王江曼
摘要: 針對(duì)高校招生計(jì)劃編制影響因素繁多且難以量化處理的問(wèn)題,本文以南京某省屬高校為例,采用層次分析法研究編制分省分專(zhuān)業(yè)招生計(jì)劃。通過(guò)構(gòu)造層次結(jié)構(gòu)模型和判斷矩陣,計(jì)算各層次指標(biāo)比重,確定最終的招生計(jì)劃分配方案,為高校編制招生計(jì)劃提供了有益的參考。
Abstract: In view of the problems of numerous influencing factors of the enrollment plan and the difficult to quantify these factors, this paper has studied enrollment plan allocation divided into provinces and admissions based on analytic hierarchy process,taking a provincial university in Nanjing as an example. The weight of each index has been determined by constructing hierarchical model and judgment matrix,in order to allocate the final enrollment plan. Research results have provided some useful reference for other colleges and universities.
關(guān)鍵詞: 層次分析法;招生計(jì)劃;研究
Key words: Analytic Hierarchy Process;enrollment plan;research
中圖分類(lèi)號(hào):G647 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào):1006-4311(2017)34-0189-04
0 引言
《國(guó)家中長(zhǎng)期教育改革和發(fā)展規(guī)劃綱要(2010-2020年)》明確指出:“完善高等學(xué)校招生名額分配方式和招生錄取辦法,建立健全有利于促進(jìn)入學(xué)機(jī)會(huì)公平、有利于優(yōu)秀人才選拔的多元錄取機(jī)制?!?014年9月出臺(tái)的《關(guān)于深化考試招生制度改革的實(shí)施意見(jiàn)》五大措施和任務(wù)中,第一條就是關(guān)于改進(jìn)招生計(jì)劃分配方式,要求國(guó)家和高校完善計(jì)劃編制辦法,提高中西部和人口大省高考錄取率,提升教育公平。高校招生計(jì)劃編制管理工作決定了高校生源的地域結(jié)構(gòu),對(duì)高校生源結(jié)構(gòu)和質(zhì)量具有直接影響;決定了不同地區(qū)考生享受高等教育的機(jī)會(huì),是促進(jìn)教育公平的關(guān)鍵環(huán)節(jié);同時(shí)也決定了高中畢業(yè)生跨區(qū)域流動(dòng)的結(jié)構(gòu)與數(shù)量,進(jìn)而對(duì)全國(guó)的人力資源配置產(chǎn)生影響[1]。高校招生計(jì)劃編制關(guān)系到國(guó)家人才選拔戰(zhàn)略,關(guān)系到人民群眾的切身利益,黨和政府以及社會(huì)各界高度重視,具有十分重大的意義。
1 問(wèn)題的提出
