• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dynamic analysis of spinning solar sails at deployment process

    2017-11-17 08:31:54XinxingZHANGChunyanZHOU
    CHINESE JOURNAL OF AERONAUTICS 2017年5期

    Xinxing ZHANG,Chunyan ZHOU

    School of Aerospace Engineering,Beijing Institute of Technology,Beijing 100081,China

    Dynamic analysis of spinning solar sails at deployment process

    Xinxing ZHANG,Chunyan ZHOU*

    School of Aerospace Engineering,Beijing Institute of Technology,Beijing 100081,China

    The spinning deployment process of solar sails is analyzed in this study.A simplified model is established by considering the out-of-plane and in-plane motions of solar sails.The influences of structure parameters,initial conditions,and feedback control parameters are also analyzed.A method to build the geometric model of a solar sail is presented by analyzing the folding process of solar sails.Thefinite element model of solar sails is the n established,which contains continuous cables and sail membranes.The dynamics of the second-stage deployment of solar sails are simulated by using ABAQUS software.The influences of the rotational speed and out-of-plane movement of the hub are analyzed by different tip masses,initial velocities,and control parameters.Compared with the results from the oretical models,simulation results show good agreements.

    1.Introduction

    Solar sails have gained widespread attention for several decades because of the ir significant advantages,including small package volume,low energy consumption,and low cost.1–4The development of a solar sail spacecraft involves a wide range of technologies,and the manner in which to deploy a large area sail in space is a key design issue.5Among the proposed several deployment methods,the spinning deployment of solar sails is an ideal technique that utilizes centrifugal force to deploy sail membranes.6As a successful case,the Japan Aerospace Exploration Agency launched a spinningdeployable spacecraft named IKAROS on May 21,2010.7IKAROS succeeded in deploying a 20 m span solar sail from a wrapped status and managed to pass by Venus with the help of solar radiation pressure.8

    Given the high flexibility of the membrane structure,rigorous control strategies must be used to avoid the entanglements or yo-yo-like oscillations caused by the repeated coiling and uncoiling of membranes to and from the hub.9–11Gardsback et al.12reviewed the existing control strategies for the centrifugal deployment of space webs.They concluded that stable deployment can be obtained by using the method of applying torque to the center hub,namely,the Melnikov–Koshelev law.10Gardsback and Tibert presented a simplified hubcable-mass model to qualitatively analyze the deployment dynamics in which out-of-plane motions were neglected.13Finite Element(FE)calculation using LSDYNA was proposed to simulate the dynamical response of the real deployment system.14Shirasawa et al.applied the Multi-Particle Method(MPM)to the dynamic analysis of IKAROS,and approximated the solar membrane by using the network of springs with lumped masses.15Haraguchi et al.used the model of MPM to validate the control laws for the spinning deployment of a solar sail system.16,17

    A two-step deployment strategy was applied for the IKAROS.First,the four folded arms were slowly released from the tip by rotating the stopper relative to the hub.At the second stage,the four stoppers were released to deploy the entire membrane.A large disturbance at the beginning of the second-stage deployment was observed,which caused significant oscillations during the second-stage deployment.18Miyazaki et al.developed an FE model to analyze the nutation motion at firststage deployment.18,19Severe out-of-plane oscillations were also observed at the beginning of the second stage during the ground simulation tests conducted by Zhou et al.20

    This study aims to analyze the deployment dynamics during the second stage under the initial perturbation of the instantaneous spreading out of the membrane.Following the work of Gardsback and Tibert13,a simplified hub-cable-mass model,including out-of-plane motion,is established to qualitatively analyze the effect of control parameters.An FE model of the solar sail is the n established.This model contains continuous cables and sail membranes.The second-stage deployment of a solar sail is simulated by using ABAQUS software.The influences of the rotational speed and out-of-plane movement of the hub are analyzed under different tip masses,initial velocities,and other factors.

    2.Analytical model analysis

    At the end offirst-stage deployment,the membrane arms togethe r with the center hub rotate stably with the same rotational speed.At the beginning of the second-stage deployment,the membrane is instantaneously deployed when the stopper is released.For the conservation of angular momentum,the rotational speed of the membrane becomes lower than that of the center hub,thus causing the in-plane oscillations of the system.When the membrane is spread from a zigzag folding pattern to a plane,out-of-plane motion is produced.To stabilize the deploying process,the system is controlled by applying a torque to the center hub with torque control law.This law implies that the torque increases when the hub angular velocity decreases and vice versa.To estimate the oscillations and control method,a simple analytical model is used to describe the deployment dynamics qualitatively.The development of our analytical model follows the model presented by Gardsback and Tibert.13The out-of-plane motions are included in our analytical model.The following assumptions are also made:

    Fig.1 Analytical model for a point mass.

    (1)The mass of the hub is higher than the sum of attached membrane,cable,and tip mass;hence,the hub is assumed fixed except its rational freedom in OZ axis.

    (2)The motion of the membrane,cable,and tip mass is dominated by the cable and tip mass.The effect of membrane motion is equivalent to the additional mass at cable tip.

    (3)Each part of the sail motion is the same(symmetric).

    The analytical model is described in Fig.1.With the assumption of symmetric motion,only one part of the sail is considered for analysis.The entire sail consists offour parts.The coordinate system OXYZ is fixed with the center hub of the solar sail.In this model,the center hub is only free in its rotational motion by the OZ axis.The distancefrom the tip to the center hub edge is the length of the cable.This model can describe the relative position and motion of the center and sails by lengths,angles,and velocities.The system can be described by three degrees offreedom,the angular velocity of center hub ω,the relative in-plane rotational angle of the cable φ,and the out-of-plane rotational angle ψ.In this study,r is the hub radius and L is the cable length.

