張 婧,李保平,孟 玲
(南京農(nóng)業(yè)大學(xué)植物保護(hù)學(xué)院/農(nóng)作物生物災(zāi)害綜合治理教育部重點(diǎn)實(shí)驗(yàn)室,江蘇南京 210095)
土壤添加生物質(zhì)炭對(duì)黏蟲(chóng)生長(zhǎng)發(fā)育和生殖的影響
張 婧,李保平,孟 玲
(南京農(nóng)業(yè)大學(xué)植物保護(hù)學(xué)院/農(nóng)作物生物災(zāi)害綜合治理教育部重點(diǎn)實(shí)驗(yàn)室,江蘇南京 210095)
為探究土壤添加生物質(zhì)炭對(duì)植食性咀嚼式口器害蟲(chóng)的影響,選用黏蟲(chóng)為研究對(duì)象,設(shè)0、15、30和50 g·kg-1四個(gè)土壤添加生物質(zhì)炭處理,對(duì)盆栽種植的麥苗接初孵黏蟲(chóng)幼蟲(chóng),觀察和分析幼蟲(chóng)生長(zhǎng)發(fā)育和成蟲(chóng)生殖力的變化。結(jié)果表明,隨生物質(zhì)炭施用量的增大,黏蟲(chóng)幼蟲(chóng)發(fā)育歷期呈線性縮短趨勢(shì),50 g·kg-1生物質(zhì)炭處理下幼蟲(chóng)發(fā)育歷期為19.0 d,較不添加生物質(zhì)炭處理下降6.5%。黏蟲(chóng)蛹鮮重隨生物質(zhì)炭添加量增大呈線性減小趨勢(shì),其中50 g·kg-1生物質(zhì)炭處理下雌蟲(chóng)蛹鮮重為0.28 g,較不添加生物質(zhì)炭處理下降12.5%。施加生物質(zhì)炭對(duì)黏蟲(chóng)的化蛹率(平均69.89%)和羽化率(92.08%)無(wú)顯著影響。但隨生物質(zhì)炭施用量的增大,黏蟲(chóng)產(chǎn)卵量呈線性增大的趨勢(shì),50 g·kg-1生物質(zhì)炭處理產(chǎn)卵量為605粒,較不添加生物質(zhì)炭處理下增加近3.3倍。以上結(jié)果說(shuō)明,施用生物質(zhì)炭有提高黏蟲(chóng)生殖潛力的作用。
生物質(zhì)炭;小麥;黏蟲(chóng);咀嚼式口器昆蟲(chóng);害蟲(chóng)治理
生物質(zhì)炭是指由生物質(zhì)在限氧或無(wú)氧條件下低溫?zé)峤舛玫降囊环N細(xì)粒度、多孔性的富碳材料。近年來(lái),生物質(zhì)炭作為一類新型環(huán)境功能材料,在土壤改良、保持土壤肥力、提高作物產(chǎn)量等諸多方面[1-4],以及在溫室氣體減排和環(huán)境污染修復(fù)等方面都展現(xiàn)出應(yīng)用潛力[5-6],已成為當(dāng)前的研究熱點(diǎn)。
生物質(zhì)炭對(duì)土壤以及部分作物性狀會(huì)產(chǎn)生影響。生物質(zhì)炭大多呈堿性,施用至土壤后,可以降低土壤酸性,并提高部分養(yǎng)分的有效性[7-9]。生物質(zhì)炭富含碳,因而施用到土壤中可以提高土壤有機(jī)碳含量。相對(duì)于其他傳統(tǒng)有機(jī)肥,生物質(zhì)炭能夠更加穩(wěn)定、顯著地提高土壤中有機(jī)碳的含量[10-13]。陽(yáng)離子轉(zhuǎn)換量可從側(cè)面反映土壤肥力[14],生物質(zhì)炭有顯著增加土壤陽(yáng)離子交換量的作用[15]。施用適量的生物質(zhì)炭對(duì)作物株高有一定的增高作用,可促進(jìn)水稻莖、葉干物質(zhì)積累,其中低施炭量對(duì)莖稈干物質(zhì)積累的促進(jìn)作用相對(duì)明顯[16],葉片葉綠素含量隨著生物質(zhì)炭用量的增加而遞增[17]。
