• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Design and evaluation of PID electronic control system for seed meters for maize precision planting

    2017-11-01 23:03:55HeXiantaoDingYouqiangZhangDongxingYangLiCuiTaoWeiJiantaoLiuQuanweiYanBingxinZhaoDongyue
    農(nóng)業(yè)工程學報 2017年17期
    關(guān)鍵詞:排種電驅(qū)種器

    He Xiantao, Ding Youqiang, Zhang Dongxing,2, Yang Li,2, Cui Tao,2, Wei Jiantao, Liu Quanwei, Yan Bingxin, Zhao Dongyue

    ?

    Design and evaluation of PID electronic control system for seed meters for maize precision planting

    He Xiantao1, Ding Youqiang1, Zhang Dongxing1,2, Yang Li1,2※, Cui Tao1,2, Wei Jiantao3, Liu Quanwei1, Yan Bingxin1, Zhao Dongyue1

    (1. College of Engineering, China Agricultural University, Beijing 100083, China; 2. Soil-Machine-Plant key laboratory of the Ministry of Agriculture of China, Beijing 100083, China; 3. CNH Industrial, Chicago 60527, USA)

    A proportional-integral-derivative (PID) electronic control system for seed meters was developed to improve the planting quality and operation efficiency of conventional planters with ground wheel and chain driven system. A PID algorithm was used for controlling seed plate rotation speed. In addition, the PID controller incorporated integral separation of the integral term to increase the response time and reduce the occurrence of overshoot when the set point was far away from the current rotation rate. The final tuned PID parameter values wereK=16,K=0.05, andK=36. The response time, overshoot, and steady error for a seed plate rotation speed step response from 0 to 24 r/min were 0.4 s, 1.56%, and 0.75%, respectively. Experiment results showed that the Singulation index (SI) of seed meter could receive to 98.4%, and the Multiple index (UI) and Miss index (MI) were not more than 1% even at the highest planting speed of 12 km/h, which indicated that the seed meter with the developed control system and tuned PID parameters could obtain better planting quality and higher planting speed.

    agricultural machinery; electronic control; performance; PID parameter tuning; integral separation

    0 Introduction

    Precision planters are used widely in China, and the performance of seed meter, which is a key component of precision planter, affects the uniformity of seed distribution directly[1]. However, conventional precision planters with ground wheels and chains driven system bring poor planting quality due to slippage between wheel and ground, and chain instability during the process[2]. Adopting electric motor to replace conventional mechanical driving system to drive seed meters is one of methods to solve the problems.

    The agricultural machinery companies in the world, e.g. John Deere[3]and Horsch[4], have developed their characteristic driving seed meters for precision planter by using electric motors, and the high-technology agricultural machinery companies, e.g. Precision Planting[5]and Ag Leader[6], have also developed corresponding control system for precision planters equipped with electric-driven seed meters in recently years. The planters with technology above significantly improve the planting speed to 15 km/h and singulation to about 98%, but their prices are very high. In addition, Chaney et al.[7]designed a kind of electronic control system for a sugarcane planter. He et al.[8]developed a type of seed meter based on electromagnetic vibrating mode, and also designed its PLC controller. Tang et al.[9]designed a driving system for seed meters to control the speed of seed plate based on the planting speed. Zhai et al.[10-11]developed an automated driving system of seed metering according to sensor signal. But these researches are at testing stage and not applied in the market.

    To solve issues above, this study developed a PID electronic control system for seed meters and conducted experiments to test the performance of the control system in the lab.

    1 Material and methods

    1.1 Components of the electronic control system

    The system consisted of five components: control box, touch screen display (MT4414T, Kinco Automation company, China), incremental encoder (TRD-2T500BF, Koyo Electrical Company, Japan), seed plate driving motor (57BL55S06, Times Brilliant Electrical Company, China), seed meter, as in Fig. 1.

    Fig.1 Components of electronic control system

    A twelve volt power supply provides power for the entire control system. The seed meter adopted in this study was an air-pressure precision corn meter developed by Shi et al.[12-13], which was modified to be driven by seed plate driving motor. The motors are DC brushless motors, and each motor’s back is embedded by three Hall-effect sensors to measure the positions of the rotors and realize current switching for the rotors electronically, which eliminates brush maintenance of DC brush motor[14-16]. In the meantime, the Hall-effect sensors were used by the study to measure the motor rotation speed in real time for achieving closed-loop control[17]. The planting speed was measured by an incremental encoder that was mounted on the shaft of a ground wheel.

    Whereis the planting speed, km/h;is diameter of the ground wheel, cm;is the sample period, s;is the number of pulses received within the period of;is the wheel slip ratio, %;is resolution of the encoder, pulses/r.

    A touch screen display as interface of data input/output used to enter planting parameters such as number of seed holes per disk seed spacing,and, and also display planting speed and rotation speed of seed plate. The touch screen display was communicated with the controller by RS485. The controller is the core of the system, which was designed to receive input data from incremental encoder and touch screen display and output a signal pulse with a certain frequency and duty cycle to adjust seed plate rotation speed for achieving desired seed spacing as planned. The seed plate rotation speed is calculated as

    Whereis the seed plate rotation speed, r/min;is the number of seed holes per disk;is the seed spacing, cm.

    1.2 PID control of seed plate rotation speed

    As PID control is a simple algorithm with high reliability, and commonly used in various control systems[18-21], a closed-loop PID is used in this study to control the seed plate rotation speed for improving the seed plate’s dynamic performance. The PID control principle was illustrated in Fig.2.

    Fig.2 Schematic diagram of PID control principle

    The controller computes the error between the target values and actual values of seed plate rotation speed at time t, then control the motor speed by adjusting the signal duty cycle. A basic PID controller in continuous time[22-23]is described by

    WhereP() is the signal duty cycle;() is the error between the target values ((), r/min) and actual values ((), r/min) of seed plate rotation speed at time t, r/min;K, KandKare the proportional, integral, and differential gain constant, respectively. Equation (3) is discretized as follows for reducing computational cost[22-23].