    2.1.Equations of system dynamics

    According to Lagrange’s law of motion,the dynamic equations of the system can be described as follows20:where g is the gravity coefficient for ground tests,which is zero on orbit;m is the equivalent mass of the membrane,cable,and tip mass system,and F is the tension force in the cable.The equivalent mass is determined by total inertial moment of the membrane,cable,and tip mass system.

    During the deployment,an external moment M is applied to the center hub by the actuators that are installed on the hub edge.Accordingly,the hub dynamic equation can be described as

    where J is the moment ofinertia of the center hub,M is a control torque,n is the number of cables.An appropriate M should be set to ensure successful and steady deployment.Several control strategies have been discussed.13One of the successful control laws involve increasing the torque applied to the hub as the hub angular velocity decreases;this approach was proposed by Melnikov and Koshelev for the deployment of the Znamya-2 reflector.10In our model,the external torque M applied to the hub is correlated with the error of the hub current angular velocity:

    where k is the proportional gain,and ω*is the target hub rotational speed.

    To analyze the effect of physical parameters on the dynamic response of the system,the non-dimensional parameters are introduced as follows:

    Thus,the dynamics of this system are described as follows:

    2.2.Results of numerical simulation

    Numerical calculations are conducted to assess the effect of design parameters on the dynamic stability of the system,such as the torque and power requirements for the given deployment times with different masses and sizes of the hub and membrane.For the experimental system used by Zhou et al.20,the radius of the center hub is r=0.075 m,tip mass is m=0.02 kg,the moment ofinertia of the center hub is J=0.0281 kg·m2,the number offolded arms is n=4,the length of the cables is L=0.66 m,the center hub is controlled by a motor,the target rotational speed is set as ω*=20 rad/s,and the control gain is set as k=-0.06 N ·m ·s/rad.Thus,the non-dimensional parameters defined by Eq.(6)are=62.44,=8.8,and=-6.67.The dynamic response of the system can be calculated from Eqs.(7)–(10).

    2.2.1.Effect of target hub rotational speed

    ~ω0denotes the ratio of the hub speed at the beginning of the second-stage deployment to that of the target speed at the end of deployment.Fig.2 shows the curves of the in-plane relative rotational anglewith four different initial angular velocityvalues.When=0.1,the angle parameter~φ increases unacceptably,and thus sails coil on the hub in the deployment process.Hence,target hub rotational speed lower than the initial speed should be considered for the control of the second-stage deployment.

    2.2.2.Effect ofinitial relative rotational speed of membrane on that of hub

    At the beginning of the second-stage deployment,as stopper is released,the membrane is instantaneously deployed.One of the aftereffects is that the rotational speed of the membrane becomes lower than that of center hub,which means a negative initial value of.Fig.3 shows the curves ofin-plane relative rotational anglewith four different initial values ofWhen the initialis as large as=-8,the membrane will become stable at=2π,thus entangling the whole system.Notably,when=-1,increases rapidly with time,and thus sails coil forward on the hub in the deployment process.Therefore,the initial in-plane relative rotational speed is important for system dynamics.Careful control parameters should be designed with a full consideration of the relative initial rotation caused by the sudden spread out of membrane.

    Fig.2 Response of- under different values of=8.8,=-6.67=62.44=0,=-0.628=0.048=-0.314).

    Fig.3 Response of under different values of=8.8,=-6.67,=62.44,=0.5,=0,=0.048,=-0.314).

    2.2.3.Effect ofinitial out-of-plane angle

    The other aftereffect of the sudden spread out of the membrane is small out-of-plane disturbance.Figs.4 and 5 show the curves of the in-plane and out-of-plane relative motions with three different initial values of.The results of stability analysis are confirmed by the calculation assumption that the out-of-plane motion has a small influence on in-plane motion and the torque control on the hub cannot damp out-of-plane motion.

    3.Finite element analysis

    The qualitative dynamic prediction of the deployment process can be studied by analyzing the analytical model,and an accurate prediction should be studied in the FE method.The interactions between four petals of membranes can be included by FE Analysis(FEA).

    A 3D FE model including a center hub,membrane,cables,and four corner masses was implemented.The center hub was constrained to rotate around its center axis;hence,the center hub motion was one-dimensional.The geometry and connectivity of the node and element were generated in ABAQUS.The equations of motion were the n solved in ABAQUS by using the central-difference method for explicit time integration.The main differences compared with the analytical model are that the influence of the membrane motion can be studied with the FE model and that the cables are unnecessarily straight during the deployment.

    Fig.4 Response of- and- with different values of=8.8,=0.5,=62.44=0.5=0.5,=-0.628,=0.048).

    Fig.5 Response of with different values of=8.8,=0.5=62.44=0.5=0.5=-0.628=0.048).

    3.1.Model setup for folded membrane

    The accuracy of an FE model is strongly dependent on how well the modeled folded configuration coincides with the real one.A good geometry model must befirst obtained before the finite analysis of the deployment processes.As shown in Fig.6,a square plane OABC in plane OXY is folded to OA′B′C′.The constraints in the folding process are as follows:(A)Point A is in plane OXZ;(B)Point B is in plane X=Y;(C)Point C is in plane OYZ.

    The relationship of angle θ and α can be expressed as follows:

    According to the relationship of angle θ and α and the dimensions of plane OABC,the position offolded plane OA′B′can be obtained,which is shown in Fig.6.Position of the ith folding point in OXZ planeis determined by

    Fig.6 Folding process of a square plane.

    where Δl is the width of each folded strip.And position of the ith folding point in X=Z planeis determined by

    Fig.7 Folding process of solar sail model.

