鄭書河,林長山,葉大鵬,劉 斌
?
巨菌草種莖輥式排種器結(jié)構(gòu)優(yōu)化及排種動力學(xué)仿真與試驗
鄭書河1,林長山1,葉大鵬1,劉 斌2
(1. 福建農(nóng)林大學(xué)機電工程學(xué)院,福州 350002;2. 國家菌草工程研究中心,福州 350002)
針對目前巨菌草種植機普遍存在的重、漏播率高、人工勞動強度大、種莖易破損等問題,該文設(shè)計了一種槽型輥式排種器。先分析排種過程中的種莖受力狀態(tài),推導(dǎo)出種莖的受力角為目標(biāo)值的函數(shù),確定送種輥入種槽長寬尺寸為20 mm′20 mm;其次,采用彈性墊料改善送種輥排種進程,基于受力角為目標(biāo)的函數(shù),優(yōu)化求解得到墊料側(cè)邊墊料厚4 mm、底部墊料厚8 mm;最后采用虛擬樣機軟件ADAMS建立了種莖排種動力學(xué)模型,對其排種過程進行仿真,并在此基礎(chǔ)上進行了實驗室臺架試驗和田間排種試驗。臺架試驗表明,排種器實現(xiàn)種莖有序地排種,墊料有效地提高排種流暢度;田間試驗過程中排種作業(yè)穩(wěn)定,排種合格率均值為93.33%,排種間距變異指數(shù)均值為13.63%,平均漏排和重排指數(shù)均值為4.1%和2.5%,各項指標(biāo)均符合巨菌草種植要求。該研究可為同類排種器和巨菌草種植機的研制提供參考。
農(nóng)業(yè)機械;設(shè)計;優(yōu)化;巨菌草;槽型輥式排種器;動力學(xué)仿真;試驗
巨菌草作為人工栽培的高產(chǎn)優(yōu)質(zhì)菌草之一,其用途廣泛,可用于食藥用菌培養(yǎng)基料、魚畜類飼料、植保作物、生物質(zhì)燃料、造紙和工業(yè)纖維原料等,具有極強的綜合經(jīng)濟價值[1-5]。巨菌草種植是巨菌草生產(chǎn)的重要環(huán)節(jié),亦是巨菌草生產(chǎn)過程中勞動強度較大,作業(yè)流程較繁雜的一環(huán)[6-7]。排種器作為播種機的核心部件,其性能直接影響播種機的作業(yè)質(zhì)量與效能,設(shè)計高效、可靠的巨菌草種莖排種器有利于提高巨菌草播種的機械化水平[8-12]。
當(dāng)前,巨菌草種植以人工扦插植栽為主,作業(yè)強度大、效率低。國內(nèi)相關(guān)根培種植設(shè)備如甘蔗種植機,采用實時切種式方式,能夠?qū)崿F(xiàn)開溝、切段、播種、覆土、培土和鎮(zhèn)壓一體化作業(yè),極大程度上減輕了工人的作業(yè)強度,但其排種器需人工喂種,在實現(xiàn)種植自動化、精準化方面略顯不足。而采用預(yù)切種式排種器具有機械化程度高,排種均勻等優(yōu)勢[13-16]。漏種率高、勞動強度大、種莖易損是實現(xiàn)巨菌草機械化精確播種的關(guān)鍵問題。本文設(shè)計一款采用種莖排序喂入的預(yù)切種式巨菌草排種器,利用ADAMS虛擬樣機技術(shù),創(chuàng)建排種器排種過程動力學(xué)仿真模型,優(yōu)化排種器結(jié)構(gòu)尺寸,實現(xiàn)種莖依次有序排種,并試制樣機進行試驗,為巨菌草機械化精確種植提供參考。
巨菌草種莖輥式排種器主要結(jié)構(gòu)如圖1a所示,種莖放置于儲種箱1中,通過儲種箱正下方的下種箱2進入送種輥的入種槽5中。減速器9與動力軸相連,在同步帶8帶動下,送種輥4轉(zhuǎn)動,在脫離護罩7后,種莖在重力作用下通過落種板6排出排種器。目前排種器為單行排種,單輥作業(yè)時,其轉(zhuǎn)速為1~2 r/s,作業(yè)速度為1.8~3.6 km/h,播種間距300~700 mm,依照密播或稀播的要求進行調(diào)整。
排種原理如圖1b,下種箱起著種莖進入送種輥的過渡作用。三根送種輥上的入種槽表面內(nèi)附墊料,在送種輥的轉(zhuǎn)動下入種槽口依序正對著入種槽,三個送種輥的初始入種槽角度依次相差60°。在送種輥轉(zhuǎn)動過程中,種莖在入種槽的限位作用下成排堆積,在其自身重力作用下沿輥表面落入入種槽中,最終隨輥轉(zhuǎn)動依序拋離送種輥。
1. 儲種箱 2. 下種箱 3. 墊料 4. 送種輥 5. 入種槽 6. 落種板 7. 護罩 8. 同步帶輪 9. 減速器
