李鐘鵬,龐芳河
(廣西醫(yī)科大學(xué)附屬口腔醫(yī)院1.綜合門診,2.口腔種植科,廣西 南寧 530021)
基礎(chǔ)研究·論著
乳鼠雪旺細(xì)胞對(duì)自體顱骨組織生長(zhǎng)的影響
李鐘鵬1,龐芳河2
(廣西醫(yī)科大學(xué)附屬口腔醫(yī)院1.綜合門診,2.口腔種植科,廣西 南寧 530021)
目的探討乳鼠雪旺細(xì)胞對(duì)自體顱骨組織生長(zhǎng)的影響。方法體外培養(yǎng)和純化乳鼠雪旺細(xì)胞,取乳鼠顱骨組織分為對(duì)照組和觀察組。對(duì)照組顱骨組織單獨(dú)培養(yǎng),觀察組顱骨組織與雪旺細(xì)胞共同培養(yǎng),培養(yǎng)第1、2和3周時(shí)免疫組織化學(xué)法測(cè)定顱骨組織骨鈣素和骨橋蛋白水平,酶聯(lián)免疫法吸附法測(cè)定培養(yǎng)液中骨堿性磷酸酶活性含量。結(jié)果雪旺細(xì)胞在體外被成功培養(yǎng),純度>89%。不同時(shí)間點(diǎn)骨鈣素水平有差別(P<0.05);觀察組和對(duì)照組骨鈣素水平有差別(P<0.05),觀察組骨鈣素水平比對(duì)照組高;觀察組和對(duì)照組骨鈣素水平變化趨勢(shì)有差別(P<0.05)。不同時(shí)間點(diǎn)骨橋蛋白水平無差別(P>0.05);觀察組和對(duì)照組骨橋蛋白水平無差別(P>0.05);觀察組和對(duì)照組骨橋蛋白水平變化趨勢(shì)無差別(P>0.05)。不同時(shí)間點(diǎn)骨堿性磷酸酶活性有差別(P<0.05);觀察組和對(duì)照組骨堿性磷酸酶活性有差別(P<0.05),觀察組骨堿性磷酸酶活性比對(duì)照組高;觀察組和對(duì)照組骨堿性磷酸酶活性變化趨勢(shì)有差別(P<0.05)。結(jié)論雪旺細(xì)胞可以提高顱骨組織骨鈣素水平和骨堿性磷酸酶活性,促進(jìn)顱骨組織的生長(zhǎng)。
乳鼠;雪旺細(xì)胞;顱骨組織;生長(zhǎng);組織工程。
骨組織工程學(xué)發(fā)展迅速,保證組織工程化骨組織在體內(nèi)存活的決定性因素為血液供應(yīng)和神經(jīng)支配。當(dāng)移植骨塊中有神經(jīng)生長(zhǎng)時(shí)才能完成新骨的爬行,完整的神經(jīng)支配在骨折愈合中具有重要作用,神經(jīng)支配可以調(diào)節(jié)骨組織的再生[1]。雪旺細(xì)胞包繞周圍神經(jīng)軸突,是周圍神經(jīng)的主要膠質(zhì)細(xì)胞,是周圍神經(jīng)組織工程中常用的種子細(xì)胞[2-4]。本實(shí)驗(yàn)分離并純化乳鼠雪旺細(xì)胞,將其與乳鼠顱骨組織共同培養(yǎng),觀察其對(duì)顱骨組織生長(zhǎng)的影響。
1.1.1 實(shí)驗(yàn)動(dòng)物 出生1~5 d、清潔級(jí)、雄性SD乳鼠由廣西醫(yī)科大學(xué)實(shí)驗(yàn)動(dòng)物中心提供,許可證號(hào):SCXK桂2014-0001。
1.1.2 主要試劑 DMEM培養(yǎng)基、胎牛血清購(gòu)自杭州四季青生物工程有限公司,骨鈣素、骨橋蛋白、ASBC免疫組織化學(xué)試劑盒,以及兔抗S-100單克隆抗體、胰蛋白酶、分泌性磷酸化蛋白質(zhì)購(gòu)自武漢博士德生物工程公司。
1.2.1 組織取材 取9只乳鼠脫臼處死,75%乙醇浸泡消毒,解剖顯微鏡下剝離雙側(cè)股神經(jīng)用于乳鼠雪旺細(xì)胞的培養(yǎng);取出顱骨,在培養(yǎng)皿中剪成2 mm×2 mm顱骨碎塊,每只乳鼠取2塊顱骨碎塊,共18塊用于體外培養(yǎng)。