    Fig.8 Establishment process of solar sail model.

    Table 1 Structural properties of solar sail model.

    Fig.9 Comparison of experimental and simulation results for the second-stage deployment process.

    By referring to several similar schemes of solar sail folded models8,9,a folding scheme is shown in Fig.7.

    Fig.10 Curves of hub rotational speed for free deployment with different initial rotational speeds(tip mass=0.1 kg).

    Fig.11 Curves of hub rotational speed for free deployment with different tip masses(ω0=10 rad/s).

    Fig.12 Scheme of positions of tip masses.

    According to the proposed fold scheme,a solar sail model is established,as shown in Fig.8.This model includes a center hub,cables,sail membranes,and tip masses.In this model,a cable is used to connect the sail membrane and center hub.Moreover,four tip masses are present and each of the m is located at the corner of the membrane.

    This model is not folded completely and can be used to describe the initial status for the second-stage deployment.The center hub is modeled as a cylinder with rigid material,cables are modeled as beam element,and sail membrane is modeled as shell element.The details of the FE model are listed in Table 1.

    Fig.13 Time history of φ1to φ4with various initial rotational speeds(tip mass=0.1 kg).

    Simulations have been conducted by applying ABAQUS via the explicit integration method.During the analysis,the contact of each part is calculated by using the general contact method supported by ABAQUS.

    An FEA model is established according to ground tests conducted by the same research group of the present study.20As shown in Fig.9,simulation results can simulate high comparability for the second-stage deployment process.

    3.2.FEA results for free deployment without control

    Contrary to the the oretical straight cable assumption,severe oscillations are observed because of the elastic retrieval and stretching of the cable with tip mass before the system becomes stable.For a 0.1 kg tip mass,Fig.10 shows the time history curves of the hub rotational speed with different initial rotational speeds at the end of first-stage deployment.Higher initial rotational speeds lead to higher vibrations.Fig.11 shows the time history curves of the hub rotational speed with different tip masses.The oscillations become more severe with heavier tip mass.

    During the deployment process,the relative rotational angle of the membrane to the hub φ and out-of-plane motion angle ψ can be obtained by positioning the tip masses relative to the hub.Fig.12 shows the positions of four tip masses P1to P4.φ1to φ4are the relative rotational angles between the tip mass and the hub.Z1to Z4are the out-of-plane displacements of the four tip masses.

    Figs.13 and 14 demonstrate the in-plane rotational angles φ1to φ4with various initial rotational speeds and various tip masses,respectively.Fig.15 shows the out-of-plane positions of the tip masses with various initial rotational speeds.Both the in-plane and out-of-plane vibrations increase with higher initial rotational angle and heavier tip masses because more elastic energy is stored in the cable.Because of gravitational acceleration,out-of-plane motion appears at the end of first stage.Small amplitude vibrations continue after the severe flexible vibrations of the cable damping off.However,for smaller initial rotational angle and lighter tip masses,the motions of the membrane lose synchronization because the motion of the system is dominated by unordered flexible waves in the membrane at low centrifugal forces.

    Fig.16 demonstrates that out-of-plane vibration will not decay with time;this finding agrees with the analytical estimations in the previous section.Fig.16 shows out-of-plane vibration frequencies with various stable vibration speeds of the system ωstable.The out-of-plane vibration frequencies are near the stable vibration speed of the system ωstable;this finding also agrees with the theoretical estimation and experimental results.20

    Fig.14 Time history of φ1to φ4with various tip masses(ω0=10 rad/s).

    Fig.15 Time history of Z1to Z4with various initial rotational speeds(tip mass=0.2 kg).

    Fig.16 Out-of-plane vibration frequencies vs stable vibration speed of system ωstable.

    3.3.FEA results for deployment with control

    To evaluate the effect of the control method proposed in Section 2,a torque is applied to the center hub with torque control law.This law implies that the torque increases when the hub angular velocity decreases and vice versa.This analysis is realized in ABAQUS with subprogram VUAMP.

    Fig.17 Time history of hub rotational speed with different control gains k(tip mass=0.2 kg,ω0=20 rad/s,ω*=15 rad/s).

    A torque M=k(ω - ω*)is applied to the hub.Fig.17 shows the motion of a hub with different proportional gains k.Simulation results reveal that the in-plane vibration will continue for a long time if no control is applied.The in-plane vibration amplitude is lower with torque control.Furthermore,high proportional gains k indicate that the in-plane motion is suppressed quickly.

    4.Conclusions and discussion

    In this paper,a simplified model considering the out-of-plane motion of a solar sail is established to qualitatively analyze the dynamics of spinning solar sail at the second stage.The influences of structure parameters,initial conditions,and feedback control parameters are also analyzed to stabilize the deploying process.Theoretical analysis reveals that ratio of membrane size to hub size is important for ensuring successful deployment.An excessive size ratio will induce severe yo-yolike vibration in the system even with torque control.Moreover,a high ratio of membrane moment ofinertia to that of the hub may cause long in-plane vibration time even with torque control.For small initial perturbations,in-plane vibration may be ceased by the torque control applied to the hub,whereas out-of-plane vibration will succeed without a special damping strategy.Lower target rotational speed than the initial hub speed is preferred to obtain stable control.Notably,for finite initial in-plane relative rotation,the membrane may be secured to the hub with some combination of control parameters.