送種輥是實現(xiàn)種莖由下種箱向落種板過渡的核心部件,其結(jié)構(gòu)設(shè)計是影響排種流暢度的重要因素[17-20]。由于種莖的形狀存在一定差異,為便于分析,將種莖簡化為質(zhì)量均布的圓柱體,并假定種莖在下種箱中平行排放,對此進行受力分析。
當(dāng)?shù)讓臃N莖滑入入種槽后,與入種槽右壁2點相接觸,并在已落入入種槽內(nèi)種莖的相互作用下被頂起,受力分析如圖2a所示。當(dāng)排種輥入種槽對種莖支持力S作用在種莖徑向時,此時種莖不受切向力作用,1為12與水平方向夾角亦即S2與水平方向的夾角,簡稱受力角,顯然1大于,即1。如圖2b,建立種莖受力模型。
注:FS為送種輥對種莖支持力,N;FS1、FS2為FS在切向和徑向的分力,N;FST、FSN為FS2在水平和鉛垂方向上的分力,N;T為種莖受外壁支持力,N;γ為FS與水平方向的夾角,rad;G為下種箱中種莖重力總和,N;P1為下種箱左壁與種莖的接觸點;P2為入種槽與種莖的接觸點;O1為次底層種莖的質(zhì)心;β1為P2 O1和水平方向的夾角(0?β1?π/2),rad;f為種莖與下種箱間的摩擦力,N;R為送種輥半徑,mm;r2為次底層種莖半徑,mm。
式中為種莖與下種箱間的摩擦系數(shù)。
聯(lián)立式(1)~(6),求得種莖受力模型如下
由式7可知,β1、γ值對FS值影響較大,其中γ值由種莖和送種輥的半徑?jīng)Q定,由圖2b可知0?γ?r/R,假定γ=0.1π、G=10 N、μ=0.26[21]。壓縮試驗求得巨菌草順紋壓縮最大抗壓強度均值為10.1 MPa[22]。因送種輥入種槽直角處倒角半徑約為1 mm,菌草種莖長度在300 mm以內(nèi),假定輥對種莖的接觸面近似為長300 mm、寬2 mm的矩形面,則種莖所能承受的支持力為606 N。如圖3可知,F(xiàn)S隨β1取值的增大先減小后增大,當(dāng)β1=0.291時,種莖受力處于其抗壓能力的極限,即當(dāng)β1取值范圍為0.291~π/2時,排種過程中種莖受力滿足其抗壓強度要求,當(dāng)β1=0.942 5時,種莖受力值極小值為13.285 1 N。
假定輥轉(zhuǎn)動1時,次層種莖在入種槽作用下恰好脫離底層種莖,如圖4所示,以點為坐標(biāo)原點建立直角坐標(biāo)系,可求得
注:O為送種輥軸心;O0為底層種莖質(zhì)心;O0O0v、O1O1V與NM垂直;O1I與NM平行;O1J為水平線;KO為鉛垂線;α1、α2分別為O0vO、P2O與OK的夾角,rad;β2為O1vO1與O1P2的夾角,rad;β3、β4為O1vO1、P2O1與O0O1的夾角,rad;L1為入種槽及下種箱寬,mm;H為入種槽深,mm;r1為底層種莖半徑,mm。
又可求得2坐標(biāo)為(sin,cos),可求得2與1的距離為
聯(lián)立式(8)、式(9)、式(10)得
設(shè)cos2=1、sin2=2、cos4=1、sin4=2,可化簡求得關(guān)于1的等式
聯(lián)立式(10)、式(11)、式(12)可求得關(guān)于1的等式
設(shè)cos2=1、sin2=2,化簡求得:
可最終化簡求得1的值為
結(jié)合巨菌草種植實際需求,以16~20 mm直徑的種莖作為宜栽苗,由節(jié)2.1分析可知,當(dāng)1值在0.291~π/2時,種莖受力在可承受范圍內(nèi)。求解得1值隨入種槽寬、深變化的曲面圖[23-24],如圖5所示。
圖5 不同入種槽尺寸下種莖受力角
由圖5可知,1值與槽的寬、深呈明顯的負相關(guān)關(guān)系,其中曲線為曲線與1邊界值的交線,由2.1節(jié)可知,當(dāng)1=0.942 5時,種莖受力值最小,可求得當(dāng)槽深取16~16.7 mm、槽寬取16~17.8 mm時,種莖受力最小。當(dāng)選用直徑為16~20 mm的種莖時,為保證直徑為20 mm的種莖能夠順利排出,確定入種槽的高、寬均取20 mm,此時1值為0.348 7,滿足排種要求。
