮霉菌門、芽單胞菌門、硝化螺旋菌門等菌群豐度的逐年降低及疣微菌門等菌群的消失,表明油用鳳丹牡丹根際微生物對(duì)維持土壤根際微環(huán)境具有重要的生態(tài)學(xué)意義。油用鳳丹牡丹根際真菌多樣性及根際分泌物對(duì)根際微生物的促進(jìn)或抑制作用尚需做進(jìn)一步分析。本研究結(jié)果為解決牡丹連作障礙提供一定的科學(xué)依據(jù),也為油用牡丹根際微生物資源的開發(fā)利用打下一定基礎(chǔ)。
董林林, ?,|浩, 王 瑞, 等. 2017. 人參根際真菌群落多樣性及組成的變化. 中國中藥雜志, 42(3): 443-449.
(Dong L L, Niu W H, Wang R,etal. 2017. Changes of diversity and composition of fungal communities in rhizosphere ofPanaxginseng. China Journal of Chinese Materia Medica, 42(3): 443-449. [in Chinese])
段佳麗,薛泉宏,舒志明,等.2015.放線菌Act12與腐植酸鉀配施對(duì)丹參生長及其根域微生態(tài)的影響.生態(tài)學(xué)報(bào),35(6):1807-1819.
(Duan J L, Xue Q H, Shu Z M,etal. Effects of combined application of actinomycetes Act12 bio-control agents and potassium humate on growth and microbial flora in rooting zone ofSalviamiltiorrhizaBge.Acta Ecologica Sinica,35(6):1807-1819.[in Chinese])
韓繼剛, 王云山, 胡永紅. 2016. 拮抗多種牡丹病原菌的多粘類芽孢桿菌的應(yīng)用. 中國專利, CN105861378A.
(Han J G, Wang Y S, Hu Y H. 2016. Application of bacillus subtilis strains against multiple peony pathogens. China Patent, CN105861378A.[in Chinese])
康業(yè)斌, 商鴻生, 董苗菊. 2006. 鳳丹與洛陽紅根際微生物及其與根皮中丹皮酚含量的關(guān)系. 西北農(nóng)林科技大學(xué)學(xué)報(bào):自然科學(xué)版, (12): 159-162.
(Kang Y B, Shang H S, Dong M J. 2006. Relation between microbes in rhizosphere and paeonol content in root-bark in Fengdan and Luo yanghong. Journal of Northwest Aamp;F University:Natural Science Edition, (12): 159-162. [in Chinese])
李嘉玨, 張西方, 趙孝慶. 2011. 中國牡丹. 北京: 中國大百科全書出版社.
(Li J J, Zhang X F, Zhao X Q. 2011. Tree Peony of China. Beijing: China Encyclopedia Press. [in Chinese])
李育才. 2015. 油用牡丹產(chǎn)業(yè)發(fā)展的思考. 新產(chǎn)經(jīng), (6): 52-53.
(Li Y C. 2015. Thinking about the development of oil in peony industry. New Production, (6): 52-53. [in Chinese])
馬會(huì)萍, 彭正鋒. 2011. 牡丹重茬種植障礙產(chǎn)生的原因及對(duì)策. 中國園藝文摘, 27(4): 122-123.
(Ma H P, Peng Z F. 2011. The causes and countermeasures of planting obstacles for the planting of peony. China Garden Digest, 27(4): 122-123. [in Chinese])
納小凡, 鄭國琦, 彭 勵(lì), 等. 2016. 不同種植年限寧夏枸杞根際微生物多樣性變化. 土壤學(xué)報(bào), 53(1): 241-252.
(Na X F, Zheng G Q, Peng L,etal. 2016. The diversity of microbial diversity in the rhizosphere of Ningxia wolfberry was changed. Acta Pedologica Sinica, 53(1): 241-252. [in Chinese])
覃逸明, 聶劉旺. 2009. 藥用牡丹的自毒作用及其防治措施. 生物學(xué)雜志, 26(6): 76-79.
(Qin Y M, Nie L W. 2009. The self-toxic effects of medicinal peony and its preventive measures. Biology Journal, 26(6): 76-79. [in Chinese])
史冬燕, 王宜磊. 2013. 牡丹根際微生物區(qū)系及土壤酶活的研究. 黑龍江農(nóng)業(yè)科學(xué), (6): 15-17.