    The second-stage deployment of the solar sail is simulated by using ABAQUS software.Thefolded configuration of the solar sail membrane model is established first,and dynamic simulations are conducted with explicit solutions.Severe vibration caused by the elastic flexibility of the cable system is observed.Non-synchronous motions of the four petals appear for small initial rotational speed and tip mass.

    Interestingly,cables made of woven wire strands have small elastic flexibility,and this type is often used in the design of solar sail.The dynamic performance of the cable material may influence the dynamics of spinning solar sail deployment,which should be analyzed in future study.

    Acknowledgments

    This study was supported in part by the National Natural Science Foundation of China(Nos.11290151 and 51075032).

    1.Catharine CF,Stoakley DM,Clair AK.Molecularly oriented films for space applications. High Perform Polym 1999;11(1):145–56.

    2.Darooka DK,Jensen DW.Advanced space structure concepts and the ir development.Proceedings of the 42th AIAA/ASME/ASCE/AHS/ASC structures,structural dynamics,and materials conference and exhibit;2001 Apr.16–19;Seattle,USA.Reston:AIAA;2001.p.1257.

    3.Hiroshi F,Makiko N,Satoshi M,Jodoi D,Terada Y,Takadamak K.Concept of inflatable tensegrity for large space structures.Proceedings of the 47th AIAA/ASME/ASCE/AHS/ASC structures,structural dynamics,and materials conference and exhibit;2006 May 1–4;Newport,Rhode Island.Reston:AIAA;2006.p.1700.

    4.Nakasuka S,Aoki T,Ikeda I,Tsuda Y,Kawakatsu Y.‘Furoshiki satellite”—A large membrane structure as a novel space system.Acta Astronaut 2001;48(5–12):461–8.

    5.Macdonald M.Advances in solar sailing.Chichester:Springer Praxis Books;2014.p.961-76.

    6.Matunaga S,Yabe H,Nakaya K,Iai M,Omagari K,Mori O.Membrane deployment for spinning formation flight solar sail.Proceedings of the 14th ISAS/JAXA workshop on astrodynamics and flight mechanics;2004 July;Tokyo,Japan.Tokyo:Japan Aerospace Exploration Agency;2004.p.A-11.

    7.Mori O,Sawada H,Funase R,Morimoto M,Endo T,Yamamoto T,et al.First solar power sail demonstration by IKAROS.Trans Japanese Soc Artif Intell,Aerospace Technol Japan 2011;8(27):425–31.

    8.Tsuda Y,Mori O,Funase R,Sawada H,Yamamoto T,Saiki T,et al.Flight status of IKAROS deep space solar sail demonstrator.Acta Astronaut 2011;69(9):833–40.

    9.Hedgepeth JM.Dynamics of a large spin-stiffened deployable paraboloidal antenna.J Spacecraft Rock 1970;7(9):1043–8.

    10.Melnikov VM,Koshelev VA.Large space structures formed by centrifugal forces.1st ed.New York:CRC Press;1998.p.21–61.

    11.Miyazaki Y,Iwai Y.Dynamics model of solar sail membrane.14th workshop on astrodynamics and flight mechanics;2004 Jul 26–27;Kanagawa,Japan.Tokyo:Institute of Space and Astronautical Science,Japan Aerospace Exploration Agency;2005.p.32–7.

    12.Gardsback M,Tibert G,Izzo D.Design considerations and deployment simulations of spinning space webs.48th AIAA/ASME/ASCE/AHS/ASC structures,structuraldynamics,and materials conference;2007 Apr.23–26;Honolulu,Hawaii.Reston:AIAA;2007.p.1503–12.

    13.Gardsback M,Tibert G.Deployment control of spinning space webs.J Guid Control Dynam 2009;32(1):40–50.

    14.Gardsback M,Tibert G.Optimal deployment control of spinning space webs and membranes.J Guid Control Dynam 2009;32(5):1519–30.

    15.Shirasawa Y,Mori O,Miyazaki Y,Miyazaki Y,Sakamoto H,Hasome M,et al.Analysis of membrane dynamics using multi-particle model for solar sail demonstrator ‘IKAROS”.Proceedings of the 52nd AIAA/ASME/ASCE/AHS/ASC structure,structural dynamics,and materials conference;2011 Apr.4–7;Denver,USA.Reston:AIAA;2011.p.1890.

    16.Haraguchi D,Sakamoto H,Shirasawa Y,Mori O.Design criteria for spin deployment of gossamer structures considering nutation dynamics.Proceedings of AIAA guidance,navigation,and control conference;2010 Aug 2–5;Toronto,Canada.Reston:AIAA;2010.p.8072.

    17.Sakamoto H,Shirasawa Y,Haraguchi D,Sawada H,Mori O.A spin up control schemefor contingency deployment of the sailcraft IKAROS.Proceedings of 52nd AIAA/ASME/ASCE/AHS/ASC structures,structural dynamics and materials conference;2011 Apr.4–7;Denver,USA.Reston:AIAA;2011.p.1892.

    18.Sakamoto H,Miyazaki Y,Mori O.Transient dynamic analysis of gossamer-appendage deployment using nonlinear finite element method.J Spacecraft Rockets 2011;48(5):881–90.

    19.Miyazaki Y,Shirasawa Y,Mori O,Sawada H.Finite element analysis of deployment of gossamer space structure.Proceedings of the ECCOMAS the matic conference on multibody dynamics 2011;2011 Jul 4–7;Brussels,Belgium.Melville:International Center for Numerical Methods in Engineering;2011.