近年來(lái),我國(guó)高校招生計(jì)劃編制總體上實(shí)行由上級(jí)主管部門(mén)制定計(jì)劃總量和專(zhuān)項(xiàng)計(jì)劃,高校自主編制分省分專(zhuān)業(yè)計(jì)劃。江蘇省教育廳規(guī)定了省屬高校的省內(nèi)計(jì)劃數(shù),由高校自主編制省內(nèi)的分專(zhuān)業(yè)計(jì)劃和外省各省份的計(jì)劃量和分專(zhuān)業(yè)計(jì)劃。因此,高校擁有一定程度的計(jì)劃編制自主權(quán),可根據(jù)實(shí)際辦學(xué)條件,主動(dòng)適應(yīng)經(jīng)濟(jì)社會(huì)發(fā)展需要。在編制招生計(jì)劃過(guò)程中,需要在確定分省計(jì)劃和分專(zhuān)業(yè)計(jì)劃的基礎(chǔ)上,編制分省分專(zhuān)業(yè)計(jì)劃。在實(shí)際招生工作中,自上而下要求高校的分省計(jì)劃需要在往年基礎(chǔ)上保持一定的穩(wěn)定性,分專(zhuān)業(yè)計(jì)劃往往由高校的教務(wù)部門(mén)制定。因此,本文從招生部門(mén)的視角出發(fā),研究分省分專(zhuān)業(yè)計(jì)劃的編制。
招生計(jì)劃編制是一個(gè)復(fù)雜的系統(tǒng)工程,是高校預(yù)測(cè)、分析實(shí)現(xiàn)招生計(jì)劃的影響因素及內(nèi)外部條件,并組織、運(yùn)用各種條件,經(jīng)過(guò)科學(xué)的預(yù)測(cè)分析后進(jìn)行多目標(biāo)優(yōu)化決策的過(guò)程。制定招生計(jì)劃的影響因素較多,有些因素難以量化和把握,科學(xué)公平地制定招生計(jì)劃成為高校面臨的重要課題。近年來(lái),專(zhuān)家學(xué)者圍繞招生計(jì)劃編制開(kāi)展了豐富的研究,數(shù)學(xué)建模的方法早已成為高校招生計(jì)劃領(lǐng)域研究的亮點(diǎn)(鄭超美,2006)。楊衛(wèi)平等(2009)基于模糊理論,提出根據(jù)生源因素、地域因素、政府因素和高校自身發(fā)展因素進(jìn)行高校招生計(jì)劃編制的模糊數(shù)學(xué)處理方法。鄭慶華(2010)提出了一種帶波動(dòng)限制因子和衰減因子的招生計(jì)劃二次分配模型,并證明該模型在提高入學(xué)機(jī)會(huì)的公平性和降低高校屬地計(jì)劃占有度方面具有積極的作用。付輝(2013)應(yīng)用層次分析法,分別建立了高校編制分省招生計(jì)劃、分專(zhuān)業(yè)招生計(jì)劃以及分省分專(zhuān)業(yè)招生計(jì)劃的層次結(jié)構(gòu)模型,實(shí)現(xiàn)了招生計(jì)劃的科學(xué)編制。
基于此,系統(tǒng)全面地分析編制招生計(jì)劃的影響因素,并采取有效的模型編制招生計(jì)劃十分必要,是招生工作的源頭,對(duì)國(guó)家人才培養(yǎng)戰(zhàn)略具有重要影響。
2 研究方法和模型
2.1 層次分析法
招生計(jì)劃編制受到往年生源情況以及高校專(zhuān)業(yè)布局、就業(yè)形勢(shì)和國(guó)家政策等諸多因素影響,其中部分因素難以量化處理。綜合各種招生計(jì)劃編制模型的特點(diǎn),本文結(jié)合專(zhuān)家學(xué)者的已有研究成果,應(yīng)用層次分析法編制高校分省分專(zhuān)業(yè)招生計(jì)劃。層次分析法(Analytic Hierarchy Process,簡(jiǎn)稱(chēng)AHP)由美國(guó)運(yùn)籌學(xué)專(zhuān)家T.L.Saaty教授于上世紀(jì)70年代首次提出,通過(guò)建立遞階層次結(jié)構(gòu)模型,邀請(qǐng)專(zhuān)家打分,構(gòu)造不同層次的判斷矩陣,并進(jìn)行層次單排序和總排序的一致性檢驗(yàn),最后計(jì)算模型各指標(biāo)的比重。特點(diǎn)在于能夠?qū)⒍ㄐ砸蛩亓炕?,從而將定性與定量因素相結(jié)合進(jìn)行決策的分析方法。
2.2 模型構(gòu)建
2.2.1 確定編制招生計(jì)劃影響因素的比重