(Shi D Y, Wang Y L. 2013. Study on the flora and soil enzyme activity of the microflora of the peony root. Heilongjiang Agricultural Sciences, (6): 15-17. [in Chinese])
王雪山, 杜秉海, 姚良同, 等. 2012. 種植年限對(duì)牡丹根際土壤微生物群落結(jié)構(gòu)的影響. 山東農(nóng)業(yè)大學(xué)學(xué)報(bào):自然科學(xué)版, 43(4): 508-516.
(Wang X S, Du B H, Yao L T,etal. 2012. The effect of planting time on the microbiome structure of the mudan root soil. Journal of Shandong Agricultural University:Natural Science Edition, 43(4): 508-516. [in Chinese])
楊瑞先, 王祖華, 趙梓軒, 等. 2017. 牡丹根際微生物的研究進(jìn)展. 河南農(nóng)業(yè)科學(xué), 46(6): 29-33.
(Yang R X, Wang Z H, Zhao Z X,etal. 2017. The research progress of the microorganism of peony root. Journal of Henan Agricultural Sciences, 46(6): 29-33. [in Chinese])
趙 帆, 趙密珍, 王 鈺, 等. 2017. 不同連作年限草莓根際細(xì)菌和真菌多樣性變化. 微生物學(xué)通報(bào), 44(6): 1377-1386.
(Zhao F, Zhao M Z, Wang Y,etal. 2017. Biodiversity of bacteria and fungi in rhizosphere of strawberry with different continuous cropping years. Microbiology China, 44(6): 1377-1386. [in Chinese])
鄭 艷, 劉 煒, 黃軍祥, 等. 2016. 基于牡丹根際土壤微生物的中藥材道地性研究. 藥學(xué)學(xué)報(bào), 51(8): 1325-1333.
(Zheng Y, Liu W, Huang J X,etal. 2016. Study on the study of traditional Chinese medicinal materials based on the soil microorganism of peony root. Acta Pharm Sin, 51(8): 1325-1333. [in Chinese])
Adler C J K, Dobney L S, Weyrich J,etal. 2013. Sequencing ancient calcified dental plaque shows changes in oral microbiota with dietary shifts of the Neolithic and Industrial revolutions. Nature Genetics, 45(4): 450-455.
Ahn J R, Sinha Z, Pei C,etal.2013. Human gut microbiome and risk for colorectal cancer. Journal of the National Cancer Institute, 105(24): 1907-1911.
Beckers B M O, De Beeck N, Weyens W,etal. 2017. Structural variability and niche differentiation inthe rhizosphere and endosphere bacterial microbiome of field-grown poplar trees. Microbiome, 5(1): 25.
Caporaso J G J, Kuczynski J, Stombaugh K,etal. 2010. QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7(5): 335-336.
Chen F X, Zhang Q, Zhang X,etal. 2016. Simultaneous synergistic microwave-ultrasonic extraction and hydrolysis for preparation of trans-resveratrol in tree peony seed oil-extracted residues using imidazolium-based ionic liquid. Industrial Crops and Products, 94: 266-280.
Chen X S, Zhao J J, Yao Y Y,etal. 2015. Effects of bio-organic fertilizer and fungicide application on continuous cropping obstacles of cut chrysanthemum. The Journal of Applied Ecology, 26(4): 1231-1236.
Dong L J, Xu G, Feng X L,etal. 2016. Soil bacterial and fungal community dynamics in relation toPanaxnotoginsengdeath rate in a continuous cropping system. Scientific Reports, 6: 31802.
Fierer N, Lauber C L, Ramirez K S,etal. 2012. Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients. Isme Journal, 6(5): 1007-1017.
Fu H G, Zhang F, Zhang Z,etal. 2017. Effects of continuous tomato monoculture on soil microbial properties and enzyme activities in a solar greenhouse. Sustainability, 9(2): 317.
Kanokratana P, Uengwetwanit T, Rattanachomsri U,etal. 2011. Insights into the phylogeny and metabolic potential of a primary tropical peat swamp forest microbial community by metagenomic analysis. Microbial Ecology, 61(3): 518-528.
Kessler D S, Bhattacharya C, Diezel E,etal. 2012. Unpredictability of nectar nicotine promotes outcrossing by hummingbirds inNicotianaattenuata. The Plant Journal, 71(4): 529-538.
Langille M G I J, Zaneveld J G, Caporaso D,etal. 2013. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nature Biotechnology, 31(9): 814-821.
Lenk S, Arnds J, Zerjatke K,etal. 2011. Novel groups of Gammaproteo bacteria catalyse sulfur oxidation and carbon fixation in a coastal,intertidal sediment. Environmental Microbiology, 13(3): 758-774.