    20.Zhou XJ,Zhou CY,Zhang XX,Hu HY.Ground simulation tests of spinning deployment dynamics of a solar sail.J Vib Eng 2015;28(2):175–82[Chinese].

    16 June 2016;revised 3 March 2017;accepted 25 May 2017

    Available online 23 August 2017

    Deployment;

    Dynamics;

    Solar sail;

    Spinning;

    Stability

    *Corresponding author.

    E-mail address:cyzhou@bit.edu.cn(C.ZHOU).

    Peer review under responsibility of Editorial Committee of CJA.

    Production and hosting by Elsevier

    http://dx.doi.org/10.1016/j.cja.2017.08.006

    1000-9361?2017 Production and hosting by Elsevier Ltd.on behalf of Chinese Society of Aeronautics and Astronautics.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    ?2017 Production and hosting by Elsevier Ltd.on behalf of Chinese Society of Aeronautics and Astronautics.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    亚洲国产欧美网| 9191精品国产免费久久| 亚洲狠狠婷婷综合久久图片| 久久久久国内视频| 在线十欧美十亚洲十日本专区| 欧美丝袜亚洲另类 | 黄色丝袜av网址大全| 十八禁网站免费在线| 在线a可以看的网站| 黄色丝袜av网址大全| 国产亚洲av嫩草精品影院| 久久精品国产清高在天天线| 999久久久精品免费观看国产| 久久久久久久久免费视频了| 欧美成狂野欧美在线观看| 天堂√8在线中文| 悠悠久久av| 亚洲午夜理论影院| 欧美成人免费av一区二区三区| 亚洲一卡2卡3卡4卡5卡精品中文| 老汉色av国产亚洲站长工具| 好男人电影高清在线观看| 手机成人av网站| 国产亚洲精品综合一区在线观看 | 久久久久久人人人人人| 精品久久久久久久久久久久久| 久久中文看片网| 久久久久久人人人人人| 又黄又爽又免费观看的视频| 免费一级毛片在线播放高清视频| 99热6这里只有精品| 亚洲国产欧洲综合997久久,| 午夜两性在线视频| 国产成人欧美在线观看| 日韩欧美精品v在线| avwww免费| 在线视频色国产色| 国产精品综合久久久久久久免费| 日韩欧美精品v在线| АⅤ资源中文在线天堂| 叶爱在线成人免费视频播放| 亚洲性夜色夜夜综合| 美女高潮喷水抽搐中文字幕| 校园春色视频在线观看| 久久久国产精品麻豆| 一区福利在线观看| 久久香蕉精品热| 色尼玛亚洲综合影院| 欧美色欧美亚洲另类二区| 18美女黄网站色大片免费观看| 国产欧美日韩精品亚洲av| 色综合亚洲欧美另类图片| 国产精品国产高清国产av| netflix在线观看网站| 黄色丝袜av网址大全| 亚洲欧美激情综合另类| 久9热在线精品视频| 国产伦人伦偷精品视频| 免费电影在线观看免费观看| 波多野结衣高清无吗| 欧美精品啪啪一区二区三区| 欧美日本视频| 丁香六月欧美| 免费看日本二区| 精品久久久久久久末码| 黄片小视频在线播放| 老熟妇仑乱视频hdxx| 欧美 亚洲 国产 日韩一| 国产片内射在线| 99热6这里只有精品| 国产伦人伦偷精品视频| 日韩欧美三级三区| 国产精品亚洲av一区麻豆| 18禁黄网站禁片免费观看直播| 亚洲av成人一区二区三| √禁漫天堂资源中文www| 亚洲一卡2卡3卡4卡5卡精品中文| 嫩草影视91久久| 久久国产精品人妻蜜桃| 男女那种视频在线观看| 两个人看的免费小视频| 非洲黑人性xxxx精品又粗又长| 一边摸一边抽搐一进一小说| 美女大奶头视频| 三级国产精品欧美在线观看 | 国内久久婷婷六月综合欲色啪| 婷婷六月久久综合丁香| 人人妻人人看人人澡| 国产成人av激情在线播放| 人妻丰满熟妇av一区二区三区| 亚洲天堂国产精品一区在线| 91成年电影在线观看| 我的老师免费观看完整版| 亚洲在线自拍视频| 亚洲人成电影免费在线| 午夜a级毛片| 熟女电影av网| 亚洲国产日韩欧美精品在线观看 | 99久久久亚洲精品蜜臀av| 