①構(gòu)造層次結(jié)構(gòu)模型。本文將編制招生計(jì)劃層次結(jié)構(gòu)模型分成3個(gè)層次,第1層次是目標(biāo)層O,旨在計(jì)算分省分專(zhuān)業(yè)招生計(jì)劃各影響因素所占的比重;第2層次是準(zhǔn)則層C,包括生源質(zhì)量和其他因素兩大類(lèi),從整體上反映不同專(zhuān)業(yè)的招生能力;第3層次是指標(biāo)層I,包括對(duì)應(yīng)準(zhǔn)則層C兩類(lèi)因素的7個(gè)代表性指標(biāo)。其中,I1-I4通過(guò)實(shí)際錄取數(shù)據(jù)反映各專(zhuān)業(yè)歷年的生源質(zhì)量,I5通過(guò)碩博點(diǎn)、國(guó)家和省級(jí)重點(diǎn)專(zhuān)業(yè)學(xué)科平臺(tái)反映各專(zhuān)業(yè)的辦學(xué)條件,I6測(cè)算各專(zhuān)業(yè)畢業(yè)生在各省的就業(yè)分布情況,I7主要考查國(guó)家政策的影響,比如招考制度改革等。根據(jù)各層次元素之間的隸屬關(guān)系,建立層次結(jié)構(gòu)模型如圖1。endprint
②構(gòu)造判斷矩陣。通過(guò)邀請(qǐng)校內(nèi)具有招生經(jīng)驗(yàn)的相關(guān)老師共同討論,融合各位專(zhuān)家意見(jiàn),構(gòu)造判斷矩陣,分別如表1-表3所示。
③層次單排序及一致性檢驗(yàn)。根據(jù)判斷矩陣一致性檢驗(yàn)的計(jì)算流程,得出O-C判斷矩陣的一致性指標(biāo)CR=0<0.1,通過(guò)一致性檢驗(yàn)。按照同樣的步驟,計(jì)算得出C1-I、C2-I判斷矩陣的一致性指標(biāo)CR1、CR2,其中,
CR1=CI1/RI=0.01703/0.90=0.01893<0.1
CR2=CI2/RI=0.01925/0.58=0.03319<0.1
全部通過(guò)一致性檢驗(yàn)。
④層次總排序及一致性檢驗(yàn)。
根據(jù)通過(guò)一致性檢驗(yàn)的判斷矩陣,得出指標(biāo)層I對(duì)目標(biāo)層O的層次總排序表,如表4所示。
對(duì)表4進(jìn)行一致性檢驗(yàn),CR==0.01759/0.82=0.02145<0.1,滿(mǎn)足一致性檢驗(yàn)。
2.2.2 計(jì)算分省分專(zhuān)業(yè)招生計(jì)劃人數(shù)
2.2.2.1 計(jì)算各專(zhuān)業(yè)招生計(jì)劃人數(shù)占該省招生計(jì)劃總?cè)藬?shù)比重
在制定分省分專(zhuān)業(yè)招生計(jì)劃人數(shù)的過(guò)程中,首先采用和積法計(jì)算各省各專(zhuān)業(yè)招生計(jì)劃人數(shù)占該省招生計(jì)劃總?cè)藬?shù)的比重。本文以南京某省屬高校為例,計(jì)算2017年江蘇省理科分專(zhuān)業(yè)招生計(jì)劃人數(shù)。下面以化學(xué)工程與工藝專(zhuān)業(yè)為例,計(jì)算該專(zhuān)業(yè)在江蘇省的招生計(jì)劃人數(shù)。
①計(jì)算I1的比重。
2014、2015、2016年江蘇省化學(xué)工程與工藝專(zhuān)業(yè)招生計(jì)劃人數(shù)占江蘇省招生計(jì)劃總數(shù)的比重分別為0.0203、0.0334、0.0473,三年的平均值為0.0337,由此得出I1的比重為0.0337*0.0547=0.0018。
②計(jì)算I2-I7的比重。
按照I1的計(jì)算步驟,可計(jì)算得出I2-I7的比重依次為:
I2=0.0031,I3=0.0151,I4=0.0011,I5=0.0006,I6=0.0016, I7=0.0028
③計(jì)算I1-I7所有指標(biāo)的比重之和。
I總=∑Ii=0.0244①