1.2.2 乳鼠雪旺細(xì)胞的培養(yǎng)、純化及鑒定 將剝離的雙側(cè)股神經(jīng)置于DMEM高糖培養(yǎng)基,剝離神經(jīng)外膜,將坐骨神經(jīng)剪成碎塊,在含坐骨神經(jīng)組織碎塊的培養(yǎng)基中加入胰蛋白酶消化,過濾消化液,將過濾液置于離心管中,1000 r/min離心5 min,棄上清液加入培養(yǎng)基中重懸細(xì)胞,將雪旺細(xì)胞密度調(diào)整為1×105個(gè)/ml,接種到培養(yǎng)皿中培養(yǎng),12 h后全量換液去除未貼壁細(xì)胞,加入阿糖胞苷抑制成纖維細(xì)胞,48 h后全量換液,顯微鏡下觀察雪旺細(xì)胞生長(zhǎng)情況。將培養(yǎng)12 d的雪旺細(xì)胞消化并接種到6孔板中培養(yǎng)72 h,采用S-100兔單克隆抗體對(duì)雪旺細(xì)胞進(jìn)行鑒定。
1.2.3 分組及處理 將18塊顱骨塊分為對(duì)照組和觀察組,每組9塊顱骨塊。對(duì)照組顱骨塊在DMEM培養(yǎng)皿中單獨(dú)培養(yǎng)。觀察組顱骨塊與雪旺細(xì)胞共同培養(yǎng):將雪旺細(xì)胞密度調(diào)整為1×106個(gè)/ml,取100μl加入DMEM培養(yǎng)皿中,并加入顱骨塊共同培養(yǎng)。兩組顱骨塊均培養(yǎng)3周。
1.2.4 骨鈣素和骨橋蛋白水平測(cè)定 分別取對(duì)照組和觀察組培養(yǎng)第1、2和3周的顱骨塊進(jìn)行甲醛固定、石蠟包埋,采用免疫組織化學(xué)法測(cè)定顱骨組織中骨鈣素和骨橋蛋白水平。將顱骨切片脫臘至水,3%雙氧水H2O2滅活,抗原修復(fù),加入封閉液封閉,加入骨鈣素和骨橋蛋白一抗孵育(1∶100),加入孵育生物素化二抗孵育(1∶150),顯色,加入蘇木素復(fù)染,封片觀察。采用Image-Pro Plus 6.0圖像處理系統(tǒng),測(cè)量每組9塊顱骨組織中基質(zhì)和陽(yáng)性細(xì)胞染色光密度值。
1.2.5 培養(yǎng)液中骨堿性磷酸酶表達(dá)測(cè)定 取對(duì)照組和觀察組培養(yǎng)第1、2和3周的培養(yǎng)液,采用酶聯(lián)免疫吸附法測(cè)定顱骨培養(yǎng)液中骨堿性磷酸酶含量,采用自動(dòng)酶標(biāo)儀測(cè)定堿性磷酸酶活性。
數(shù)據(jù)分析采用SPSS 20.0統(tǒng)計(jì)軟件,計(jì)量資料以均數(shù)±標(biāo)準(zhǔn)差(±s)表示,用重復(fù)測(cè)量設(shè)計(jì)的方差分析,P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
大部分雪旺細(xì)胞培養(yǎng)24 h后貼壁生長(zhǎng),部分長(zhǎng)出細(xì)小突起;培養(yǎng)48 h后雪旺細(xì)胞形態(tài)明顯,胞體呈梭形,兩端突起不等,周邊有亮帶;培養(yǎng)7 d后細(xì)胞呈極性生長(zhǎng),胞體平行排列;培養(yǎng)12 d后細(xì)胞大部分連接在一起,交織成網(wǎng)狀。見圖1。
對(duì)培養(yǎng)14 d的雪旺細(xì)胞采用S-100兔單克隆抗體免疫組織化學(xué)法染色,可見雪旺細(xì)胞胞體呈梭形,胞漿黃染,邊界清楚。采用細(xì)胞計(jì)數(shù)板進(jìn)行細(xì)胞計(jì)數(shù),雪旺細(xì)胞的純度>89%。見圖2。