国内精品一区二区在线观看| 成人精品一区二区免费| 美女扒开内裤让男人捅视频| tocl精华| 国产av又大| 欧美成狂野欧美在线观看| 欧美成狂野欧美在线观看| 久久性视频一级片| 俺也久久电影网| 丰满人妻一区二区三区视频av | 亚洲18禁久久av| www.999成人在线观看| 国产高清视频在线观看网站| 十八禁网站免费在线| 中文字幕人成人乱码亚洲影| 国产亚洲av高清不卡| 看片在线看免费视频| 亚洲avbb在线观看| 久久久久久久精品吃奶| 精品乱码久久久久久99久播| 日韩欧美精品v在线| 国产av在哪里看| 亚洲精品中文字幕在线视频| 日日爽夜夜爽网站| 天堂影院成人在线观看| 亚洲人与动物交配视频| 两性夫妻黄色片| 91av网站免费观看| 国产精品久久久久久精品电影| 成人三级黄色视频| 一区二区三区激情视频| 成人高潮视频无遮挡免费网站| 国产免费男女视频| 真人做人爱边吃奶动态| 啪啪无遮挡十八禁网站| 国产欧美日韩精品亚洲av| 国产真人三级小视频在线观看| 国产亚洲精品第一综合不卡| 成人av一区二区三区在线看| 麻豆成人av在线观看| 日韩国内少妇激情av| 黑人操中国人逼视频| 中文字幕久久专区| 日韩欧美国产在线观看| 亚洲欧美精品综合久久99| 三级毛片av免费| 久久九九热精品免费| 69av精品久久久久久| 亚洲国产精品成人综合色| 淫秽高清视频在线观看| 免费av毛片视频| 精品国产美女av久久久久小说| 久久精品夜夜夜夜夜久久蜜豆 | 老熟妇仑乱视频hdxx| 亚洲人成网站在线播放欧美日韩| 超碰成人久久| 熟妇人妻久久中文字幕3abv| 一级毛片高清免费大全| 国产成人av教育| 国内精品久久久久久久电影| 久久草成人影院| 成人精品一区二区免费| 琪琪午夜伦伦电影理论片6080| 中文字幕人妻丝袜一区二区| 床上黄色一级片| 听说在线观看完整版免费高清| 午夜a级毛片| 两个人的视频大全免费| 老司机在亚洲福利影院| 夜夜看夜夜爽夜夜摸| 99久久久亚洲精品蜜臀av| 久久久久国产精品人妻aⅴ院| 亚洲精品av麻豆狂野| 免费在线观看日本一区| 啦啦啦韩国在线观看视频| 欧美丝袜亚洲另类 | 国产69精品久久久久777片 | 欧美日韩乱码在线| 极品教师在线免费播放| 黄片小视频在线播放| 宅男免费午夜| 国产精品一及| 国产91精品成人一区二区三区| 91麻豆精品激情在线观看国产| 久久婷婷人人爽人人干人人爱| 男女午夜视频在线观看| 欧美又色又爽又黄视频| 久久久久亚洲av毛片大全| 亚洲乱码一区二区免费版| 麻豆成人av在线观看| 亚洲成人免费电影在线观看| 伊人久久大香线蕉亚洲五| 人人妻,人人澡人人爽秒播| 久久精品夜夜夜夜夜久久蜜豆 | 91国产中文字幕| 久久天堂一区二区三区四区| 国产爱豆传媒在线观看 | 高清毛片免费观看视频网站| 欧美成狂野欧美在线观看| 国产av又大| 亚洲五月天丁香| 一夜夜www| 国产一区二区三区在线臀色熟女| 亚洲精品中文字幕一二三四区| 久久精品国产亚洲av高清一级| 国内毛片毛片毛片毛片毛片| 色综合站精品国产| 日本免费a在线| 久久久久久久精品吃奶| 黄色视频不卡| 嫩草影视91久久| 日韩精品青青久久久久久| 999精品在线视频| 一边摸一边做爽爽视频免费| 又粗又爽又猛毛片免费看| 男人舔女人的私密视频| 久久精品人妻少妇| 美女免费视频网站| 国产成人系列免费观看| 国产精品久久久av美女十八| 在线永久观看黄色视频| 亚洲av日韩精品久久久久久密| 长腿黑丝高跟| 久久亚洲精品不卡| 国内揄拍国产精品人妻在线| 免费电影在线观看免费观看| 哪里可以看免费的av片| 欧美性猛交黑人性爽| 久久中文字幕一级| 亚洲七黄色美女视频| 久久精品91无色码中文字幕| 禁无遮挡网站| 久久久久九九精品影院| 久99久视频精品免费| 亚洲精华国产精华精| 久久精品影院6| 久久久久久国产a免费观看| 狠狠狠狠99中文字幕| 1024视频免费在线观看| 日本免费a在线| 欧美在线一区亚洲| 久9热在线精品视频| 夜夜夜夜夜久久久久| 制服人妻中文乱码| 欧美日韩国产亚洲二区| 变态另类成人亚洲欧美熟女| 日韩欧美 国产精品| 少妇人妻一区二区三区视频| 十八禁网站免费在线| 免费看十八禁软件| 午夜免费激情av| 亚洲aⅴ乱码一区二区在线播放 | 国产日本99.