基于生物質(zhì)炭可以改進(jìn)土壤理化性質(zhì)、微生物組成以及改變植物中關(guān)鍵營(yíng)養(yǎng)等眾多研究結(jié)果,本研究推測(cè)生物質(zhì)炭可能間接影響植物病原物和植食性害蟲(chóng)。然而迄今有關(guān)生物質(zhì)炭對(duì)植物害蟲(chóng)影響的研究很少。有研究發(fā)現(xiàn),生物質(zhì)炭對(duì)病原菌有抑制作用,可減輕土傳病菌鐮刀菌(Fusarium)[18-19]和辣椒疫霉菌(PhytophthoracapsiciLeonian)[20]的侵染;生物質(zhì)炭可減少番茄上螨蟲(chóng)的侵害[21],抑制稻飛虱的發(fā)育和生殖力[22]。但迄今尚未見(jiàn)有關(guān)土壤添加生物質(zhì)炭對(duì)咀嚼式口器植食性害蟲(chóng)影響的研究報(bào)道。
黏蟲(chóng)具有季節(jié)遷飛習(xí)性,食性廣泛,危害小麥、玉米等一百多種農(nóng)作物[23],其對(duì)作物造成的危害較大,具有短時(shí)間內(nèi)暴發(fā)性危害的特點(diǎn)?,F(xiàn)階段常采取低齡幼蟲(chóng)期噴灑藥劑與物理誘殺成蟲(chóng)相結(jié)合對(duì)其進(jìn)行防治[24]。隨著生物質(zhì)炭的大規(guī)模施用,土壤和作物性狀也在發(fā)生著改變。因此,有必要研究生物質(zhì)炭對(duì)黏蟲(chóng)生活史特征的影響。本研究以黏蟲(chóng)Mythimnaseparata(Walker)(鱗翅目Lepidoptera、夜蛾科Noctuidae)為研究對(duì)象,觀察土壤添加生物質(zhì)炭處理下其取食小麥后發(fā)育和生殖力的變化,探究土壤添加生物質(zhì)炭對(duì)植食性咀嚼式口器害蟲(chóng)的影響,以期為此類害蟲(chóng)的防治提供參考依據(jù)。
供試土壤取自南京市東郊一塊閑置農(nóng)田,為紅棕壤,采樣深度0~15 cm。土壤pH值為7.30,全氮含量為0.09%,有機(jī)碳含量為1.17%。將土壤自然風(fēng)干、粉碎,過(guò)2 mm網(wǎng)篩備用。供試生物質(zhì)炭原料為玉米秸稈(南京勤豐秸稈研發(fā)有限公司生產(chǎn))。供試小麥品種為南農(nóng)0686(南京農(nóng)業(yè)大學(xué)細(xì)胞遺傳研究所提供)。供試黏蟲(chóng)由河北省農(nóng)科院植物保護(hù)研究所提供,在25±1 ℃、相對(duì)濕度60%±10%和光暗時(shí)間14 h/10 h的養(yǎng)蟲(chóng)室內(nèi)飼養(yǎng),用主要成分為玉米葉粉等制成的半人工飼料[25]飼喂幼蟲(chóng),以10%的蜂蜜水供成蟲(chóng)補(bǔ)充營(yíng)養(yǎng),室內(nèi)繁殖多代,選用初孵幼蟲(chóng)用于試驗(yàn)。
參考大田生物質(zhì)炭推薦施用量(20~40 t·hm-2),設(shè)4個(gè)生物質(zhì)炭添加量處理,即每千克土壤干重添加0、15、30和50 g,以不添加(添加量0 g·kg-1)為對(duì)照。將土壤與生物質(zhì)炭混勻后裝盆(直徑6 cm,高10 cm),小麥種子催芽后播種,置于人工智能氣候箱(光周期16L/8D,相對(duì)濕度60%~70%,晝夜溫度分別為26和24 ℃)內(nèi)生長(zhǎng),每2 d澆水1次,生長(zhǎng)8 ~11 d后接試蟲(chóng)。挑選同一天孵化的初孵幼蟲(chóng)單頭移至麥苗葉片上,然后用塑料杯罩住麥苗以防治幼蟲(chóng)逃逸。每處理重復(fù)60次。麥苗每2 d澆水1次;每24 h觀察1次。當(dāng)麥苗被食約3/4后,將幼蟲(chóng)移至另一盆麥苗的葉片上,如此飼養(yǎng)至6齡幼蟲(chóng)鉆入土中化蛹為止。