    Here,(),p() (r/min) are the discrete error and control signal’s duty cycle, respectively;is sampling points.

    1.3 Setting PID parameters via step response analysis

    The present study employed a trial-and-error method to estimate the PID parameters by laboratory experiments. Given a step response in, the step response curve was plotted, and the impact of each PID parameter was analyzed in turn through trial and error to obtain a response curve that provided a rapid response time and a small stable error within a small overshoot. The overshoot was set here to be within 2%, and PID parameter selection providing the optimal performance of the control response was based on an appropriate tradeoff between the minimum response time and the minimum stable error.

    The laboratory setup employed for tuning is illustrated in Fig.3. The encoder (1 in Fig.3) was mounted on the shaft of a meter that measures the actual value ofin real time, and the rotation speed signal was sent to a data acquisition card (2 in Fig. 3; National Instrument USB-6009). LabView software was installed on a PC (3 in Fig. 3) to read the signal from the data acquisition card, calculate the meter’s rotation speed, and then display it to obtain the step response of. Planting parameters are entered through the touch screen display with=25 cm and=9 km/h, resulting a target value of in=24 r/min, thus, registering a step response from 0 to 24 r/min. Zhengdan 958 maize hybrid seeds were employed in the calibration, and the air pressure was set at 3.0 kPa. The encoder’s resolution was 2 500 pulses/r, and the data acquisition rate was 10 Hz.

    1.Incremental encoder 2.Data acquisition card 3.PC interface for LabView software

    Fig.3. Test setup employed for tuning PID parameters

    1.3.1 Setting the proportional gain constant (K)

    To determineK, we considered only proportional control in the trial and error experiments (i.e.,K=K=0). The proportional term produces an output value at sampling pointthat is proportional to(). The proportional response can be adjusted by multiplying() byK. A high proportional gain results in a large change in the output for a given change in() (i.e.,()?(?1)), and an overly high gain can make the system unstable. In the tuning process shown in Fig. 4, settingK=5 responded too slow, andKwas then incrementally increased to 10, 15 and 20. The response plot forK=15 exhibits the beginning of overshoot, which is greatly increased whenK=20. Therefore,Kshould be between 15 and 20. Further fine tuning obtained an optimal value ofK=16, which, shown in Table 1, provides minimum values for both the response time and stable error.

    Note: Kp is the proportional gain constant. Same as below.

    Table 1 Step response results for tuning Kp (proportional controller only, i.e., Ki=Kd=0)

    Note:Kis the integral gain constant;Kis the differential gain constant, Same as below.

    1.3.2 Setting the integral gain constant (K)

    To determineK, we considered only proportional- integral control in the trial and error experiments (i.e.,K= 0), and the previously optimized valueK=16 is employed as a constant. The integral term can eliminate the residual steady-state error that occurs with a pure proportional controller. However, it may slow down the system response and cause additional overshoot. Fig.5 presents the step response curves obtained forKvalues of 0.01 and 0.1 (red and green curves, respectively), where we observe that integral accumulation for even a small value ofK=0.01 delays the response time and increases system overshoot due to the initially large overshoot of 1.37% associated with proportional control alone. While the overshoot caused by the integral term would be reduced by decreasingKappropriately, this would also further increase the response time. Therefore, we retain a constantK, and employ integral separation[24-27]to reduce the overshoot and slow response caused by the integral term. This method employs a switching variableXto omit the integral term when() is large, and to include the integral term when() is small. The switching variable is defined as follows[28-29].

    The overall PID equation after introducingX[28-29]is given as

    Employing only the first 2 terms of Equation 6, a comparison between the results with and without integral separation given in Fig.5 showed that the added delay is eliminated and no overshoot occurs forK=0.01. However,K=0.1 induces a minor degree of overshoot, indicating thatKshould be between 0.01 and 0.1. The tuning results are listed in Table 2. Fine tuning of the integral term yields an optimal valueK=0.05. Here, compared withK=0.01, the steady error is reduced to 32.5% while the response time is increased to only 16.7%, indicating that the performance withK=0.05 is better. Compared with proportional control only, the steady error is reduced to 0.56% (i.e., a 34% reduction).

    Fig.5 Step response curves from Ki tuning

    Table 2 Step response results with integral-separation method (proportional-integral controller only, i.e., Kd=0)

    1.3.3 Setting the differential gain constant (K)

    The derivative of the error predicts system behavior, and thus improves the settling time and stability of the system, but it is sensitive to system noise, and can cause oscillation. Holding the other values constant atK=16 andK=0.05 during tuning,Kis initially selected as 10, 20, 30, 40, and 50, and the response curves obtained are shown in Fig.6a. The response times tend to decrease over the initial range forK, achieving a minimum value at 40 and 50. However, consideration of the tuning results listed in Table 3 indicates that the steady error also increases over the initial range forK, indicating thatKshould be less than 40. Through fine tuning, the optimal value ofK=36 was determined. Here, compared withK=20, the response time is reduced by 20% while the steady error is increased by only 17.2%, indicating a better response performance withK=36. The final parameters obtained by tuning areK=16,K=0.05, andK=36. The response time, overshoot, and steady error obtained with these parameters are 0.4 s, 1.56%, and 0.75%, respectively. Compared with the PI controller, the response time is reduced by 0.3 s, as shown in Fig.6b.

    Note: Kd is gain constant and same as below.

    Table 3 Step response results for tuning Kd (full PID controller)

    1.3.4 System step response under different planting speeds

    The proposed control system is mainly employed for high speed planting. To validate the performance at high speed, step response testing for values ofof 8 km/h to 14 km/h was conducted with=25 cm, and the results are shown in Fig.7.