巨菌草種莖形態(tài)差異是排種堵卡問題的主要因素,同時極易造成芽節(jié)破損。通過在入種槽中加設(shè)彈性墊料可有效消除種莖徑寬差帶來的排種問題,同時對種莖芽節(jié)起到保護作用。如圖6a、圖6c,通過墊料的緩沖作用,當(dāng)?shù)讓臃N莖過小的時候,墊料可墊高種莖在入種槽中的高度;如圖6b、圖6d,當(dāng)種莖過大時,通過墊料的彈性形變,種莖嵌入入種槽中??梢娊柚鷫|料的緩沖作用,能夠提高排種的流暢度??紤]到墊料對入種槽空間大小的影響,將入種槽的寬、深值擴大20%,即1與均取值24 mm?;谑剑?3),建立帶墊料的1值模型。
式中D為加墊料后的槽寬,mm;D為加墊料后槽深,mm;0為側(cè)邊墊厚,mm;0為底部墊料厚,mm。
圖6 有無墊料送種輥的排種示意圖
由2.1節(jié)可知,當(dāng)1=0.942 5時,種莖受力值最小。當(dāng)種莖尺寸較小時,設(shè)種莖直徑為16 mm,如圖7a所示,曲線為墊料可取值的邊界,在邊界內(nèi)的取值均滿足1取值要求,當(dāng)?shù)撞繅|料厚度取7.5~12 mm、側(cè)邊墊料厚度取6.73~12 mm時,取值最佳;當(dāng)種莖尺寸較大時,設(shè)種莖直徑為20 mm,如圖7b所示,曲線為墊料可取值的邊界,在邊界內(nèi)的取值均滿足1取值要求,當(dāng)?shù)撞繅|料厚度取4.28~8 mm、側(cè)邊墊料厚度取4~8 mm時,取值最佳??紤]到側(cè)邊墊料過厚時,將增大種莖進入入種槽的摩擦力,在滿足1取值要求前提下,取側(cè)邊墊料厚4 mm;底部墊料取上述2種情況下其最佳取值的均值,即8 mm。
圖7 種莖受力角隨墊料尺寸變化
為簡化虛擬樣機仿真模型,考慮到種莖芽節(jié)微小凸起與種莖軸向直徑差異較小,將種莖近似為光滑圓柱體,建立ADAMS柔性種莖模型[25],無墊料入種槽尺寸為20 mm×20 mm,帶墊料入種槽尺寸為24 mm×24 mm,側(cè)邊墊料取4 mm,底部墊料取8 mm,送種輥直徑為120 mm。對種莖模型進行柔性化處理,設(shè)置種莖的彈性模量593.8 MPa,壓縮模量126.4 MPa,彎曲模量610.5 MPa[22],泊松比為0.3[26],導(dǎo)入ADAMS中進行仿真分析[27-29]。圖8為在ADAMS中創(chuàng)建的排種器模型及柔性種莖。其中輥1采用無墊料的入種槽,輥2、輥3采用添加墊料的入種槽。
圖8 ADAMS排種器運動仿真模型
宜栽種莖直徑主要集中在16~20 mm之間,當(dāng)直徑較小的種莖同時排放時,其1值較小,受到的擠壓力較大,容易導(dǎo)致種莖傷損。而對于直徑較大的種莖而言,添加彈性墊料后由于排種種腔空間變小,無疑會增大送種輥對種莖的壓力,分別進行大、小直徑種莖的連續(xù)排種仿真,對比添加墊料前后的排種效果。而在實際種植作業(yè)中,往往存在排出的種莖直徑徑寬超出選定宜栽范圍(16~20 mm)的情況。選定輥3作為超出選定宜栽范圍種莖的排種仿真,仿真過程中采用的種莖直徑如表1。
如圖9a、圖9b所示,大小種莖落入入種槽時,無墊料送種輥中的種莖受力較大,而帶墊料送種輥中的種莖則受力相應(yīng)較小,可以看出其墊料受力形變減輕了種莖受力。如圖9c、圖9d所示,小種莖移出入種槽時,墊料能夠增加小種莖的受力角,減小入種槽與送種輥對它的擠壓力;而大種莖移出入種槽時,通過墊料形變實現(xiàn)大直徑種莖的排出,而墊料的形變在一定程度上會增加種莖的受力,通過墊料的顏色變化可以看出墊料形變受力并不大。
表1 仿真試驗方案
a. 小種莖落入入種槽a. Small stems fall into the grooveb. 大種莖落入入種槽 b. Large stems fall into the groove c. 小種莖移出入種槽 c.Small stems shift from seeding grooved. 大種莖移出入種槽 d. Large stems shift from seeding groove
注:墊料與種莖的顏色隨隨受力值的增大,由深藍變化至深紅。
Note: Color of dunnage and stems changes from dark blue to deep red along with increases of the suffered force value.