幼蟲(chóng)化蛹后按性別單頭稱鮮重(Mittler XS105 Dual Range 分析天平),然后將蛹轉(zhuǎn)移至試管中等待成蟲(chóng)羽化,逐日觀察成蟲(chóng)羽化情況。為測(cè)定雌蟲(chóng)的終身生殖力,將雌、雄蛾配對(duì)飼養(yǎng)于塑料杯(直徑6 cm、高10 cm)中,杯口用黑色紗布覆蓋,杯內(nèi)懸掛塑料繩供雌蟲(chóng)產(chǎn)卵,每天提供10%的蔗糖溶液飼喂成蟲(chóng),直至成蟲(chóng)死亡。收集塑料繩并計(jì)數(shù)卵量。
用趨勢(shì)方差分析(trend ANOVA)的正交對(duì)比法(orthogonal contrasts)分別分析各生長(zhǎng)發(fā)育和生殖參數(shù)隨生物質(zhì)炭添加量增大的變化趨勢(shì)(線性或二次曲線)。對(duì)比率變量分析采用二項(xiàng)分布誤差,對(duì)整數(shù)數(shù)據(jù)用Poisson分布誤差的廣義線性回歸模型進(jìn)行分析,對(duì)連續(xù)數(shù)值變量用一般線性模型分析。數(shù)據(jù)分析使用R統(tǒng)計(jì)軟件(R version 3.2.4)[26]。
生物質(zhì)炭處理對(duì)黏蟲(chóng)幼蟲(chóng)發(fā)育歷期有顯著影響(Poisson模型,似然比測(cè)驗(yàn)χ2= 16.57,P<0.001),黏蟲(chóng)幼蟲(chóng)發(fā)育歷期隨生物質(zhì)炭添加量增大呈線性縮短的趨勢(shì)(t=-4.07,P<0.001),從不添加生物質(zhì)炭處理下的20.33±0.16 d縮短到添加高濃度50 g·kg-1處理下的19.00±0.20 d,下降6.5%(圖1)。
生物質(zhì)炭處理對(duì)黏蟲(chóng)蛹重具有顯著影響(一般線性模型,F(xiàn)=13.16,P<0.001),且與黏蟲(chóng)性別無(wú)關(guān)(F=0.09,P=0.77)。隨生物質(zhì)炭添加量的增大,黏蟲(chóng)蛹重呈線性縮短的趨勢(shì)(t=-3.63,P<0.001)。黏蟲(chóng)雌性和雄性蛹重從不添加生物質(zhì)炭處理的0.320±0.010和 0.323±0.011 g 分別減至高濃度50 g·kg-1處理的生物質(zhì)炭處理對(duì)黏蟲(chóng)幼蟲(chóng)至成蟲(chóng)羽化的歷期有顯著影響(Poisson模型,似然比測(cè)驗(yàn)χ2=26.07,P=0.013),且與黏蟲(chóng)性別有關(guān)(χ2=4.88,P=0.027)。黏蟲(chóng)發(fā)育歷期隨生物質(zhì)炭添加量的增大呈線性縮短的趨勢(shì)(t=-2.463,P=0.015),雌、雄蟲(chóng)歷期從不添加生物質(zhì)炭處理的31.81±0.32 d和32.39±0.23 d分別縮短到高濃度50 g·kg-1處理下的30.53±0.67 和30.93± 0.44 d,分別縮短了4.02%和4.51% (圖3)。黏蟲(chóng)的性別對(duì)歷期有顯著影響(t=2.209,P=0.027),雄蟲(chóng)平均歷期(31.73±0.20 d)比雌蟲(chóng)平均歷期(30.83±0.32 d)延長(zhǎng)了0.90 d。
0.278±0.017 和0.279±0.010 g,分別下降13.1%和13.6%(圖2)。
菱形點(diǎn)代表均值,豎柄代表標(biāo)準(zhǔn)誤。
Diamond point and bar are mean±standard error.