    Fig.7 Step response curves under different planting speeds

    The target values ofassociated with each value ofare given in the chart legend. At 14 km/h, the step response exhibits instability and the actual value of(i.e., 35 r/min) did not attain the target value of 37.33 r/min . This may have caused by an inability of the motor to reach the target speed at the twelve volt power supply, which was applied based on the power supply voltage of the tractor. Adopting a power converter to transfer twelve volt to twenty-four volt is a way to increase speed of seed plate, but this raises the energy consumption and cost of the control system. But forless than 14 km/h, the step response was very stable. Therefore, the maximum working speed of the control system can reach at 13 km/h, which is much too high than the working speeds of conventional planters.

    2 Results and discussion

    2.1 The performance of the control system

    The performance of the proposed control system was tested in laboratory with three replications. Zhengdan 958 maize hybrid seeds were employed, and the air pressure was set at 3.0 kPa. Planting parameters were entered through the touch screen display with=25 cm,=50 cm and three planting speeds (6, 9 and 12 km/h, respectively).Using a camera to record planting condition, as in Fig.8.

    1.Control box 2.Touch screen display 3.Seed meter 4.Light source 5.Camera

    Basing on China National Standard of Test Methods of Single Seed Driller (GB/T 6973-2005)[30], the performance indexes is calculated as follows.

    Where1is the number of singles,2is the number of multiples,3is the number of skips, and′ is the number of theoretical planting seeds. SI is singulation index of seed meter; UI is multiple index of seed meter; MI is miss index of seed meter.

    The results of experiment is shown in Table 4 and Fig.9.

    Table 4 Results of experiment

    Note: SI is singulation index of seed meter; UI is multiple index of seed meter; MI is miss index of seed meter. The same below.

    Note: Columns labeled with same letters are not significantly different.

    As shown in the Table 4, with the increase of the planting speed, the SI, UI and MI didn’t change significantly. The data also showed that SI increased at first and then decreased with the planting speed increasing, and the best value was 99.47% at speed of 9 km/h. UI decreased at first and then increased with the speed increasing, and the worst value was 0.93% at speed of 6 km/h. MI were both zero at speed of 6, 9 km/h, but the value reached 0.8% at the speed of 12 km/h. Analyses above showed that UI was the determinant factor lead to SI decreasing when at low planting speed (6, 9 km/h), then MI became determinant instead of UI at the high planting speed (12 km/h). The best planting performance was got at speed of 9 km/h with SI of 99.47%, UI of 0.53% and MI of 0%. However, even at the highest planting speed of 12 km/h, the SI of seed meter can also be 98.4%, meanwhile the UI and MI were not more than 1%, which are far better than China National Standard[31]. Further analysis shown in Fig. 9 indicates that, when planting speed increased from 6 km/h to 9 km/h, the SI, UI, and MI changed only moderately. However when planting speed changed from 9 km/h to 12 km/h, the SI and MI changed appreciably. This change was possibly caused by the requirement of higher air pressure at higher planting speed. Results indicate that the seed meter with the developed control system and tuned PID parameters can obtain better planting quality and higher planting speed.

    2.2 The cost and market expectation of the control system

    Most of the components used in the control system are locally manufactured in China, and their costs are listed in the Table 5. The table indicates that, the cost of expanding one planting row that includes a seed plate driving motor and a seed meter is $321, and the control system has a higher performance-price ratio with the number of planting row increasing. The total cost of the control system for a four-row planter is $1800, which is considerably less than similar systems from abroad (for example, the cost of the controller alone from Precision Planting LLC is greater than $5000 in the Chinese market), making the system accessible to precision planters in developing countries and be largely used in the market.

    Table 5 Cost of control system for a four-row planter

    3 Conclusions

    A PID electronic control system for seed meters was designed and evaluated in this study. Conclusions of this research were as follows.

    1) Using integral separation in the PID control algorithm reduced the issues of overshoot and delayed response time associated with the integral component under conditions when the error is large. After tuning, the final PID parameters obtained wereK=16,K=0.05, andK=36. Under a step response infrom 0 to 24 r/min, the response time, overshoot, and steady error were 0.4 s, 1.56%, 0.75%, respectively.

    2) The experiment data showed that the SI of seed meter can be 98.4%, meanwhile the UI and MI are not more than 1% even at the highest planting speed of 12 km/h, which indicate that the seed meter with the developed control system and tuned PID parameters can obtain better planting quality and higher planting speed.

    3) Most of the components used in the electronic control system are locally manufactured in China, which is considerably less expensive than the similar systems abroad, making the system accessible to precision planters in developing countries.

    [1] Zhang Junchang, Yan Xiaoli, Xue Shaoping, et al. Design of no-tillage maize planter with straw smashing and fertilizing[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(12): 51-55.

    [2] Saadat K, Mohammad J E, Mohammad M M. Design, development and evaluation of a mechatronic transmission system to improve the performance of a conventional row crop planter[J]. International journal of Agronomy and Plant Production, 2013, 4(3): 480-487.

    [3] Deere & Company (brand name John Deere). John deere Exact Emerge row unit[EB/OL]. [2016-08-05]. https://www. deere.com/en/planting-equipment/row-units/exactemerge-row- unit/

    [4] Horsch Maschinen GmbH. Maestro CC Technical Data [EB/OL]. [2016-08-17]. http://www.horsch.com/produkte/ saemaschinen/einzelkornsaemaschinen/maestro/maestro-cc/

    [5] Precision Planting LLC. Precision Planting vSet Select meter[EB/OL].[2016-09-21]. http://www.precisionplanting.com/#products/vset_select/.

    [6] Ag Leader Technology. Ag Leader SureDrive[EB/OL]. [2016-09-10]. http://www.agleader.com/products/seedcommand/sure-drives/.