圖9 有無墊料下大小種莖排種過程仿真
Fig.9 Seeding simulation of small &large stems with dunnages or not
由上述分析可知,在種莖移出入種槽過程中大小種莖存在一定的差異,如圖10所示,為排種過程中,與下種箱相接觸的種莖在重力方向上的位移、速度曲線圖。由圖10a、圖10b可知,在添加墊料前后,小種莖在重力方向上的運動軌跡大致相同,而大種莖則存在一定的波動,這是由于墊料增大了小種莖的受力角,但不會改變種莖的位移軌跡;而大種莖移出入種槽時,通過擠壓墊料形變實現(xiàn)排種,因此添加墊料的大種莖的位移曲線存在一定的波動。如圖10c、圖10d所示,為種莖排種過程中的速度曲線圖,在排種過程中,種莖的速度值呈遞減趨勢,其中無墊料的種莖速度變化更為平緩,這是由于在排種過程中,種莖所受作用力直接作用在墊料上,并隨著墊料的彈性形變出現(xiàn)速度波動,一方面也證明了墊料在排種過程中對種莖起著緩沖作用。同時,從圖10可看出,輥3的仿真結(jié)果與輥2相近,表明通過墊料不僅能夠有效減輕種莖在排種過程中受力,同時能夠增強對小種莖的適應(yīng)范圍,對于偶然出現(xiàn)的尺寸小于給定范圍的種莖依然具有較強的適應(yīng)性。
表2為排種過程中,種莖落入入種槽與移出入種槽時,種莖模型受力值的最大應(yīng)力、應(yīng)變值??芍砑訅|料后,大小種莖落入入種槽時所受的應(yīng)力、應(yīng)變值均有所減小,這進一步說明了墊料在種莖落入入種槽時起到了緩沖保護作用。同時可知,小種莖移出入種槽時所受的應(yīng)力、應(yīng)變值有所減小,而大種莖所受的應(yīng)力、應(yīng)變值有所增大,這說明了采用墊料能夠減小入種槽與送種輥對它的擠壓力;而當(dāng)種莖的直徑值較大時,而墊料的形變在一定程度上會增大種莖的受力。
表2 排種過程中種莖最大應(yīng)力、應(yīng)變值
圖10 種莖的垂直位移、速度曲線
為了驗證仿真結(jié)果的有效性,檢驗排種器的工作性能,制備巨菌草槽型輥式排種器試驗臺進行臺架試驗,如圖11a,采用南京冉控科技有限公司生產(chǎn)的GGSNJT- 100型精密扭矩傳感器(測量范圍0.01~10 N·m)采集試驗數(shù)據(jù)。試驗種莖選取本校試驗田栽植的半年生巨菌草,其直徑范圍為16~20 mm,長度在290 mm左右,且保證至少含有2個芽節(jié)。
表3 送種輥臺架試驗數(shù)據(jù)
臺架試驗結(jié)果表明,所設(shè)計排種器能夠滿足巨菌草種植的密播和稀播需要。由對比試驗可知,墊料能在一定程度上提高排種的流程度,其中輥速波動率小于10%、輥扭矩波動率小于400%、排種節(jié)拍波動率在20%左右,均優(yōu)于無添加墊料的排種結(jié)果。同時,在一定范圍內(nèi)送種輥轉(zhuǎn)速并不影響排種效果,且在一定程度上提高了排種流暢度,這是由于當(dāng)轉(zhuǎn)速較高時,種莖進入槽內(nèi)的時間較短,位于其上層的種莖進入槽中的體積較少,因此減少了排種堵卡現(xiàn)象,但當(dāng)轉(zhuǎn)速過快時會加劇排種堵卡。
田間排種試驗于2016年12月于福建農(nóng)林大學(xué)菌草試驗田進行如圖11b。試驗過程主要考核排種器在田間的排種合格率,為此田間排種試驗樣機僅實現(xiàn)開溝排種功能,不做覆土處理,可較為直觀地考察排種作業(yè)后進入種床的試驗結(jié)果,如圖11c。
按密播(排種轉(zhuǎn)速2 r/s)與稀播(排種轉(zhuǎn)速1.5 r/s)要求分2組進行,每組包含4種種莖排布方式,各進行2次重復(fù)試驗,試驗參數(shù)如表4。