觀察組和對(duì)照組第1、2和3周骨鈣素水平比較,采用重復(fù)測(cè)量設(shè)計(jì)的方差分析,結(jié)果:①不同時(shí)間點(diǎn)骨鈣素水平有差別(F=21.425,P=0.000);②觀察組和對(duì)照組骨鈣素水平有差別(F=28.416,P=0.000),觀察組骨鈣素水平比對(duì)照組高;③觀察組和對(duì)照組骨鈣素水平變化趨勢(shì)有差別(F=18.325,P=0.000)。見表1和圖3。
觀察組和對(duì)照組第1、2和3周骨橋蛋白水平比較,采用重復(fù)測(cè)量設(shè)計(jì)的方差分析,結(jié)果:①不同時(shí)間點(diǎn)骨橋蛋白水平無差別(F=1.324,P=0.253);②觀察組和對(duì)照組骨橋蛋白水平無差別(F=1.032,P=0.426);③觀察組和對(duì)照組骨橋蛋白水平變化趨勢(shì)無差別(F=0.856,P=0.583)。見表2和圖4。
觀察組和對(duì)照組第1、2和3周骨堿性磷酸酶活性比較,采用重復(fù)測(cè)量設(shè)計(jì)的方差分析,結(jié)果:①不同時(shí)間點(diǎn)骨堿性磷酸酶活性有差別(F=67.536,P=0.000);②觀察組和對(duì)照組骨堿性磷酸酶活性有差別(F=97.537,P=0.000),觀察組骨堿性磷酸酶活性比對(duì)照組高;③觀察組和對(duì)照組骨堿性磷酸酶活性變化趨勢(shì)有差別(F=54.264,P=0.000)。見表3和圖5。
圖1 雪旺細(xì)胞 (×400)
圖2 S-100免疫鑒定的雪旺細(xì)胞(免疫組織化學(xué)法×400)
表1 兩組骨鈣素水平比較(n =9,±s)
表1 兩組骨鈣素水平比較(n =9,±s)
組別 第1周 第2周 第3周對(duì)照組 7.51±2.51 8.30±1.76 12.12±1.13觀察組 11.92±3.57 13.67±3.51 18.43±5.21
表2 兩組骨橋蛋白水平比較(n =9,±s)
表2 兩組骨橋蛋白水平比較(n =9,±s)
組別 第1周 第2周 第3周對(duì)照組 9.67±1.30 10.07±2.15 9.18±1.06觀察組 10.85±2.00 10.21±1.25 11.02±2.01
圖3 兩組骨鈣素水平變化趨勢(shì)
圖4 兩組骨橋蛋白水平變化趨勢(shì)
表3 兩組骨堿性磷酸酶活性比較(n =9,金氏單位/L,±s)
表3 兩組骨堿性磷酸酶活性比較(n =9,金氏單位/L,±s)
組別 第1周 第2周 第3周對(duì)照組 97.43±12.20 102.59±24.52 137.58±18.16觀察組 123.20±19.63 302.79±60.42 709.71±48.99
圖5 兩組骨堿性磷酸酶活性變化趨勢(shì)
骨是富含血管、神經(jīng)、筋膜等組織的復(fù)合體,骨的形成和神經(jīng)系統(tǒng)的發(fā)展關(guān)系密切,神經(jīng)細(xì)胞對(duì)骨吸收及骨形成發(fā)揮營(yíng)養(yǎng)和調(diào)節(jié)作用[5]。雪旺細(xì)胞是神經(jīng)膠質(zhì)細(xì)胞,是周圍神經(jīng)的主要功能和結(jié)構(gòu)細(xì)胞,參與神經(jīng)再生過程,雪旺細(xì)胞可以分泌數(shù)種神經(jīng)營(yíng)養(yǎng)因子,促進(jìn)軸突髓鞘化,提供神經(jīng)再生需要的營(yíng)養(yǎng)微環(huán)境,協(xié)助神經(jīng)內(nèi)膜形成,清除細(xì)胞碎片,提供神經(jīng)再生支架[6-7];雪旺細(xì)胞還可分泌多種神經(jīng)生長(