    [7] Chaney P P, Parish R L, Sistler F E. Automatic control system for a sugarcane planter[J]. Applied Engineering in Agriculture, 1986, 2(2): 51-54.

    [8] He Peixiang, Yang Mingjin, Chen Zhonghui. Study on photoelectric controlled precision seeder[J]. Transactions of the Chinese Society for Agricultural Machinery, 2003, 34(1): 47-49.

    [9] Tang Yaohua, Zhang Jinguo. Seed sowing driving system based on non-contact speed measuring[J]. Agri Mech Research, 2009(3): 21-23.

    [10] Zhai Jianbo, Gao Haizhou, Zheng Xiaolong, et al. Research on automatical seed metering drive system based on sensor technology[J]. Hubei Agricultural Sciences, 2011, 50(17): 3619-3621.

    [11] Zhai Jianbo, Xia Junfang, Zhou Yong, et al. Design and experimental study of the control system for precision seed-metering device[J]. International Journal of Agricultural & Biological Engineering, 2014, 7(3): 13-18.

    [12] Shi Song, Zhang Dongxing, Yang Li, et al. Design and experiment of pneumatic maize precision seed-metering device with combined holes[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(5): 10-18.

    [13] Shi Song, Zhang Dongxing, Yang Li, et al. Simulation and verification of seed-filling performance ofpneumatic- combined holes maize precision seed-metering device based on EDEM[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(3): 62-69.

    [14] Xun Qian, Wu Yong, Wang Peiliang, et al. Starting control strategy of brushless DC motor based on Hall rotor position sensor[J]. China Measurement & Test, 2016, 42(8): 118-122.

    [15] Chen Yonghua. Application of Hall Effect in the control of brushless DC motor [J]. Experiment Science and Technology, 2011, 9(2): 34-36.

    [16] Zhang Qingchao, Ma Ruiqing, Zhang Zhen, et al. Electromagnetic torque observation of brushless DC motor based on hall position signals[J]. Transactions of China Electrotechnical Society, 2015, 30(10): 187-195.

    [17] Guo Wei, Wang Mingming. A modified speed measurement method using frequency multiplication to the hall signal of BLDC motor[J]. Micromotors, 2012, 45(1): 74-84.

    [18] Knospe C. PID control[J]. IEEE Control Systems Magazine, 2006, 26(1): 30-31.

    [19] Sigurd S. Simple analytic rules for model reduction and PID controller tuning[J]. Journal of Process Control, 2003, 13(4): 291-309.

    [20] Bucz ?, Kozáková A, Vesely V. Easy Tuning of pid controllers for specified performance[J]. IFAC Proceedings Volumes, 2012, 45(3): 733-738.

    [21] Yun Li, Ang K H, Chong G. PID control system analysis and design[J]. Control Systems IEEE, 2006, 26(1): 32-41.

    [22] Ang K H, Chong G, Li Y. PID control system analysis, design, and technology[J]. IEEE transactions on control systems technology, 2005, 13(4): 559-76.

    [23] Al-Mashakbeh A S. Proportional integral and derivative control of brushless dc motor[J]. European Journal of Scientific Research, 2009, 35(2): 198-203.

    [24] Jiang Weirong, Huang Haibo, Lan Jianping. Simulation and design of integral separation fuzzy control system for brushless DC motor[C]//International Conference on Computational and Information Sciences, 2013: 1194-1197.

    [25] Theorin A, H?gglund T. Derivative backoff: The other saturation problem for PID controllers[J]. Journal of Process Control, 2015, 33: 155-160.

    [26] Guo Xuyang, Qi Xiaohui, Tian Lizhuang. AC servo system based on integral partition PID control[J]. Modern Electronics Technique, 2007, (19): 163-164.

    [27] Wang Xiaodong. A kind of integration separation pid controller's designing[J]. Shanxi Science and Technology, 2006(6): 104-106.

    [28] Li Ge, Jia Yuanwu, Zhang Hua, et al. Application of integral-separation PID control algorithm in PLC-based tension control system[J]. Journal of Textile Research, 2008, 29(8): 109-112.

    [29] Ye Shuliang, Wang Keqi. The design of digital PID control with separated integral for an ultra-precision positioning system[J]. Techniques of Automation and Applications, 2003, 22(10): 65-67.

    [30] Standardization Administration of the People’s Republic of China. Testing Methods of Single Seed Drills (precision drills): GB/T 6973-2005[S]. Beijing: Standards Press of China, 2005.

    [31] Standardization Administration of the People’s Republic of China. Specifications for single seed drills (precision drills): JB/T 10293-2001[S]. Beijing: Standards Press of China, 2001.

    玉米精量排種器電驅(qū)PID控制系統(tǒng)設(shè)計與性能評價

    和賢桃1,丁友強1,張東興1,2,楊 麗1,2※,崔 濤1,2,魏劍濤3,劉全威1,顏丙新1,趙東岳1

    (1. 中國農(nóng)業(yè)大學工學院,北京 100083; 2. 農(nóng)業(yè)部土壤-機器-植物系統(tǒng)技術(shù)重點實驗室,北京 100083;3. 凱斯紐荷蘭公司,芝加哥 60527)

    本文研究了一種基于PID的排種器電驅(qū)控制系統(tǒng),取消了播種機采用地輪和鏈條驅(qū)動的方式,提高了播種機的播種質(zhì)量和作業(yè)速度。采用PID算法控制排種盤轉(zhuǎn)速,在目標轉(zhuǎn)速與當前轉(zhuǎn)速差異較大時,加入PID積分分離算法,以減少轉(zhuǎn)速的超調(diào)量。通過整定后的PID參數(shù)為:K= 16、K= 0.05、K= 36,在其排種盤轉(zhuǎn)速范圍為0~24 r/min時,響應(yīng)時間、超調(diào)量、穩(wěn)態(tài)誤差分別為0.4秒,1.56%和0.75%。試驗結(jié)果表明,在12 km/h的高速播種作業(yè)條件下,采用該電驅(qū)控制系統(tǒng)的排種器排種單粒率仍然可達到98.4%,其重播率和漏播率小于1%。采用本文研究的基于PID算法的排種控制系統(tǒng)可以獲得良好的排種質(zhì)量和更高的排種速度,使排種器更適宜高速精量播種。

    農(nóng)業(yè)機械;電驅(qū)控制;性能;PID整定;積分分離

    10.11975/j.issn.1002-6819.2017.17.004

    TP273

    A

    1002-6819(2017)-17-0028-06

    2017-04-07

    2017-08-02

    the National Key Research and Development Program of China (No.2017YFD0700703); the National Natural Science Foundation of China(51575515); China Agriculture Research System (CARS-02).