圖1黏蟲(chóng)幼蟲(chóng)發(fā)育歷期隨生物質(zhì)炭添加量增加的變化趨勢(shì)
Fig.1Trendinlarvalduration(egg-to-pupatime)ofMythimnaseparataacrosstheincreasinglevelsofbiocharapplication
菱形點(diǎn)代表均值,豎柄代表標(biāo)準(zhǔn)誤。 Diamond point and bar are mean±standard error.
生物質(zhì)炭處理對(duì)黏蟲(chóng)幼蟲(chóng)化蛹率沒(méi)有影響(Logistic模型,似然比測(cè)驗(yàn)χ2= 4.76,P=0.19)(圖4),對(duì)黏蟲(chóng)羽化率也無(wú)顯著影響(Logistic回歸模型,似然比測(cè)驗(yàn)χ2= 1.11,P=0.78)(圖5)。
菱形點(diǎn)代表均值,豎柄代表標(biāo)準(zhǔn)誤。 Diamond point and bar are mean±standard error.
圖4 黏蟲(chóng)化蛹率隨生物質(zhì)炭添加量增加的變化趨勢(shì)
圖5 黏蟲(chóng)羽化率隨生物質(zhì)炭添加量增加的變化趨勢(shì)
生物質(zhì)炭處理對(duì)黏蟲(chóng)產(chǎn)卵量有顯著影響(Poisson模型,似然比測(cè)驗(yàn)χ2= 11.13,P<0.001)。黏蟲(chóng)產(chǎn)卵量隨生物質(zhì)炭添加量的增大呈線性增大趨勢(shì)(t=3.258,P=0.003),從不添加生物質(zhì)炭處理下的142±45粒增加到高濃度50 g·kg-1處理下的605±68粒,增加了326.3%(圖6)。
菱形點(diǎn)代表均值,豎柄代表標(biāo)準(zhǔn)誤。
Diamond point and bar are mean±standard error.
圖6黏蟲(chóng)終身產(chǎn)卵量隨生物質(zhì)炭添加量增加的變化趨勢(shì)
Fig.6Trendinlifetimefecundity(numberofeggslaidperfemaleinalifetime)ofMythimnaseparataacrosstheincreasinglevelsofbiocharapplication
本研究發(fā)現(xiàn),隨生物質(zhì)炭添加量增大,黏蟲(chóng)幼蟲(chóng)發(fā)育歷期表現(xiàn)出縮短的趨勢(shì),蛹重呈減輕的趨勢(shì),但雌成蟲(chóng)產(chǎn)卵量呈明顯的增大趨勢(shì)。這些表現(xiàn)與刺吸式口器昆蟲(chóng)稻飛虱的表現(xiàn)相反,后者在高水平添加生物質(zhì)炭處理下幼蟲(chóng)生長(zhǎng)和成蟲(chóng)生殖力均明顯降低[22]。昆蟲(chóng)幼蟲(chóng)期是積累營(yíng)養(yǎng)的階段,其發(fā)育歷期長(zhǎng)短受多種因素影響而變化。從營(yíng)養(yǎng)方面看,當(dāng)食物營(yíng)養(yǎng)質(zhì)量高時(shí),生長(zhǎng)速率提高,發(fā)育歷期縮短;當(dāng)食物品質(zhì)較差時(shí),生長(zhǎng)速率緩慢,發(fā)育歷期延長(zhǎng)。由此推測(cè),生物質(zhì)炭處理下小麥營(yíng)養(yǎng)質(zhì)量對(duì)黏蟲(chóng)幼蟲(chóng)而言得到了提高,進(jìn)而縮短幼蟲(chóng)歷期,而且這種效應(yīng)隨生物質(zhì)炭量增大而增強(qiáng)。但當(dāng)幼蟲(chóng)期面臨生存風(fēng)險(xiǎn)時(shí),昆蟲(chóng)會(huì)縮短發(fā)育歷期,提前變態(tài)為成蟲(chóng)以完成生殖。例如,土壤干旱脅迫可導(dǎo)致黏蟲(chóng)發(fā)育歷期縮短[27]。Elad 等[21]推測(cè)生物質(zhì)炭可能誘導(dǎo)植物的系統(tǒng)抗性,故而也可能導(dǎo)致黏蟲(chóng)幼蟲(chóng)歷期縮短。所以,若要理解為何生物質(zhì)炭處理導(dǎo)致黏蟲(chóng)發(fā)育歷期縮短,有必要進(jìn)一步研究生物質(zhì)炭影響昆蟲(chóng)的生理生化機(jī)理。