根據(jù)巨菌草種植的農(nóng)藝要求[14],參考中國國家標(biāo)準《單粒(精密)播種機試驗方法》(GB-T 6973-2005)[30]中的相關(guān)規(guī)定進行排種性能試驗,試驗結(jié)果如表4。試驗結(jié)果表明,該排種樣機排種合格率均值為93.33%,排種間距變異指數(shù)均值為13.63%,說明該排種裝置的具有較好的排種均勻性,作業(yè)過程穩(wěn)定;其中整機的平均漏排和重排指數(shù)均值為4.1%和2.5%,說明該排種結(jié)構(gòu)能較好的適應(yīng)巨菌草種莖的形態(tài)特征,方案設(shè)計較為合理,具有良好的排種連續(xù)性;綜上所述,該排種裝置的田間作業(yè)排種效果良好,適用于巨菌草機械化種植作業(yè),可為今后巨菌草排種器的設(shè)計提供參考。
1.送種輥 2. 下種箱 3. 數(shù)據(jù)顯示儀 4. 扭矩傳感器 5.232轉(zhuǎn)485轉(zhuǎn)換器
注:行進速度為1 m·s–1;投種高度為20 mm。
Note: The travel speed is 1 m·s–1and the projection height is 20 mm.
本文設(shè)計一款預(yù)切種式巨菌草種莖輥式排種器,利用ADAMS虛擬樣機技術(shù),創(chuàng)建排種器排種過程動力學(xué)仿真模型,優(yōu)化排種器入種槽和墊料的結(jié)構(gòu)尺寸,通過臺架試驗和田間試驗驗證優(yōu)化模型,實現(xiàn)種莖依次有序、順暢和穩(wěn)定地排種。
1)基于排種過程中巨菌草種莖受力模型,推導(dǎo)出以受力角為目標(biāo)值的排種順暢函數(shù),確定無墊料送種輥槽型長寬尺寸為20 mm′20 mm;采用彈性墊料優(yōu)化入種槽結(jié)構(gòu)設(shè)計,求得墊料側(cè)邊墊料厚4 mm、底部墊料厚8 mm。
2)創(chuàng)建種莖三維柔性模型,利用ADAMS對排種過程進行動力學(xué)仿真分析,分析結(jié)果表明,槽型輥式排種器能夠?qū)崿F(xiàn)種莖的依次有序排放,通過墊料的緩沖作用能夠減小排種過程中種莖的應(yīng)力、應(yīng)變值,增強排種的流暢性和穩(wěn)定性。
3)臺架試驗結(jié)果表明,排種器能夠?qū)崿F(xiàn)巨菌草種莖排種作業(yè),墊料能夠有效提高排種流暢度;田間試驗過程中排種作業(yè)穩(wěn)定,排種間距合格率變異指數(shù)均值為13.63%,平均漏排和重排指數(shù)為4.1%和2.5%,合格率為93.33%,各項指標(biāo)均符合巨菌草種植要求。
[1] 林興生,林占熺,林冬梅,等. 菌草作為生物質(zhì)燃料的初步研究[J]. 森林與環(huán)境學(xué)報,2013,33(1):82-86. Lin Xingsheng,Lin Zhanxi,Lin Dongmei,et al. Preliminary study on Juncao as biomass fuel [J]. Journal of Forest and Environment, 2013, 33(1): 82-86. (in Chinese with English abstract)
[2] Takara D, Khanal S K. Characterizing compositional changes of Napier grass at different stages of growth for biofuel and biobased products potential[J]. Bioresource Technology, 2015, 188(7): 103-108.