    He Xiantao, Doctor, major research direction is intelligent agricultural equipment. Beijing, China Agricultural University, 100083. Email: hxt@cau.edu.cn

    Yang Li, Professor, Doctoral supervisor, major research direction is modern agricultural machinery and intelligent agricultural equipment. Beijing, China Agricultural University, 100083. Email: yangli@cau.edu.cn

    猜你喜歡
    排種電驅(qū)種器
    玉米擾動輔助充種高速氣吸式排種器設(shè)計與試驗
    一種排種盤傳動結(jié)構(gòu)的設(shè)計與應(yīng)用
    油冷多合一電驅(qū)總成油堵密封分析
    四桿平移式大豆小區(qū)育種排種器設(shè)計與試驗
    基于EDEM的雙腔式棉花精量排種器排種性能仿真研究
    某大容量電驅(qū)系統(tǒng)配套同步電機電磁分析與計算
    新型電驅(qū)壓裂變頻調(diào)速六相異步電動機的研制
    精量排種器現(xiàn)狀及發(fā)展分析
    氣力托勺式馬鈴薯精量排種器設(shè)計
    PCL803電驅(qū)壓縮機起升泵高溫故障
    在线国产一区二区在线| 国产国拍精品亚洲av在线观看| 激情 狠狠 欧美| 免费人成视频x8x8入口观看| 狂野欧美白嫩少妇大欣赏| 欧美极品一区二区三区四区| 欧美高清成人免费视频www| 日本成人三级电影网站| 3wmmmm亚洲av在线观看| 俄罗斯特黄特色一大片| 在线免费观看不下载黄p国产| 老师上课跳d突然被开到最大视频| 欧美日韩国产亚洲二区| 日本黄大片高清| 婷婷色综合大香蕉| 18禁在线播放成人免费| 非洲黑人性xxxx精品又粗又长| 精品久久久久久久久久免费视频| 全区人妻精品视频| 久久99热这里只有精品18| 欧美一区二区亚洲| 国产日本99.免费观看| 真实男女啪啪啪动态图| 在线观看66精品国产| 自拍偷自拍亚洲精品老妇| 国产高清视频在线观看网站| 国产亚洲av嫩草精品影院| 特大巨黑吊av在线直播| 狂野欧美白嫩少妇大欣赏| 国产精品一区二区免费欧美| 成年女人看的毛片在线观看| 精品乱码久久久久久99久播| 久久6这里有精品| 国产亚洲欧美98| 一级毛片aaaaaa免费看小| 变态另类成人亚洲欧美熟女| 午夜a级毛片| 观看美女的网站| 亚洲人与动物交配视频| 男女那种视频在线观看| 欧美日韩一区二区视频在线观看视频在线 | 中出人妻视频一区二区| 亚洲国产日韩欧美精品在线观看| 日日啪夜夜撸| 亚洲最大成人av| 日韩亚洲欧美综合| 99热精品在线国产| 日本黄色视频三级网站网址| 久久中文看片网| 一个人观看的视频www高清免费观看| 狂野欧美白嫩少妇大欣赏| 一级毛片aaaaaa免费看小| 人妻夜夜爽99麻豆av| 99热网站在线观看| 18禁在线无遮挡免费观看视频 | 热99在线观看视频| 久久韩国三级中文字幕| 欧美成人精品欧美一级黄| 日韩在线高清观看一区二区三区| 自拍偷自拍亚洲精品老妇| 成人漫画全彩无遮挡| 久久久久性生活片| 国产午夜精品论理片| 蜜臀久久99精品久久宅男| 欧美性猛交黑人性爽| 亚洲成人久久爱视频| 国产精品电影一区二区三区| 日本五十路高清| 听说在线观看完整版免费高清| 99热6这里只有精品| 亚洲人成网站在线观看播放| av天堂在线播放| 亚洲最大成人av| 桃色一区二区三区在线观看| 国产精品一区二区三区四区免费观看 | 成人av在线播放网站| 最近最新中文字幕大全电影3| 国产视频一区二区在线看| 91麻豆精品激情在线观看国产| videossex国产| 亚洲国产精品国产精品| 成年女人看的毛片在线观看| 黄色视频,在线免费观看| 成人二区视频| 在线观看66精品国产| 色吧在线观看| 一进一出抽搐动态| 成人永久免费在线观看视频| 久久精品国产亚洲av香蕉五月| 俺也久久电影网| av在线老鸭窝| 在线天堂最新版资源| 天天一区二区日本电影三级| 人妻制服诱惑在线中文字幕| 国产伦精品一区二区三区视频9| 欧美性猛交黑人性爽| 男人的好看免费观看在线视频| 精品日产1卡2卡| 免费人成在线观看视频色| 亚洲第一区二区三区不卡| 国产一区二区在线观看日韩| 亚洲无线在线观看| 日本一二三区视频观看| 色尼玛亚洲综合影院| 色5月婷婷丁香| 精品一区二区三区人妻视频| 亚洲一级一片aⅴ在线观看| 国产精品女同一区二区软件| 