zhǎng)因子,對(duì)神經(jīng)細(xì)胞的生長(zhǎng)發(fā)育、再生及存活的維持發(fā)揮重要作用,神經(jīng)生長(zhǎng)因子可以防止神經(jīng)元死亡,促進(jìn)神經(jīng)再生,增加軸突數(shù)量;雪旺細(xì)胞還可分泌白細(xì)胞生長(zhǎng)因子、轉(zhuǎn)移生長(zhǎng)因子、血小板生長(zhǎng)因子等,對(duì)增加基質(zhì)蛋白合成、促進(jìn)神經(jīng)傳遞、促進(jìn)細(xì)胞增殖分化發(fā)揮重要作用[8]。雪旺細(xì)胞是神經(jīng)再生中唯一可以利用的神經(jīng)膠質(zhì)細(xì)胞,為常用的周圍神經(jīng)組織工程的種子細(xì)胞[9-10]。
本實(shí)驗(yàn)對(duì)乳鼠雪旺細(xì)胞進(jìn)行培養(yǎng)和純化,并將其與乳鼠顱骨細(xì)胞共同培養(yǎng),觀察其對(duì)乳鼠顱骨組織生長(zhǎng)的影響。結(jié)果發(fā)現(xiàn),乳鼠雪旺細(xì)胞可被成功培養(yǎng),純度>89%,觀察組第1、2和3周的骨鈣素水平和骨堿性磷酸酶活性高于對(duì)照組,兩組骨鈣素水平和骨堿性磷酸酶活性隨著時(shí)間延長(zhǎng)而升高,兩組第1、2和3周的骨橋蛋白水平比較無差異,兩組骨橋蛋白水平隨著時(shí)間延長(zhǎng),變化不明顯。骨鈣素是骨轉(zhuǎn)換和成骨細(xì)胞活動(dòng)的重要指標(biāo),骨改建與骨鈣素水平關(guān)系密切,成骨細(xì)胞功能下降則骨鈣素水平降低,成骨細(xì)胞功能增強(qiáng)則骨鈣素水平升高[11-12],本研究結(jié)果發(fā)現(xiàn),乳鼠雪旺細(xì)胞可以促進(jìn)乳鼠顱骨組織中骨鈣素表達(dá),且隨時(shí)間延長(zhǎng),顱骨組織中骨鈣素水平升高,表明雪旺細(xì)胞可以增強(qiáng)骨組織中成骨細(xì)胞功能。骨堿性磷酸酶來源于成骨細(xì)胞,是反映骨形成和成骨細(xì)胞活性的敏感指標(biāo)之一,當(dāng)骨形成大于骨吸收時(shí),血清骨堿性磷酸酶水平升高,當(dāng)骨組織受外界刺激合成大量成骨細(xì)胞時(shí),成骨細(xì)胞分泌大量的骨堿性磷酸酶,引起堿性磷酸酶活性增強(qiáng)[13-14],本研究結(jié)果發(fā)現(xiàn),雪旺細(xì)胞可以促進(jìn)培養(yǎng)液中骨堿性磷酸酶活性增強(qiáng),且隨時(shí)間延長(zhǎng),骨堿性磷酸酶活性呈上升趨勢(shì),可見,雪旺細(xì)胞具有促進(jìn)骨組織生長(zhǎng)的作用。骨橋蛋白在組織中分布廣泛,是一種分泌型的磷酸化蛋白,骨橋蛋白在骨組織中可由骨細(xì)胞、成骨細(xì)胞和破骨細(xì)胞分泌,骨橋蛋白對(duì)破骨細(xì)胞和骨基質(zhì)間的黏附具有識(shí)別和調(diào)節(jié)作用,從而影響骨吸收[15-16],本研究結(jié)果發(fā)現(xiàn),乳鼠雪旺細(xì)胞對(duì)乳鼠顱骨組織中骨橋蛋白的表達(dá)沒有明顯影響,考慮雪旺細(xì)胞對(duì)骨組織的吸收影響不大。
[1]WU Y, JING D, OUYANG H, et al. Pre-implanted sensory nerve could enhance the neurotization in tissue-engineered bone graft[J].Tissue Eng Part A, 2015, 21(15/16): 2241-2249.
