湯 凱,黃學(xué)海,王文慶
(1.溫州大學(xué)數(shù)學(xué)與信息科學(xué)學(xué)院,浙江溫州 325035;2.溫州商學(xué)院,浙江溫州 325035)
二階橢圓問(wèn)題基于Morley元離散的內(nèi)點(diǎn)懲罰間斷有限元方法
湯 凱1,黃學(xué)海1,王文慶2
(1.溫州大學(xué)數(shù)學(xué)與信息科學(xué)學(xué)院,浙江溫州 325035;2.溫州商學(xué)院,浙江溫州 325035)
本文在離散的二階橢圓邊界值問(wèn)題的基礎(chǔ)上,通過(guò)引進(jìn)內(nèi)點(diǎn)懲罰項(xiàng),構(gòu)造了基于Morley元離散的內(nèi)點(diǎn)懲罰間斷有限元方法,并對(duì)此離散方法進(jìn)行了先驗(yàn)誤差分析.
二階橢圓問(wèn)題;內(nèi)點(diǎn)懲罰間斷有限元方法;Morley元;收斂性;誤差估計(jì)
Morley元是六十年代出現(xiàn)的一種非協(xié)調(diào)元,它的形函數(shù)是完整的二次多項(xiàng)式,節(jié)點(diǎn)參數(shù)是單元頂點(diǎn)上的三個(gè)函數(shù)值及三邊中點(diǎn)上的法向?qū)?shù)值.1975年,Lascaux和Lesaint[1]第一次用嚴(yán)格的數(shù)學(xué)方法證明了Morley元的收斂性,并假設(shè)真解在H4空間.后人證明,Morley元空間不能直接應(yīng)用于二階問(wèn)題,而在本文中,原問(wèn)題是二階問(wèn)題,我們對(duì)原問(wèn)題進(jìn)行了一些處理,經(jīng)過(guò)處理后,原問(wèn)題利用Morley元方法得到了很好的解決,并證明了經(jīng)過(guò)這些處理后離散問(wèn)題的收斂性.
設(shè)Ω是二維凸多邊形區(qū)域,邊界Γ=?Ω.考慮下面邊界值問(wèn)題:
現(xiàn)在定義跳躍函數(shù)[2]:在邊界e上,對(duì)
定義 Morley元[3].給定一個(gè)三角元K,它的三個(gè)頂點(diǎn)記為對(duì)邊記為分別為三角元K和邊界Ej的長(zhǎng)度,則Morley可以定義成
1)K是一個(gè)三角元;
其中η充分大.于是離散變分問(wèn)題可以寫(xiě)成:
定義網(wǎng)格依賴范數(shù):
其中u是(1)的解,uh是(6)的解,C表示一個(gè)不依賴于網(wǎng)格大小,只依賴于網(wǎng)格形狀的正則性的常數(shù),且C在以下不同地方出現(xiàn)時(shí)可以代表不同的值.
命題1 存在一個(gè)不依賴于h的正常數(shù)M>0,使得
此外,存在不依賴于h的正常數(shù)α使得
由逆跡不等式[4]及不等式知:
將(9)式代入(8)式中,得:
由(10)式和(11)式,得:
證畢.
引理[2]設(shè)于是有:
證明:由φ的正則性知,在單元間的邊界上,?φ?n是連續(xù)的,即
根據(jù)跳躍的定義,得:
下面證明問(wèn)題的收斂性.
由命題1知:
設(shè)wI是Vh中的插值,所以有誤差估計(jì):成立,所以
由命題1知,
證畢.
[1] Lascaux P, Lesaint P. Some nonconforming finite elements for the plate bending problem [J]. RAIRO Anal Numer,1975, 9: 9-53.
[2] Brezzi F, Manzini G, Marini D, et al. Discontinuous Galerkin approximations for elliptic problems [J]. Numer Meth Part D E, 2000, 16(4): 365-378.
[3] Wang M, Xu J C, Hu Y C. Modified Morley element method for a fourth-order elliptic singular perturbation problem[J]. J Comput Math, 2006, 24(2): 113-120.
[4] Brenner S C, Owens L, Sung L Y. A weakly over penalized symmetric interior penalty method [J]. Electron T Numer Ana, 2008, 30(11): 107-127
[5] Ciarlet P G. The finite element method for elliptic problems [M]. Amsterdam: North-Holland publishing company,1980: 138-139.
(編輯:王一芳)
Interior Point Penalty Discontinuous FEM Based on Morley Element Discretization for Second-order Elliptic Problems
TANG kai1, HUANG Xuehai1, WANG Wenqing2
(1. College of Mathematics and Information Sciences, Wenzhou University, Wenzhou, China 325035;2. Wenzhou Business College, Wenzhou, China 325035)
The interior-point penalty discontinuous FEM is constructed based on Morley element discretization through the introduction of the interior point penalty term on the basis of the discrete second-order elliptic boundary value problem. The priori error analysis on this discrete method is proceeded in this paper.
Second-order Elliptic Problem; Interior Point Penalty Discontinuous FEM (Finite Element Method); Morley Element; Convergence; Error Estimation
O175
A
1674-3563(2017)04-0007-06
10.3875/j.issn.1674-3563.2017.04.002 本文的PDF文件可以從xuebao.wzu.edu.cn獲得
2016-10-20
湯凱(1991- ),男,安徽蚌埠人,碩士研究生,研究方向:微分方程與動(dòng)力系統(tǒng)