亚洲国产精品国产精品| 国内精品一区二区在线观看| 五月伊人婷婷丁香| 噜噜噜噜噜久久久久久91| 美女cb高潮喷水在线观看| 精品午夜福利视频在线观看一区| 色5月婷婷丁香| 国产三级中文精品| 成年女人永久免费观看视频| 国产v大片淫在线免费观看| 久久久欧美国产精品| 午夜福利在线观看免费完整高清在 | 全区人妻精品视频| 男人舔女人下体高潮全视频| 噜噜噜噜噜久久久久久91| 国产淫片久久久久久久久| 天堂影院成人在线观看| 精品不卡国产一区二区三区| 亚洲综合色惰| 日韩亚洲欧美综合| 国产aⅴ精品一区二区三区波| 亚洲国产精品合色在线| 人人妻人人澡欧美一区二区| 国产黄a三级三级三级人| 久久天躁狠狠躁夜夜2o2o| 久久精品国产99精品国产亚洲性色| 日日摸夜夜添夜夜添小说| 永久网站在线| 亚洲av成人av| 人妻少妇偷人精品九色| 老熟妇乱子伦视频在线观看| 成人国产麻豆网| 精品免费久久久久久久清纯| 日本黄色片子视频| 搡老熟女国产l中国老女人| 久久欧美精品欧美久久欧美| 精品久久久久久久久av| 成年免费大片在线观看| 国产伦一二天堂av在线观看| 亚洲精品亚洲一区二区| 亚洲内射少妇av| 亚洲精品国产av成人精品 | 99热网站在线观看| 国产成人影院久久av| av卡一久久| 免费看av在线观看网站| 日日摸夜夜添夜夜添av毛片| 你懂的网址亚洲精品在线观看 | 国产美女午夜福利| 午夜福利成人在线免费观看| 在线观看66精品国产| 99久久精品热视频| 欧美zozozo另类| 久久久久久久久久久丰满| 欧美激情久久久久久爽电影| 日本 av在线| 亚洲欧美日韩卡通动漫| 最近视频中文字幕2019在线8| 国产淫片久久久久久久久| 亚洲丝袜综合中文字幕| 成人国产麻豆网| 日本a在线网址| 麻豆乱淫一区二区| 天堂av国产一区二区熟女人妻| 亚洲中文字幕一区二区三区有码在线看| 国产私拍福利视频在线观看| 亚洲精品久久国产高清桃花| av专区在线播放| 欧美一区二区精品小视频在线| 国产av不卡久久| 别揉我奶头~嗯~啊~动态视频| 国产精品野战在线观看| 日日啪夜夜撸| 久久久久久大精品| 成年女人毛片免费观看观看9| av在线亚洲专区| 亚洲精品日韩在线中文字幕 | 欧美性感艳星| 91精品国产九色| 亚洲中文字幕日韩| АⅤ资源中文在线天堂| 秋霞在线观看毛片| 赤兔流量卡办理| 久久热精品热| 欧美性猛交╳xxx乱大交人| 热99re8久久精品国产| 99久久九九国产精品国产免费| 男人舔女人下体高潮全视频| 久久午夜福利片| 精品久久久久久成人av| 在线观看免费视频日本深夜| 国产精品久久久久久精品电影| 久久久久国内视频| 色尼玛亚洲综合影院| 欧美+亚洲+日韩+国产| a级毛片a级免费在线| 狂野欧美白嫩少妇大欣赏| 少妇的逼水好多| 久久精品人妻少妇| 校园人妻丝袜中文字幕| 欧美另类亚洲清纯唯美| 国产熟女欧美一区二区| 校园人妻丝袜中文字幕| 亚洲久久久久久中文字幕| 波野结衣二区三区在线| 99久久中文字幕三级久久日本| 亚洲精品久久国产高清桃花| 久久久精品大字幕| 免费在线观看影片大全网站| 欧美性猛交╳xxx乱大交人| 午夜激情欧美在线| 日韩国内少妇激情av| 婷婷色综合大香蕉| 两个人视频免费观看高清| 亚洲美女搞黄在线观看 | 一区二区三区四区激情视频 | 夜夜爽天天搞| 成年av动漫网址| 国产黄片美女视频| 99在线人妻在线中文字幕| 最近在线观看免费完整版| 日韩大尺度精品在线看网址| 22中文网久久字幕| 我的女老师完整版在线观看| 国产v大片淫在线免费观看| av福利片在线观看| 天堂动漫精品| 最近2019中文字幕mv第一页| 日韩在线高清观看一区二区三区| 男女做爰动态图高潮gif福利片| 国内精品宾馆在线| 亚洲成人久久爱视频| 国产激情偷乱视频一区二区| 亚洲精品在线观看二区| 卡戴珊不雅视频在线播放| 久久久久久久久久久丰满| 欧美日韩一区二区视频在线观看视频在线 | 成人毛片a级毛片在线播放| 有码 亚洲区| 非洲黑人性xxxx精品又粗又长| 特级一级黄色大片| 亚洲欧美成人综合另类久久久 | 久久精品影院6| 亚洲国产精品成人久久小说 | 国产成人freesex在线 | 国产aⅴ精品一区二区三区波| 成年版毛片免费区| 国产精品一及| 乱系列少妇在线播放| a级一级毛片免费在线观看| 国产精品福利在线免费观看| 精品久久久久久久末码| 午夜日韩欧美国产| 一进一出好大好爽视频| 99热6这里只有精品| 91狼人影院| 久久亚洲精品不卡| 亚洲精品国产av成人精品 | 精品熟女少妇av免费看| 一夜夜www| 日本在线视频免费播放| 国产精品久久久久久亚洲av鲁大| 亚洲国产精品成人久久小说 | 亚洲欧美日韩东京热| 无遮挡黄片免费观看| 老司机影院成人| 91在线观看av| 天天躁日日操中文字幕| 一本精品99久久精品77| 3wmmmm亚洲av在线观看| 亚洲成人久久爱视频| 高清毛片免费看| 1000部很黄的大片| 性色avwww在线观看| 亚洲三级黄色毛片| 天天躁夜夜躁狠狠久久av| 男女边吃奶边做爰视频| 麻豆乱淫一区二区| 日本熟妇午夜| www.