[2]BAYAT N, EBRAHIMI-BAROUGH S, ARDAKAN M M, et al.Differentiation of human endometrial stem cells into schwann cells in fibrin hydrogel as 3D culture[J]. Mol Neurobiol, 2016, 53(10):7170-7176.
[3]SCHUH C M, MORTON T J, BANERJEE A, et al. Activated schwann cell-like cells on aligned fibrin-poly (lactic-co-glycolic acid) structures: a novel construct for application in peripheral nerve regeneration[J]. Cells Tissues Organs, 2015, 200(5): 287-299.
[4]周翔, 段春光, 賈帥軍, 等. 雪旺氏細(xì)胞與同種異體骨支架的體外共培養(yǎng)研究[J]. 現(xiàn)代生物醫(yī)學(xué)進(jìn)展, 2014, 14(13): 2412-2416.
[5]吳巖, 歐陽(yáng)宏偉, 畢龍, 等. 神經(jīng)示蹤技術(shù)在感覺神經(jīng)化組織工程骨評(píng)價(jià)中的應(yīng)用[J]. 中華創(chuàng)傷骨科雜志, 2015, 17(5): 444-448.
[6]ZHOU W, STUKEL J M, CEBULL H L, et al. Tuning the mechanical properties of poly (ethylene glycol) microgel-based scaffolds to increase 3D schwann cell proliferation[J]. Macromol Biosci, 2016, 16(4): 535-544.
[7]劉鐘陽(yáng), 劉靚, 黃景輝, 等. 復(fù)合雪旺細(xì)胞的神經(jīng)組織工程材料聯(lián)合脈沖電磁場(chǎng)促進(jìn)大鼠坐骨神經(jīng)缺損的再生[J]. 中華骨科雜志, 2016, 36(8): 465-478.
[8]HOBEN G, YAN Y, IYER N, et al. Comparison of acellular nerve allograft modification with schwann cells or VEGF[J]. Hand (N Y),2015, 10(3): 396-402.
[9]RADHAKRISHNAN J, KUPPUSWAMY A A, SETHURAMAN S, et al. Topographic cue from electrospun scaffolds regulate myelin-related gene expressions in schwann cells[J]. J Biomed Nanotechnol, 2015, 11(3): 512-521.
[10]ZHOU L N, ZHANG J W, LIU X L, et al. Co-graft of bone marrow stromal cells and schwann cells into acellular nerve scaffold for sciatic nerve regeneration in rats[J]. J Oral Maxillofac Surg, 2015, 73(8): 1651-1660.