免费观看| 精品日产1卡2卡| 看免费av毛片| 亚洲国产精品成人综合色| av在线天堂中文字幕| 欧美性猛交╳xxx乱大交人| 舔av片在线| 中国美女看黄片| 热99re8久久精品国产| 婷婷丁香在线五月| 三级毛片av免费| 久久久久国产一级毛片高清牌| 午夜福利成人在线免费观看| 国产真实乱freesex| 日本一区二区免费在线视频| av超薄肉色丝袜交足视频| 黄片大片在线免费观看| 精品无人区乱码1区二区| 蜜桃久久精品国产亚洲av| 黄色a级毛片大全视频| 亚洲国产日韩欧美精品在线观看 | 国产欧美日韩一区二区三| 国产午夜精品久久久久久| av视频在线观看入口| 亚洲欧美日韩高清专用| 又爽又黄无遮挡网站| 成人18禁高潮啪啪吃奶动态图| 久久久久久久久中文| 99国产精品一区二区三区| 身体一侧抽搐| 无遮挡黄片免费观看| 1024香蕉在线观看| 亚洲av电影在线进入| 在线观看午夜福利视频| x7x7x7水蜜桃| 在线播放国产精品三级| 日日夜夜操网爽| 国产免费男女视频| 999久久久精品免费观看国产| 亚洲自拍偷在线| 国产精品一区二区三区四区久久| 香蕉丝袜av| 好男人在线观看高清免费视频| 欧美极品一区二区三区四区| 欧美极品一区二区三区四区| 高清在线国产一区| 岛国在线观看网站| 女人高潮潮喷娇喘18禁视频| 久久精品影院6| 亚洲精华国产精华精| 欧美黄色淫秽网站| 黄色丝袜av网址大全| 男女做爰动态图高潮gif福利片| 每晚都被弄得嗷嗷叫到高潮| 色综合亚洲欧美另类图片| 国产伦人伦偷精品视频| 亚洲五月天丁香| 午夜激情福利司机影院| 亚洲av电影不卡..在线观看| 成人一区二区视频在线观看| 亚洲av五月六月丁香网| 午夜影院日韩av| 五月玫瑰六月丁香| 亚洲av日韩精品久久久久久密| 视频区欧美日本亚洲| 男女之事视频高清在线观看| 麻豆成人午夜福利视频| 国产人伦9x9x在线观看| 在线十欧美十亚洲十日本专区| 成人国产综合亚洲| 日韩精品青青久久久久久| 欧美av亚洲av综合av国产av| 亚洲18禁久久av| 在线观看美女被高潮喷水网站 | 白带黄色成豆腐渣| 欧美成人午夜精品| 嫩草影视91久久| 88av欧美| 嫁个100分男人电影在线观看| 国产69精品久久久久777片 | 国产真实乱freesex| 久久久国产成人精品二区| 成人一区二区视频在线观看| 变态另类成人亚洲欧美熟女| 国产成人系列免费观看| 国产精品日韩av在线免费观看| 亚洲av日韩精品久久久久久密| 亚洲熟妇中文字幕五十中出| 1024香蕉在线观看| 国产av一区二区精品久久| 国产又色又爽无遮挡免费看| 欧美日本亚洲视频在线播放| 午夜福利在线在线| 人人妻,人人澡人人爽秒播| 97碰自拍视频| 神马国产精品三级电影在线观看 | 精品久久久久久久毛片微露脸| 国产精品九九99| 日韩欧美免费精品| 一级片免费观看大全| 免费看十八禁软件| 欧美成人一区二区免费高清观看 | www日本在线高清视频| 悠悠久久av| 在线观看一区二区三区| 一个人免费在线观看的高清视频| 久久久国产成人免费| 黄色丝袜av网址大全| 婷婷亚洲欧美| 最好的美女福利视频网| 亚洲无线在线观看| 欧美日韩福利视频一区二区| 日本三级黄在线观看| 免费在线观看视频国产中文字幕亚洲| 亚洲中文字幕一区二区三区有码在线看 | 国内毛片毛片毛片毛片毛片| 亚洲一卡2卡3卡4卡5卡精品中文| 高清在线国产一区| 日韩中文字幕欧美一区二区| 亚洲精品美女久久久久99蜜臀| 亚洲欧美日韩高清专用| 国产av麻豆久久久久久久| 欧美乱色亚洲激情| 此物有八面人人有两片| www.999成人在线观看| 亚洲五月婷婷丁香| 国产高清videossex| 日韩中文字幕欧美一区二区| 老汉色av国产亚洲站长工具| 亚洲欧美日韩高清专用| www.精华液| 又黄又粗又硬又大视频| 亚洲专区中文字幕在线| 中文字幕熟女人妻在线| 免费看日本二区| 国产乱人伦免费视频| 国内揄拍国产精品人妻在线| 免费看美女性在线毛片视频| 欧美色视频一区免费| 亚洲在线自拍视频| 国产高清视频在线播放一区| 久久中文字幕人妻熟女| 亚洲一区高清亚洲精品| 国产伦一二天堂av在线观看| 国产三级中文精品| 久久久久久国产a免费观看| bbb黄色大片| 日日爽夜夜爽网站| 91字幕亚洲| www.999成人在线观看| 成人手机av| 最新美女视频免费是黄的| 一区二区三区激情视频| 深夜精品福利| 亚洲人成电影免费在线| 亚洲av成人一区二区三| 午夜免费成人在线视频| 99热6这里只有精品| 免费电影在线观看免费观看| 国产真实乱freesex| 全区人妻精品视频| 嫩草影院精品99| 看黄色毛片网站| 国产精品久久久人人做人人爽| 精品久久久久久久末码| 成人精品一区二区免费| 久久这里只有精品中国| 在线播放国产精品三级| avwww免费| 熟女少妇亚洲综合色aaa.