色视频.com| 日本a在线网址| 乱码一卡2卡4卡精品| 婷婷精品国产亚洲av| 欧美日韩综合久久久久久| 中文字幕av在线有码专区| 12—13女人毛片做爰片一| 婷婷六月久久综合丁香| 国产视频内射| 日日摸夜夜添夜夜添av毛片| 国产不卡一卡二| 91久久精品国产一区二区成人| 亚洲图色成人| 欧美一区二区精品小视频在线| 亚洲av成人av| 老司机福利观看| 在线观看免费视频日本深夜| АⅤ资源中文在线天堂| 日韩av不卡免费在线播放| 波多野结衣高清作品| 又爽又黄无遮挡网站| 国产探花极品一区二区| 热99在线观看视频| 一本一本综合久久| 国产精品不卡视频一区二区| 亚洲美女视频黄频| 国产单亲对白刺激| 看十八女毛片水多多多| 日韩三级伦理在线观看| 麻豆av噜噜一区二区三区| 伦理电影大哥的女人| 精华霜和精华液先用哪个| 亚洲aⅴ乱码一区二区在线播放| 国产精品野战在线观看| 日韩欧美精品v在线| 男女之事视频高清在线观看| 又爽又黄a免费视频| 国产高清视频在线播放一区| 国产精品女同一区二区软件| 尤物成人国产欧美一区二区三区| 搡老岳熟女国产| 97热精品久久久久久| 亚洲在线自拍视频| 亚洲激情五月婷婷啪啪| av卡一久久| 久久久久久久久久成人| 亚洲精品成人久久久久久| 嫩草影院入口| av在线老鸭窝| 美女免费视频网站| 男女视频在线观看网站免费| 成人一区二区视频在线观看| 久久久久性生活片| 人妻制服诱惑在线中文字幕| 97人妻精品一区二区三区麻豆| 亚洲va在线va天堂va国产| 老司机午夜福利在线观看视频| 国产黄片美女视频| 免费高清视频大片| 干丝袜人妻中文字幕| 插逼视频在线观看| 中国国产av一级| 午夜激情欧美在线| 免费看a级黄色片| 免费人成视频x8x8入口观看| 欧美中文日本在线观看视频| 精品国内亚洲2022精品成人| 91久久精品电影网| 岛国在线免费视频观看| 在线国产一区二区在线| 99热只有精品国产| 亚洲图色成人| 亚洲美女视频黄频| 久久久国产成人精品二区| 在线天堂最新版资源| 嫩草影院新地址| 午夜久久久久精精品| 亚洲精品一区av在线观看| 欧美zozozo另类| 白带黄色成豆腐渣| 综合色av麻豆| 天堂网av新在线| 看非洲黑人一级黄片| 成人性生交大片免费视频hd| 亚洲精品日韩在线中文字幕 | avwww免费| 久久九九热精品免费| 欧美高清成人免费视频www| or卡值多少钱| 亚洲在线观看片| 日本色播在线视频| 国产精品美女特级片免费视频播放器| 在线观看66精品国产| 最近视频中文字幕2019在线8| 91在线观看av| 哪里可以看免费的av片| 国产色爽女视频免费观看| 神马国产精品三级电影在线观看| 亚洲四区av| 免费av观看视频| 久久精品国产清高在天天线| 午夜精品国产一区二区电影 | 精品久久久久久久久久免费视频| 国产成人91sexporn| 免费看日本二区| 精品熟女少妇av免费看| а√天堂www在线а√下载| 天堂av国产一区二区熟女人妻| 成人国产麻豆网| 亚洲国产精品国产精品| 亚洲精品日韩av片在线观看| 可以在线观看的亚洲视频| 22中文网久久字幕| 欧美xxxx性猛交bbbb| 日产精品乱码卡一卡2卡三| 啦啦啦啦在线视频资源| 老熟妇仑乱视频hdxx| 乱系列少妇在线播放| 男人舔奶头视频| 亚洲四区av| 国产精品一区二区三区四区免费观看 | 美女内射精品一级片tv| 国产精品亚洲美女久久久| 国产av不卡久久| 波多野结衣巨乳人妻| 波多野结衣高清作品| 欧美最黄视频在线播放免费| 国产av不卡久久| 直男gayav资源| 国产精品国产三级国产av玫瑰| 亚洲久久久久久中文字幕| 国产高潮美女av| 国内精品宾馆在线| 国产白丝娇喘喷水9色精品| av卡一久久| 精品久久久久久久久久久久久| 成人精品一区二区免费| 亚洲av第一区精品v没综合| 国产精品久久久久久亚洲av鲁大| 啦啦啦韩国在线观看视频| 久久天躁狠狠躁夜夜2o2o| 久久精品夜夜夜夜夜久久蜜豆| 国产精品人妻久久久久久| 欧美中文日本在线观看视频| 91在线精品国自产拍蜜月| 久久这里只有精品中国| 亚洲欧美日韩东京热| 成人鲁丝片一二三区免费| 亚洲精品国产成人久久av| avwww免费| av免费在线看不卡| 黄色配什么色好看| av专区在线播放| 啦啦啦啦在线视频资源| 国产单亲对白刺激| 亚洲美女搞黄在线观看 | 亚洲电影在线观看av| 久久精品91蜜桃| 直男gayav资源| 亚洲欧美精品综合久久99| 