[11]LAMBERT L J, CHALLA A K, NIU A, et al. Increased trabecular bone and improved biomechanics in an osteocalcin-null rat model created by CRISPR/Cas9 technology[J]. Dis Model Mech, 2016,9(10): 1169-1179.
[12]YOSHIZAWA T. Osteocalcin and osteonetwork[J]. Clin Calcium,2016, 26(8): 1149-1156.
[13]KOMARU K, SATOU Y, AL-SHAWAFI H A, et al. Glycosylation-deficient mutations in tissue-nonspecific alkaline phosphatase impair its structure and function and are linked to infantile hypophosphatasia[J]. FEBS J, 2016, 283(6): 1168-1179.
[14]ZHAO Q T, YANG Z X, YANG L, et al. Diagnostic value of bone-specific alkaline phosphatase in lung carcinoma patients with bonemetastases: a meta-analysis[J]. Int J Clin Exp Med, 2015, 8(10): 17271-17280.
[15]WANBY P, NOBIN R, VON S P, et al. Serum levels of the bone turnover markers dickkopf-1, sclerostin, osteoprotegerin,osteopontin, osteocalcin and 25-hydroxyvitamin D in Swedish geriatric patients aged 75 years or older with a fresh hip fracture and in healthy controls[J]. J Endocrinol Invest, 2016, 39(8): 855-863.
[16]GAN N, ZOU S, HANG W, et al. Osteopontin is critical for hyperactive mtor-induced tumorigenesis in oral squamous cell carcinoma[J]. J Cancer, 2017, 8(8): 1362-1370.
(童穎丹 編輯)
Effect of Schwann cells on growth of autogenous skull in neonatal rats
Zhong-peng Li1, Fang-he Pang2
(1. Outpatient Department of Integrated Medicine, 2. Department of Oral Implantology, Dental Hospital Aff i liated to Guangxi Medical University, Nanning, Guangxi 530021, China)
ObjectiveTo investigate the effect of Schwann cells on the growth characteristics of autogenous skull tissue in neonatal SD rats.MethodsThe neonatal Schwann cells were cultured and puri fi edin vitro. The skull tissues were divided into control group and observation group. The skull tissue of the control group was cultured alone. The skull tissue of the observation group was co-cultured with Schwann cells. In the 1st, 2nd and 3rd weeks of culture, the levels of osteocalcin and osteopontin in the skull tissue were measured by immunohistochemistry, and the bone alkaline phosphatase activity was measured by ELISA.ResultsSchwann cells were successfully culturedin vitrowith the purity over 89%. There were differences in the osteocalcin levels at different time points (P< 0.05).There were significant differences in the osteocalcin levels between the observation group and the control group(P< 0.05), the levels of osteocalcin in the observation group were higher than those in the control group. There was signi fi cant difference in the change trends of osteocalcin levels between the observation group and the control group (P< 0.05). There were no signi fi cant differences in the osteopontin levels at different time points (P> 0.05).There were no signi fi cant differences in the osteopontin levels between the observation group and the control group(P> 0.05). There was no signi fi cant difference in the change trends of osteopontin levels between the observation group and the control group (P> 0.05). The activity of bone alkaline phosphatase was different at different time points (P< 0.05). There was signi fi cant difference in the bone alkaline phosphatase activity between the observation group and the control group (P< 0.05), the activity of bone alkaline phosphatase in the observation group was higher than that in the control group. There was signi fi cant difference in the change trends of bone alkaline phosphatase activity between the observation group and the control group (P< 0.05).ConclusionsSchwann cells can increase osteocalcin level and bone alkaline phosphatase activity of skull tissue, and promote the growth of skull tissue.
neonatal rat; Schwann cell; skull tissue; growth; tissue engineering
R329
A
10.3969/j.issn.1005-8982.2017.29.001
1005-8982(2017)29-0001-05
2016-06-19
龐芳河,E-mail:1271875788@qq.com;Tel:18578920688