| 亚洲国产看品久久| 精品久久久久久久久久久久久| 亚洲激情在线av| 国内久久婷婷六月综合欲色啪| 男人舔女人下体高潮全视频| 一卡2卡三卡四卡精品乱码亚洲| 日韩精品免费视频一区二区三区| 国产精品 欧美亚洲| 一进一出好大好爽视频| 久久热在线av| АⅤ资源中文在线天堂| 亚洲国产欧美网| 欧美性猛交黑人性爽| 成人精品一区二区免费| av在线天堂中文字幕| 国产伦在线观看视频一区| 日本a在线网址| 老司机深夜福利视频在线观看| 午夜亚洲福利在线播放| 天天一区二区日本电影三级| 一个人观看的视频www高清免费观看 | 欧美成狂野欧美在线观看| 精品不卡国产一区二区三区| 亚洲一码二码三码区别大吗| 在线观看舔阴道视频| 色综合站精品国产| 国产免费男女视频| 久久人妻福利社区极品人妻图片| 国产精品99久久99久久久不卡| 色播亚洲综合网| 三级男女做爰猛烈吃奶摸视频| 日韩av在线大香蕉| 国产精品久久久久久久电影 | 国产精品日韩av在线免费观看| 麻豆一二三区av精品| 亚洲人成77777在线视频| 成人永久免费在线观看视频| 国产成人精品无人区| 在线观看66精品国产| 俺也久久电影网| 老司机靠b影院| 国产成人一区二区三区免费视频网站| 在线视频色国产色| 丰满人妻熟妇乱又伦精品不卡| 亚洲男人天堂网一区| 欧美一级a爱片免费观看看 | 欧美精品亚洲一区二区| 两性夫妻黄色片| 日韩免费av在线播放| 成人国语在线视频| 黄色女人牲交| 欧美最黄视频在线播放免费| 久久中文字幕一级| 老司机深夜福利视频在线观看| 久久精品91无色码中文字幕| 久久婷婷成人综合色麻豆| 非洲黑人性xxxx精品又粗又长| 日韩欧美精品v在线| 亚洲国产中文字幕在线视频| 欧美黑人欧美精品刺激| 亚洲国产欧美网| 国产精品久久久久久人妻精品电影| 麻豆成人av在线观看| 久久午夜亚洲精品久久| 日本五十路高清| 午夜福利成人在线免费观看| 88av欧美| 国产成+人综合+亚洲专区| 夜夜爽天天搞| 我的老师免费观看完整版| 亚洲人与动物交配视频| 国产真人三级小视频在线观看| 伦理电影免费视频| 久久精品综合一区二区三区| 又黄又粗又硬又大视频| www.www免费av| 午夜福利高清视频| 国产区一区二久久| 国产蜜桃级精品一区二区三区| 50天的宝宝边吃奶边哭怎么回事| 黄色视频,在线免费观看| 欧美不卡视频在线免费观看 | 亚洲全国av大片| 欧美3d第一页| 一进一出好大好爽视频| 99久久99久久久精品蜜桃| 久久久久久久精品吃奶| 不卡一级毛片| a在线观看视频网站| 亚洲 国产 在线| 欧美成人免费av一区二区三区| 国产蜜桃级精品一区二区三区| 国产精品野战在线观看| 日本免费a在线| 又紧又爽又黄一区二区| bbb黄色大片| 美女大奶头视频| 中文字幕最新亚洲高清| 国产精品九九99| 99国产精品一区二区三区| 嫁个100分男人电影在线观看| 成人国产一区最新在线观看| svipshipincom国产片| 99在线人妻在线中文字幕| 好看av亚洲va欧美ⅴa在| 久久天躁狠狠躁夜夜2o2o| 人妻夜夜爽99麻豆av| 性欧美人与动物交配| 亚洲成人国产一区在线观看| 波多野结衣巨乳人妻| 国产精品 国内视频| 999精品在线视频| 成人国语在线视频| 亚洲,欧美精品.| 亚洲国产日韩欧美精品在线观看 | 一夜夜www| 一边摸一边做爽爽视频免费| 18禁黄网站禁片午夜丰满| 国产不卡一卡二| 午夜精品一区二区三区免费看| 最近视频中文字幕2019在线8| 国产乱人伦免费视频| 国产欧美日韩一区二区精品| 亚洲国产精品999在线| 两个人看的免费小视频| 亚洲av电影在线进入| 亚洲精品一卡2卡三卡4卡5卡| 热99re8久久精品国产| 国产精品香港三级国产av潘金莲| 精品国内亚洲2022精品成人| 国产伦人伦偷精品视频| 妹子高潮喷水视频| 狂野欧美激情性xxxx| 免费电影在线观看免费观看| 亚洲专区字幕在线| 给我免费播放毛片高清在线观看| av中文乱码字幕在线| 欧美大码av| 叶爱在线成人免费视频播放| 亚洲人成网站在线播放欧美日韩| 亚洲欧美激情综合另类| 宅男免费午夜| 国产精品亚洲美女久久久| 黄片大片在线免费观看| 女人高潮潮喷娇喘18禁视频| 亚洲人成网站高清观看| 久久中文字幕人妻熟女| 小说图片视频综合网站| 97超级碰碰碰精品色视频在线观看| 国产欧美日韩一区二区三| 人人妻人人看人人澡| 中国美女看黄片| 嫩草影视91久久| 国产片内射在线| 我要搜黄色片| 身体一侧抽搐| 校园春色视频在线观看| av有码第一页| 亚洲色图av天堂| aaaaa片日本免费| 亚洲成人国产一区在线观看| 欧美日韩国产亚洲二区| 青草久久国产| 亚洲欧美日韩无卡精品| 夜夜躁狠狠躁天天躁| 两个人视频免费观看高清| 久久婷婷成人综合色麻豆| 精品欧美一区二区三区在线| 国产真人三级小视频在线观看| www.熟女人妻精品国产| 国产精品免费一区二区三区在线| 男人的好看免费观看在线视频 | 国产亚洲av高清不卡| 最近最新免费中文字幕在线| 手机成人av网站| 一边摸一边抽搐一进一小说| 国产一级毛片七仙女欲春2| 99在线视频只有这里精品首页| 国产精品综合久久久久久久免费| 亚洲人与动物交配视频| 亚洲成人中文字幕在线播放| 国产久久久一区二区三区| 岛国视频午夜一区免费看| 看黄色毛片网站| cao死你这个sao货| 夜夜看夜夜爽夜夜摸| 精品一区二区三区四区五区乱码| 色噜噜av男人的天堂激情| 精品久久久久久久久久免费视频| 亚洲狠狠婷婷综合久久图片| 天天一区二区日本电影三级| 毛片女人毛片| 日韩精品青青久久久久久| 亚洲av电影不卡..在线观看|