Li J G, Ren G D, Jia Z J,etal. 2014. Composition and activity of rhizosphere microbial communities associated with healthy and diseased greenhouse tomatoes. Plant and Soil, 380(1): 337-347.
Li S L, Wang, Q, Shu J,etal. 2015a. Fatty acid composition of developing tree peony (PaeoniaSectionMoutanDC.) seeds and transcriptome analysis during seed development. BMC Genomics, 16(1): 208.
Li S R, Yuan L, Chen L,etal. 2015b. Systematic qualitative and quantitative assessment of fatty acids in the seeds of 60 tree peony (PaeoniaSectionMoutanDC.) cultivars by GC-MS. Food Chemistry, 173: 133-140.
Mao Y J, Han F, Tian X,etal. 2017. Chemical composition analysis, sensory, and feasibility study of tree peony seed. Journal of Food Science, 82(2): 553-561.
Mazzola M, Manici L M. 2012. Apple replant disease: role of microbial ecology in cause and control. Annual Review of Phytopathology, 50: 45-65.
Padhi S K, Tripathy S, Sen R,etal. 2013. Characterisation of heterotrophic nitrifying and aerobic denitrifyingKlebsiellapneumoniaeCF-S9 strain for bioremediation of wastewater. International Biodeterioration amp; Biodegradation, 78: 67-73.
Pankratov T A, Ivanova A O, Dedysh S N,etal. 2011. Bacterial populations and environmental factors controlling cellulose degradation in an acidicSphagnumpeat. Environmental Microbiology, 13(7): 1800-1814.
Pei A Y W E, Oberdorf C W, Nossa A,etal. 2010. Diversity of 16S rRNA genes within individual prokaryotic genomes. Applied and Environmental Microbiology, 76(12): 3886-3897.
Qi J J, Yao H Y, Ma X J,etal. 2009. Soil microbial community composition and diversity in the rhizosphere of a Chinese medicinal plant. Communications in Soil Science and Plant Analysis, 40(9): 1462-1482.
Qin S, Yeboah S, Xu X,etal. 2017. Analysis on fungal diversity in rhizosphere soil of continuous cropping potato subjected to different furrow-ridge mulching managements. Frontiers in Microbiology, 8. doi: 10.3389/fmicb.2017.00845.
Rinke C P, Schwientek A, Sczyrba N N,etal. 2013. Insights into the phylogeny and coding potential of microbial dark matter. Nature, 499: 431-437.
She S, Niu J, Zhang C,etal. 2017. Significant relationship between soil bacterial community structure and incidence of bacterial wilt disease under continuous cropping system. Archives of Microbiology, 199(2): 267-275.
Su J, Ma C, Liu C,etal. 2016. Hypolipidemic activity of peony seed oil rich in α-linolenic, is mediated through inhibition of lipogenesis and upregulation of fatty acid β-oxidation. Journal of Food Science, 81(4): H1001-H1009.
Tan Y, Cui Y, Li H,etal. 2017. Rhizospheric soil and root endogenous fungal diversity and composition in response to continuousPanaxnotoginsengcropping practices. Microbiological Research, 194: 10-19.
Tang J, Xue Z, Daroch M,etal. 2015. Impact of continuousSalviamiltiorrhizacropping on rhizosphere actinomycetes and fungi communities. Annals of Microbiology, 65(3): 1267-1275.
Wang M C, Wu Z C, Meng H,etal. 2015. Growth and physiological changes in continuously cropped eggplant (SolanummelongenaL.) upon relay intercropping with garlic (AlliumsativumL.). Frontiers in Plant Science, 6. doi: 10.3389/fpls.2015.00262
Xiao X Z, Cheng H, Meng M A,etal. 2012. Intercropping with garlic alleviated continuous cropping obstacle of cucumber in plastic tunnel. Acta Agriculturae Scandinavica Section B Soil and Plant Science, 62(8): 696-705.
Xiong W, Li Z, Liu H,etal. 2015. The effect of long-term continuous cropping of black pepper on soil bacterial communities as determined by 454 pyrosequencing. Plos One: 10(8). doi: 10.1371/journal.pone.0136946.
Xue D, Huang X. 2014. Changes in soil microbial community structure with planting years and cultivars of tree peony (Paeoniasuffruticosa). World Journal of Microbiology amp; Biotechnology, 30(2): 389-397.