[3] 張毅,孔曉英,李連華,等. 能源草厭氧發(fā)酵產(chǎn)氣性能與動力學(xué)分析[J]. 農(nóng)業(yè)機械學(xué)報,2016,47(5):191-196. Zhang Yi, Kong Xiaoying, Li Lianhua, et al. Biogas production performance and dynamics of anaerobic digestion of different energy grasses[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(5): 191-196. (in Chinese with English abstract)
[4] 羅艷,鄭正,楊世關(guān),等. 皇竹草厭氧發(fā)酵產(chǎn)沼氣特性[J]. 環(huán)境化學(xué),2010,29(2):258-261. Luo Yan, Zheng Zheng, Yang Shiguan, et al. Study on the fermentation character istics of herba andrographitis [J]. Environmental Chemistry, 2010, 29(2): 258-261. (in Chinese with English abstract)
[5] 張全國,張丙學(xué),蔣丹萍,等. 能源草酶解光合生物制氫實驗研究[J]. 農(nóng)業(yè)機械學(xué)報,2014,45(12):224-228,261. Zhang Quanguo, Zhang Bingxue, Jiang Danping, et al. Photo-hydrogen production of energy grasses pretreated by enzymatic hydrolysis[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(12): 224-228, 261.(in Chinese with English abstract)
[6] 張秀平,楊志杰,張亞振,等. 巨菌草在冀中南地區(qū)的引種試驗[J]. 安徽農(nóng)業(yè)科學(xué),2015,43(36):78-80. Zhang Xiuping, Yang Zhijie, Zhang Yazhen, et al. Introduction experiment of pennisetum sp. in central and southern regions of hebei[J]. Journal of Anhui Agricultural Sciences, 2015, 43(36): 78-80. (in Chinese with English abstract)
[7] 宋福超,權(quán)金鵬,甘輝林,等. 河西冷涼區(qū)巨菌草引進種植適宜性研究[J]. 中國牛業(yè)科學(xué),2016,42(6):41-44. Song Fuchao, Quan Jinpeng, Gan Huilin, et al. The Study of the planting suitability of Jujun grass introduction in Hexi Cold District. [J]. China Cattle Science, 2016, 42(6): 41-44. (in Chinese with English abstract)
[8] 高筱鈞,周金華,賴慶輝.中草藥三七氣吸滾筒式精密排種器的設(shè)計與試驗[J]. 農(nóng)業(yè)工程學(xué)報,2016,32(2):20-28. Gao Xiaojun, Zhou Jinhua, Lai Qinghui. Design and experiment of pneumatic cylinder precision seed-metering device for panax notoginseng [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(2): 20-28. (in Chinese with English abstract)
[9] 呂金慶,楊穎,李紫輝,等. 舀勺式馬鈴薯播種機排種器的設(shè)計與試驗[J]. 農(nóng)業(yè)工程學(xué)報,2016,32(16):17-25. Lü Jinqing, Yang Ying, Li Zihui, et al. Design and experiment of cup-belt type potato seed-metering device[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(16): 17-25. (in Chinese with English abstract)
[10] 翟改霞,包德勝,王志軍,等. 牧草播種機排種裝置關(guān)鍵部件設(shè)計[J]. 農(nóng)業(yè)機械學(xué)報,2014,45(增刊):47-51. Zhai Gaixia, Bao Desheng, Wang Zhijun, et al. Design for metering device key parts of pneumatic grass seeder [J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(Supp): 47-51. (in Chinese with English abstract)
[11] 史嵩,張東興,楊麗,等. 氣壓組合孔式玉米精量排種器設(shè)計與實驗[J]. 農(nóng)業(yè)工程學(xué)報,2014,30(5):10-18. Shi Song, Zhang Dongxing, Yang Li, et al. Design and experiment of pneumatic maize precision seed-metering device with combined holes[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(5): 10-18. (in Chinese with English abstract)
[12] Yang S, Zhang S M. Design and parameter optimization of flexible comb-type grass seed metering device [J]. International Journal of Agricultural & Biological Engineering, 2015, 8(1): 9-16.
[13] Dhaloemthoi C, Saengprachatanarug K, Wongpichet S, et al. Development and evaluation of metering devices for sugarcane billet planter [C]//Tsae International Conference. 2015.
[14] 趙芳偉,童向亞,鄭書河,等. 2CJQ-1型預(yù)切種式巨菌草種植機的設(shè)計與試驗[J]. 甘肅農(nóng)業(yè)大學(xué)學(xué)報,2015,50(5):150-156. Zhao Fangwei, Tong Xiangya, Zheng Shuhe, et al. Design and experiment of 2CJQ-1.sp precutting type planter[J]. Journal of Gansu Agricultural University, 2015, 50(5): 150-156. (in Chinese with English abstract)
[15] Jia H, Wang W, Luo X, et al. Effects of profiling elastic press roller on seedbed properties and soybean emergence under double row ridge cultivation [J]. Soil & Tillage Research, 2016, 162: 34-40.