昆蟲(chóng)蛹重通常作為其適合度的正相關(guān)特征。Leuck等[28]認(rèn)為,鱗翅目昆蟲(chóng)的蛹重是衡量其適應(yīng)性的間接指標(biāo),蛹越小,昆蟲(chóng)的適應(yīng)性越差。由此推測(cè),隨添加生物質(zhì)炭量的增大,黏蟲(chóng)蛹重的緩慢減輕意味著生物質(zhì)炭對(duì)黏蟲(chóng)造成微弱的不利影響,且對(duì)雌性黏蟲(chóng)的影響比雄性略明顯。由于不同處理在重復(fù)間具有較大的變異,需進(jìn)一步通過(guò)增大重復(fù)數(shù)及控制好重復(fù)間的其他干擾因素進(jìn)行試驗(yàn),以揭示生物質(zhì)炭對(duì)黏蟲(chóng)蛹的影響。
本研究觀察到生物質(zhì)炭可促進(jìn)黏蟲(chóng)生殖力,需引起關(guān)注。此前研究發(fā)現(xiàn),稻飛虱生殖力在大量添加生物質(zhì)炭處理下大幅降低,可能與生物質(zhì)炭促進(jìn)水稻對(duì)硅的吸收而增強(qiáng)抗蟲(chóng)性有關(guān)[22],因?yàn)橥寥捞砑由镔|(zhì)炭可提高水稻植株的硅含量[29],而稻株硅含量的增大可阻礙飛虱對(duì)植物細(xì)胞的刺吸行為[30]。然而,本研究認(rèn)為,增加生物質(zhì)炭刺激黏蟲(chóng)發(fā)育歷期縮短、成蟲(chóng)生殖力提高的原因有待探究。一種解釋可能是由于生物質(zhì)炭對(duì)植物的有益作用,從而促進(jìn)了黏蟲(chóng)的生殖,類似施氮肥促進(jìn)植食性昆蟲(chóng)的生殖那樣[31]。許多研究發(fā)現(xiàn),施用生物質(zhì)炭可促進(jìn)植物對(duì)多種營(yíng)養(yǎng)元素的吸收而提高產(chǎn)量[32-33]。故據(jù)此推測(cè),土壤添加生物質(zhì)炭可能通過(guò)促進(jìn)小麥對(duì)某種營(yíng)養(yǎng)元素(如氮)的吸收而促進(jìn)黏蟲(chóng)的生殖。因此,有必要進(jìn)一步通過(guò)研究生物質(zhì)炭對(duì)小麥營(yíng)養(yǎng)吸收和利用的影響,進(jìn)而分析對(duì)黏蟲(chóng)的營(yíng)養(yǎng)代謝生理生化過(guò)程的影響。
致謝:南京農(nóng)業(yè)大學(xué)資源和環(huán)境學(xué)院潘根興、李戀卿和劉曉雨等提供生物質(zhì)炭及其生產(chǎn)應(yīng)用信息,特此致謝。
[1] HAYES M H B.Biochar and biofuels for a brighter future [J].Nature,2006,443(7108):144.
[2] WOOLF D,AMONETTE J E,STREET-PERROTT F A,etal.Sustainable biochar to mitigate global climate change [J].NatureCommunications,2010,1:56.
[3] LEHMANN J,PEREIRA D A,SILVA J,STEINER C,etal.Nutrient availability and leaching in an archaeological anthrosol and a ferralsol of the central amazon basin:Fertilizer,manure and charcoal amendments [J].Plant&Soil,2003,249(2):343.
[4] ANTAL M J,GR?NLI M.The art,science,and technology of charcoal production [J].Industrial&EngineeringChemistryResearch,2003,42(8):1619.
[5] JOSEPH S,LEHMANN J.Biochar for Environmental Management:Science and Technology [M].London GB:Earthscan,2009.
[6] SCHMIDT M W I.Biogeochemistry:Carbon budget in the black [J].Nature,2004,427(6972):305.
[7] VAN ZWIETEN L,KIMBER S,MORRIS S,etal.Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility [J].PlantandSoil,2010,327(1-2):235.