Yu P, Wang L, Tang F,etal. 2017. Resveratrol pretreatment decreases ischemic injury and improves neurological function via sonic hedgehog signaling after stroke in rats. Molecular Neurobiology, 54(1): 212-226.
Zarraonaindia I S M, Owens P, Weisenhorn, K W,etal. 2015. The soil microbiome influences grapevine-associated microbiota. mBio, 6(2): e02527.
Zhang H Z, Jiang L, Liu X,etal. 2015. Effects of intercropping on microbial community function and diversity in continuous watermelon cropping soil. Fresenius Environmental Bulletin, 24(10A): 3288-3294.
Zhang J K, Kobert T, Stamatakis A. 2014. PEAR: a fast and accurate Illumina Paired-End reAdmerge R. Bioinformatics, 30(5): 614-620.
Zhang X, Wei H, Chen Q,etal. 2014. The counteractive effects of nitrogen addition and watering on soil bacterial communities in a steppe ecosystem. Soil Biology amp; Biochemistry, 72: 26-34.
Zhou X, Gao D, Liu J,etal. 2014. Changes in rhizosphere soil microbial communities in a continuously monocropped cucumber (CucumissativusL.) system. European Journal of Soil Biology, 60: 1-8.
(責(zé)任編輯 朱乾坤)
VariationsofBacterialBiodiversityinRhizosphereSoilsofOilTreePeonyCroppingContinuouslyforDifferentYears
Guo Lili1Yin Weilun2Guo Dalong1Hou Xiaogai1
(1.CollegeofAgriculture,HenanUniversityofScienceandTechnologyLuoyang471023; 2.CollegeofBiosciencesandBiotechnology,BeijingForestryUniversityBeijing100083)
【Objective】Soil microbes have important ecological functions in forest ecosystems. The status of microbial community diversity in rhizosphere soils of oil tree peony may lay a solid foundation for revealing the mechanism of the formation of the poor soil with long-term continuous cropping.【Method】The technique of IlluminaMiSeq high-throughput sequencing was used to detect abundance and diversity of the V3-V4 region of 16S rRNA genes of bacteria in the rhizosphere soils in which the oil tree peony ‘Fengdan’ (Paeoniaostii) were planted for 2, 4, 5, 10 and 32 years respectively, to study the effects of continuous cropping system on the structure and diversity of soil bacterial community composition.【Result】Total of 2 366 OTUs covering 24 Phyla, 79 Classes, 113 Orders, 117 Families, and 103 genera were obtained from 15 soil samples. The result showed that the different bacterial composition as follows: Proteobacteria (34%), Acidobacteria (14%), Planctomycetes (16%), Actinobacteria (10%).The four groups were the predominant bacterial compositions on the phylum level, while Deltaproteobacteria (26%), α-deformation (25%), Betaproteobacteria (15%) and Gammaproteobacteria (15%) in Proteobacteria phylum; Acidobacteria (44%) and Acinetobacter (12%) in Acidobacteria phylum; Phycisphaerae (27%) and (Planctomycetia) (60%) in Planctomycetes phylum; Actinobacteria (25%), actinomycetes (18%), Thermoleophilia (17%), MB-A2-108 (15%) and Rubrobacteria (10%) in Actinobacteria phylum were the dominant bacterial types on the class level.【Conclusion】 The soils with different planting years had specific bacterial community composition, high abundance and low abundance species. With the increasing of cropping years, Acidobacteria was accumulated, Chlorobi and Fibrobacteres were emerged, Actinobacteria, Proteobacteria and Planctomycetes etc. were decreased; while Verrucomicrobia, WS3 and SBR1093 etc. were disappeared successively. It was speculated that continuous cropping of a single plant (oil tree peony) may be one of the important reasons for the selective inhibition of soil bacteria, occurrence of soil disease and soil degradation. Microbial diversity analysis of rhizosphere soil in the plantation of oil tree peony has an important ecological significance in maintaining soil microenvironment.
Paeoniaostii; continued cropping system; rhizosphere soil; Illumina high-throughput sequencing; bacteria diversity
10.11707/j.1001-7488.20171115
2017-08-07;
2017-10-17。
河南省科技創(chuàng)新杰出人才項(xiàng)目(164200510013); 國家自然科學(xué)基金項(xiàng)目(31370697); 河南科技大學(xué)創(chuàng)新團(tuán)隊(duì)計(jì)劃(2015TTD003)。
*侯小改為通訊作者。
S714.3
A
1001-7488(2017)11-0131-11