[16] 鄭書河,童向亞,林長山,等. 巨菌草輥式排種器及排種方法:201510396570.1 [P]. 2015-09-23.
[17] 張靜,李志偉,劉皞春,等. 氣力滾筒式排種器種子吸附邊界模型及驗證[J]. 農(nóng)業(yè)工程學(xué)報,2016,32(23):12-20. Zhang Jing, Li Zhiwei, Liu Haochun, et al. Mathematical modeling and validation of seeder's suction-boundary on pneumatic-roller type metering [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(23): 12-20. (in Chinese with English abstract)
[18] Singh R C, Singh G, Sarawat D C. Optimisation of design and operational parameters of a pneumatic seed metering device for planting cottonseeds[J]. Biosystems Engineering, 2006, 92(4): 429-438.
[19] Biala T A, Jator S N. Block implicit Adams methods for fractional differential equations[J]. Chaos Solitons & Fractals the Interdisciplinary Journal of Nonlinear Science & Nonequilibrium & Complex Phenomena, 2015(81): 365-377.
[20] 楊然兵,張翔,李建東,等. 錐體帆布帶式排種器參數(shù)優(yōu)化與試驗[J]. 農(nóng)業(yè)工程學(xué)報,2016,32(3):6-13. Yang Ranbing, Zhang Xiang, Li Jiandong, et al. Parameter optimization and experiment on cone canvas belt type seed-metering device[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(3): 6-13. (in Chinese with English abstract)
[21] 成大先.機械設(shè)計手冊(第五版):單行本. 常用設(shè)計資料[M]. 北京:化學(xué)工業(yè)出版社,2010:8-9.
[22] 陳文滔,方兵,梁曉,等. 成熟期巨菌草底部莖稈力學(xué)特性試驗[J]. 湖北農(nóng)業(yè)科學(xué),2016,55(8):2031-2034. Chen Wentao, Fang Bing, Liang Xiao, et al. Experimental research on the mechanical properties of bottom stalk of thesinese in mature period[J]. Hubei Agricultural Sciences, 2016, 55(8): 2031-2034. (in Chinese with English abstract)
[23] 田立權(quán),王金武,唐漢,等. 螺旋槽式水稻穴直播排種器設(shè)計與性能試驗[J]. 農(nóng)業(yè)機械學(xué)報,2016,47(5):46-52. Tian Liquan, Wang Jinwu,Tang Han, et al. Design and performance experiment of helix grooved rice seeding device[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(5): 46-52. (in Chinese with English abstract)
[24] 劉宏新,劉俊孝,唐師法,等. 對置斜盤高速精密大豆排種器設(shè)計與充種機理分析[J]. 農(nóng)業(yè)工程學(xué)報,2016,32(20):24-31. Liu Hongxin, Liu Junxiao, Tang Shifa, et al. Design on opposed inclined-plate high-speed precision seed-metering device and its working mechanism analysis[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(20): 24-31. (in Chinese with English abstract)
[25] 崔濤,劉佳,張東興,等. 基于ANSYS和ADAMS的玉米莖稈柔性體仿真[J]. 農(nóng)業(yè)機械學(xué)報,2012,43(增刊1):112-115. Cui Tao, Liu Jia, Zhang Dongxing, et al. Flexible body simulation for corn stem based on ANSYS and ADAMS[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(Supp1): 112-115. (in Chinese with English abstract)
[26] 劉聲春. 玉米植株生物力學(xué)特性試驗研究[J]. 中國農(nóng)機化學(xué)報,2016,37(3):58-61. Liu Shengchun. Experimental research on the biomechanical characteristics of maize plants[J]. Journal of Chinese Agricultural Mechanization, 2016, 37(3): 58-61. (in Chinese with English abstract)
[27] Lei X, Liao Y, Liao Q. Simulation of seed motion in seed feeding device with DEM-CFD coupling approach for rapeseed and wheat[J]. Computers & Electronics in Agriculture, 2016(131): 29-39.
[28] 李尚平,鄧雄,鐘家勤,等. 甘蔗收獲機喂入系統(tǒng)結(jié)構(gòu)改進與仿真試驗[J]. 農(nóng)業(yè)機械學(xué)報,2016,47(5):91-98. Li Shangping, Deng Xiong, Zhong Jiaqin, et al. Structure improvement and simulation test of sugarcane harvester feeding system[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(5): 91-98. (in Chinese with English abstract)
[29] 施印炎,陳滿,汪小旵,等. 蘆蒿有序收獲機切割器動力學(xué)仿真與試驗[J]. 農(nóng)業(yè)機械學(xué)報,2017,48(2):110-116. Shi Yinyan,Chen Man, Wang Xiaochan, et al. Dynamic simulation and experiments on artemisia selengensis orderly harvester cutter [J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(2): 110-116. (in Chinese with English abstract)
[30] GB/T 6973-2005,單粒(精密)播種機試驗方法[S].