[8] NOVAK J M,BUSSCHER W J,LAIRD D L,etal.Impact of biochar amendment on fertility of a southeastern coastal plain soil [J].SoilScience,2009,174(2):105.
[9] MASULILI A,UTOMO W H,SYECHFANI M S.Rice husk biochar for rice based cropping system in acid soil 1.The characteristics of rice husk biochar and its influence on the properties of acid sulfate soils and rice growth in West Kalimantan,Indonesia [J].JournalofAgriculturalScience,2010,2(1):39.
[10] DEENIK J L,MCCLELLAN A T,UEHARA G.Biochar volatile matter content effects on plant growth and nitrogen transformations in a tropical soil [C].Western Nutrient Management Conference,2009,8:26.
[11] KIMETU J M,LEHMANN J.Stability and stabilisation of biochar and green manure in soil with different organic carbon contents [J].SoilResearch,2010,48(7):577.
[12] LEHMANN J,DA SILVA JR J P,RONDON M,etal.Slash-and-char:a feasible alternative for soil fertility management in the central Amazon? [C].Proceedings of the 17th World Congress of Soil Science,2002:1.
[13] TENENBAUM D.Biochar:Carbon mitigation from the ground up [J].EnvironmentalHealthPerspectives,2009,117(2):70.
[14] CHENG C H,LEHMANN J,THIES J E,etal.Oxidation of black carbon by biotic and abiotic processes [J].OrganicGeochemistry,2006,37(11):1477.
[15] GLASER B,HAUMAIER L,GUGGENBERGER G,etal.The ‘Terra Preta’ phenomenon:A model for sustainable agriculture in the humid tropics [J].TheScienceofNature,2001,88(1):37.
[16] 張偉明.生物質(zhì)炭的理化性質(zhì)及其在作物生產(chǎn)上的應(yīng)用[D].沈陽(yáng):沈陽(yáng)農(nóng)業(yè)大學(xué),2012:1-11.
ZHANG W M.Physical and chemical properties of biochar and its application in crop production [D].Shenyang:Shenyang Agricultural University,2012:1-11.
[17] 張園營(yíng),劉國(guó)順,劉宏恩.施用生物質(zhì)炭對(duì)煙葉石油醚提取物及致香物質(zhì)的影響[J].江西農(nóng)業(yè)學(xué)報(bào),2013,25(5):96.
ZHANG Y Y,LIU G S,LIU H E.Effects of biochar application on petroleum ether extract and aroma constituent of flue-cured tobacco leaves [J].ActaAgriculturaeJiangxi,2013,25(5):96.
[18] MATSUBARA Y,HASEGAWA N,FUKUI H.Incidence ofFusariumroot rot in asparagus seedlings infected with arbuscular mycorrhizal fungus as affected by several soil amendments [J].EngeiGakkaizasshi,2002,71(3):370.
[19] ELMER W H,PIGNATELLO J J.Effect of biochar amendments on mycorrhizal associations andFusariumcrown and root rot of asparagus in replant soils [J].PlantDisease,2011,95(95):960.
[20] 王光飛,馬 艷,郭德杰,等.秸稈生物炭對(duì)辣椒疫病的防控效果及機(jī)理研究[J].土壤,2015,47(6):1107.
WANG G F,MA Y,GUO D J,etal.Effect and mechanism of straw biochar on disease control ofPhytophthorablightof chilli pepper [J].Soils,2015,47(6):1107.
[21] ELAD Y,DAVID D R,HAREL Y M,etal.Induction of systemic resistance in plants by biochar,a soil-applied carbon sequestering agent [J].Phytopathology,2010,100(9):913.
[22] HOU X,MENG L,LI L,etal.Biochar amendment to soils impairs developmental and reproductive performances of a major rice pestNilaparvatalugens(Homopera:Delphacidae) [J].JournalofAppliedEntomology,2015,139(10):727.
[23] 洪曉月,丁錦華.農(nóng)業(yè)昆蟲(chóng)學(xué)[M].北京:中國(guó)農(nóng)業(yè)出版社,2007:122-123.
HONG X Y,DING J H.Agricultural Entomology [M].Beijing:China Agriculture Press,2007:122-123.
[24] LI J H.Occurrence law of armyworm in China and its identification and prevention [J].PlantDiseases&Pests,2010,1(3):31.