按照以上計(jì)算化學(xué)工程與工藝專(zhuān)業(yè)比重和的計(jì)算過(guò)程,可計(jì)算得出2017年江蘇省理科各專(zhuān)業(yè)的比重和,如表5所示。
2.2.2.2 計(jì)算各省各專(zhuān)業(yè)招生計(jì)劃人數(shù)
在完成以上步驟計(jì)算得出各省各專(zhuān)業(yè)I1-I7所有指標(biāo)的比重和之后,則該專(zhuān)業(yè)的招生計(jì)劃人數(shù)為該省招生計(jì)劃總數(shù)×I總。以南京某省屬高校2017年理科招生計(jì)劃總數(shù)2011為基數(shù),可計(jì)算得出各專(zhuān)業(yè)的招生計(jì)劃人數(shù)②,如表6所示。
按照以上計(jì)算過(guò)程,可得出江蘇省文科專(zhuān)業(yè)以及其他省份的分專(zhuān)業(yè)招生計(jì)劃人數(shù)。最后再根據(jù)以下公示,對(duì)分省分專(zhuān)業(yè)招生計(jì)劃進(jìn)行適當(dāng)調(diào)整。
其中,Xij代表該高校2017年在第i省、第j專(zhuān)業(yè)投放的招生計(jì)劃人數(shù);Yi代表該高校2017年在第i省的招生計(jì)劃總?cè)藬?shù);Zj代表該高校2017年在第j專(zhuān)業(yè)的招生計(jì)劃總?cè)藬?shù)。
3 研究結(jié)論
本文針對(duì)高校編制分省分專(zhuān)業(yè)招生計(jì)劃過(guò)程中影響因素繁多并復(fù)雜的現(xiàn)實(shí)問(wèn)題,采用層次分析法,梳理羅列相關(guān)影響因素并構(gòu)造層次結(jié)構(gòu)模型,邀請(qǐng)專(zhuān)家打分構(gòu)造判斷矩陣,計(jì)算各層次指標(biāo)比重,從而確定最終的招生計(jì)劃分配方案。該方法在降低確定指標(biāo)比重過(guò)程中的主觀隨意性方面具有顯著效果,能夠有效平衡研究結(jié)果的客觀性和準(zhǔn)確性,為高校編制招生計(jì)劃提供了有益的參考。但在構(gòu)造層次結(jié)構(gòu)和判斷矩陣的過(guò)程中,專(zhuān)家的選擇偏好將導(dǎo)致計(jì)算結(jié)果出現(xiàn)不一致,同時(shí)具有較強(qiáng)動(dòng)態(tài)性的影響因素難以測(cè)量。在今后的研究中,可以進(jìn)一步從改善兩兩指標(biāo)比較的準(zhǔn)確性、提升模型輸入值的確定性等方面著手,從而獲得更加科學(xué)合理的結(jié)果。
注釋?zhuān)?/p>
①此處I總為與以上所列I1-I7之和有所出入,差值因I1-I7保留四位小數(shù)取舍所致。
②此處各專(zhuān)業(yè)招生計(jì)劃人數(shù)以保留四位小數(shù)后的專(zhuān)業(yè)比重和計(jì)算,導(dǎo)致總和與基數(shù)2011稍有出入。
參考文獻(xiàn):
[1]潘昆峰,馬莉萍.央屬高??缡≌猩~分配行為研究——引力模型假設(shè)及其驗(yàn)證[J].高等工程教育研究,2013(06).
[2]楊衛(wèi)平,段丹青,陳松嶺.基于模糊數(shù)學(xué)的高校招生來(lái)源計(jì)劃編制模型研究[J].計(jì)算機(jī)應(yīng)用研究,2009(02).
[3]鄭超美.淺論普通高校招生來(lái)源計(jì)劃的科學(xué)編制[J].安徽工業(yè)大學(xué)學(xué)報(bào)(科學(xué)社會(huì)版),2006(06).
[4]鄭慶華,羅京,王衍波,楊松,宋紅霞.普通高校分省招生計(jì)劃編制模型研究[J].計(jì)算機(jī)應(yīng)用研究,2012(07).
[5]付輝.基于灰色預(yù)測(cè)模型和層次分析法的高校招生數(shù)據(jù)分析與研究[D].重慶交通大學(xué),2013.endprint