鄭書河,林長山,葉大鵬,劉 斌. 巨菌草種莖輥式排種器結(jié)構(gòu)優(yōu)化及排種動力學(xué)仿真與試驗[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(21):36-43. doi:10.11975/j.issn.1002-6819.2017.21.004 http://www.tcsae.org
Zheng Shuhe, Lin Changshan, Ye Dapeng, Liu Bin. Structural optimization of grooved-roller seed metering device forand simulation and experiment of seed metering dynamics[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(21): 36-43. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.21.004 http://www.tcsae.org
Structural optimization of grooved-roller seed metering device forand simulation and experiment of seed metering dynamics
Zheng Shuhe1, Lin Changshan1, Ye Dapeng1, Liu Bin2
(1.350002;2.350002)
A new grooved-roller seed metering device is developed to overcome the breakage of seedling, obtain high sowing rate and raise seeding efficiency in present, and exercise the optimal design. Firstly, this paper introduces the main structure, the working principle and the related structural parameters of the device in detail. Seed metering device is a key component to realize mechanized cultivation of Pennisetum, which is divided into 2 types according to its working principle. One type is real-time cutting seed metering device and the other type is pre-cut seed metering device. Compared with real-time cutting metering device, pre-cut seed metering device has the advantages of high automation, no damage to seed and lower labor intensity, so it shows a good market prospect and is the main trend of the future development of the metering device. The grooved-roller seed metering device is one of pre-cut seed metering devices. In terms of the stem stress state of seeding process, the evaluation function of seeding smoothness with force angle of the stem as the target was derived. According to the function, opening width of the seed groove and depth of the seed groove were the main impact factors of the improved device’s seeding performance. Based on the compressive strength of the stem, the best size of seeding slot was deduced as 20 mm × 20 mm finally. The different morphology and difference of seed diameters are the main influence factors of the problem, and those are easy to cause the bud break. The smoothness and accuracy of seeding were improved by adding the elastic dunnages on the groove of the seeding drum. According to the evaluation function of seeding smoothness, the structure size of the dunnages was optimized as the side gasket thickness of 4 mm and the bottom gasket thickness of 8 mm. In order to study the effect of dunnages on the fluency, the model of grooved-roller seed metering device of the Pennisetum was established by using the dynamic simulation software ADAMS (automatic dynamic analysis of mechanical systems). The effect regularities of structural parameters and motion parameters on seed groove and dunnages were studied. The simulations showed that the new seed metering device could realize the orderly discharge of seeds, and obviously reduce the stress of small-diameter seed by using the plastic dunnages, ensuring the seed row stability and the adaptability of seed diameter. Then the real tests in the laboratory and field were undertaken to verify the conclusions of virtual tests. Bench test results showed that the gasket could improve the flow degree of the seed row to a certain extent, in which the roller speed fluctuation ratio was less than 10%, the roller torque fluctuation ratio was less than 400%, and the seeding rhythm fluctuation ratio was about 20%. The research further indicated that the quality of the seeding was not affected by the roller speed, and sometimes the faster speed would slightly improve the fluidity of the seeding. Because when the roller speed was faster, the time the stem entered the entry took shorter, which reduced the resistance of the seed row to a certain extent. The results indicated that the seed metering device can realize the seeding operation and the dunnages can effectively improve the seeding fluency. Field experiment indicated that the seeder was stable, and the qualified index was greater than 93.33%, the missing index was less than 4.1%, the multiple index was less than 2.5%, and the variance coefficient was13.63%. The indicators were in line with the planting requirements of giant grass. The research provides a theoretical reference for the design of grooved-roller seed metering device of Pennisetum and the technical reference for the related design of planting machine.
agricultural machinery; design; optimization;; grooved-roller seed metering device; dynamic simulation; experiments
10.11975/j.issn.1002-6819.2017.21.004
S223.2
A
1002-6819(2017)-21-0036-08
2017-04-11
2017-09-07
國家科技支撐項目(2014BAD15B00);福建省自然科學(xué)基金資助項目(2016J01209)
鄭書河,福建尤溪,副教授,博士,美國俄亥俄州立大學(xué)大學(xué)研修,主要從事農(nóng)業(yè)機械裝備、機械系統(tǒng)動力學(xué)及植物力學(xué)研究。Email:zshld1998@163.com