[25] 李建成.中紅側(cè)溝繭蜂的擴(kuò)繁與應(yīng)用技術(shù)//曾繁榮,陳紅印 主編.天敵昆蟲(chóng)飼養(yǎng)系統(tǒng)工程[M].北京:中國(guó)農(nóng)業(yè)科學(xué)技術(shù)出版社.2009:209-221.
LI J C.Mass rearing and application of Microplitis mediato[M]//ZENG F R,CHEN H Y.The System Engineering for Rearing Insect Natural Enemies.Beijing:China Agricultural Science and Technology Press,2009:209-221.
[26] R Development Core Team,A language and environment for statistical computing [R]//R Foundation for Statistical Computing,Vienna,Austria,URL http://www.R-project.org/,2016.
[27] 侯佳麗,李保平,孟 玲.小麥干旱脅迫對(duì)黏蟲(chóng)取食及食物利用效率的影響[J].麥類作物學(xué)報(bào),2015,35(1):138.
HOU J L,LI B P,MENG L.Effects of drought stress in wheat on consumption and utilization of wheat as food for the oriental armywormMythimnaseperata(Lepidoptera:Noctuidae) [J].JournalofTriticeaeCrops,2015,35(1):138.
[28] LEUCK D B,PERKINS W D.A method of estimating fall armyworm progeny reduction when evaluating control achieved by host-plant resistance [J].JournalofEconomicEntomology,1972,65(2):482.
[29] LIU X,LI L,BIAN R,etal.Effect of biochar amendment on soil-silicon availability and rice uptake [J].JournalofPlantNutrition&SoilScience,2014,177(1):91.
[30] SOGAWA K.The rice brown planthopper:Feeding physiology and host plant interactions [J].AnnualReviewofEntomology,1982,27(1):49.
[31] SCHOONHOVEN L M,VAN LOON J J A,DICKE M.Insect-Plant Biology [M].Oxford:Oxford University Press,2005.
[32] ATKINSON C J,FITZGERALD J D,HIPPS N A.Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils:A review [J].PlantandSoil,2010,337(1):1-18.
[33] BIEDERMAN L A,HARPOLE W S.Biochar and its effects on plant productivity and nutrient cycling:A meta-analysis [J].GlobalChangeBiologyBioenergy,2013,5(2):202.
EffectsofBiocharAmendmenttoSoilsonImmatureGrowthandAdultReproductionoftheOrientalArmywormMythimnaseparata(Lepidoptera:Noctuidae)
ZHANGJing,LIBaoping,MENGLing
(College of Plant Protection/Key Laboratory of Integrated Management of Crop Diseases and Insect Pest, Ministry of Education, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China)
To explore the potential of biochar amendment to soils in influencing chewing insect pests, laboratory experiments were conducted using the oriental armywormMythimnaseparata(Lepidoptera: Noctuidae) as a model species. Biochar was added at the levels of 0, 15, 30 and 50 g·kg-1to soils in the pots planted with wheat. Neonate larvae were individually transferred onto potted wheat seedlings and observed throughout their development. Larval duration showed a linear downward trend across the increasing levels of biochar application, with a decrease rate of 6.5% to 19.0 d at the highest biochar-added level. Additionally, pupal weight showed a linear downward trend across the increasing levels of biochar application, from 0.32 g in the control by a decrease rate of 12.5% to 0.28 g at the highest biochar-added level. Larval pupation rate(92.08%) and adult eclosion rate(69.89%) did not change across the biochar amendment levels. However, lifetime fecundity demonstrated a linear upward trend across the increasing levels of biochar application, from 142 eggs laid per female in the control to 605 eggs at the highest biochar-added level. It is suggested that biochar amendment to soils may improve the reproduction ofM.separata.
Biocharcol; Wheat;Mythimnaseparata; Chewing insects; Pest control
時(shí)間:2017-11-14
網(wǎng)絡(luò)出版地址:http://kns.cnki.net/kcms/detail/61.1359.S.20171114.1028.030.html
2017-03-29
2017-05-24
國(guó)際重點(diǎn)研發(fā)計(jì)劃資助(編號(hào)2017YFD0201000)
E-mail:2014102073@njau.edu.cn
孟 玲(E-mail:ml@njau.edu.cn)
S512.1;S435.122
A
1009-1041(2017)11-1512-06