色哟哟·www| 日韩制服骚丝袜av| www日本黄色视频网| 国产 一区精品| 国产国拍精品亚洲av在线观看| 亚洲av第一区精品v没综合| 国产淫片久久久久久久久| 日本黄色视频三级网站网址| 人人妻,人人澡人人爽秒播| 色吧在线观看| 欧美性猛交黑人性爽| 免费人成视频x8x8入口观看| 国产精品一区二区免费欧美| 欧美极品一区二区三区四区| 老女人水多毛片| 国产精品不卡视频一区二区| 看十八女毛片水多多多| 精品一区二区三区视频在线观看免费| 1000部很黄的大片| 欧美一区二区精品小视频在线| 有码 亚洲区| 亚洲性夜色夜夜综合| av在线播放精品| 亚洲国产精品成人综合色| 国产淫片久久久久久久久| 国产黄色视频一区二区在线观看 | 国产精品久久久久久久久免| 欧美极品一区二区三区四区| 亚洲av成人精品一区久久| 国产成人一区二区在线| 一级黄色大片毛片| 大型黄色视频在线免费观看| 黄片wwwwww| 国产精品人妻久久久影院| 舔av片在线| 乱人视频在线观看| 一级毛片久久久久久久久女| 性插视频无遮挡在线免费观看| 能在线免费观看的黄片| 老司机福利观看| 观看免费一级毛片| 天堂影院成人在线观看| 精品久久久久久成人av| 国产在线男女| 亚洲成人av在线免费| 一进一出抽搐gif免费好疼| 人妻夜夜爽99麻豆av| 伦理电影大哥的女人| 热99在线观看视频| 少妇猛男粗大的猛烈进出视频 | 免费人成视频x8x8入口观看| 午夜福利成人在线免费观看| 在线免费观看不下载黄p国产| 性欧美人与动物交配| 精品国内亚洲2022精品成人| 午夜福利高清视频| 91麻豆精品激情在线观看国产| 俺也久久电影网| 久久99热6这里只有精品| 中文字幕av在线有码专区| 中国美白少妇内射xxxbb| 精品一区二区三区视频在线观看免费| 成年版毛片免费区| 黄片wwwwww| 欧美性猛交黑人性爽| 成人午夜高清在线视频| 久久国内精品自在自线图片| 特大巨黑吊av在线直播| 特级一级黄色大片| 人人妻人人看人人澡| 九九在线视频观看精品| 99热网站在线观看| 欧美zozozo另类| 夜夜夜夜夜久久久久| 国产亚洲精品综合一区在线观看| 亚洲第一区二区三区不卡| 深夜a级毛片| 欧美日韩乱码在线| 欧美3d第一页| 欧美+日韩+精品| 国产午夜精品久久久久久一区二区三区 | 五月玫瑰六月丁香| 99在线视频只有这里精品首页| 成人欧美大片| 此物有八面人人有两片| 舔av片在线| 国产亚洲欧美98| 色综合色国产| 少妇丰满av| 成人无遮挡网站| 69av精品久久久久久| 国产大屁股一区二区在线视频| 亚洲乱码一区二区免费版| 男插女下体视频免费在线播放| 亚洲欧美日韩东京热| 露出奶头的视频| 亚洲av成人精品一区久久| 国产蜜桃级精品一区二区三区| 美女高潮的动态| 欧美又色又爽又黄视频| 成人av在线播放网站| 小说图片视频综合网站| av在线播放精品| 久久久久免费精品人妻一区二区| 天堂动漫精品| 99久久成人亚洲精品观看| 精品久久久久久久久亚洲| 亚洲成a人片在线一区二区| 悠悠久久av| 给我免费播放毛片高清在线观看| 网址你懂的国产日韩在线| 亚洲国产精品成人综合色| 日日摸夜夜添夜夜添av毛片| 综合色av麻豆| 美女被艹到高潮喷水动态| 国产av不卡久久| 欧美一级a爱片免费观看看| 日韩制服骚丝袜av| 日本三级黄在线观看| 久久亚洲精品不卡| 如何舔出高潮| 亚洲美女黄片视频| 欧美丝袜亚洲另类| 欧美三级亚洲精品| 俺也久久电影网| av天堂中文字幕网| 夜夜爽天天搞| 亚洲av五月六月丁香网| 一个人观看的视频www高清免费观看| 午夜免费男女啪啪视频观看 | 欧美极品一区二区三区四区| 18禁黄网站禁片免费观看直播| 最新在线观看一区二区三区| 亚洲av中文av极速乱| 别揉我奶头~嗯~啊~动态视频| 国产一级毛片七仙女欲春2| 一级毛片我不卡| 在线观看免费视频日本深夜| 18禁在线无遮挡免费观看视频 | 国产国拍精品亚洲av在线观看| 亚洲图色成人| 搡女人真爽免费视频火全软件 | 国产探花极品一区二区| 综合色丁香网| 成人永久免费在线观看视频| 黄色视频,在线免费观看| 久久久久免费精品人妻一区二区| 最近视频中文字幕2019在线8| 亚洲欧美成人精品一区二区| 久久久久久久午夜电影| 波多野结衣巨乳人妻| 久久久精品欧美日韩精品| 日韩在线高清观看一区二区三区| 中文字幕熟女人妻在线| 亚洲国产日韩欧美精品在线观看| 中文字幕熟女人妻在线| 国产午夜精品论理片| 91在线精品国自产拍蜜月| 两性午夜刺激爽爽歪歪视频在线观看| 综合色丁香网| 成年版毛片免费区| 一边摸一边抽搐一进一小说| 亚洲国产高清在线一区二区三| 久久九九热精品免费| 人妻夜夜爽99麻豆av| 乱系列少妇在线播放| 99国产极品粉嫩在线观看| 中文字幕精品亚洲无线码一区|