• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Boundary discontinuous Fourier analysis of thick beams with clamped and simply supported edges via CUF

    2017-11-17 08:31:52CANALESMANTARI
    CHINESE JOURNAL OF AERONAUTICS 2017年5期

    F.G.CANALES,J.L.MANTARI,b,*

    aFaculty of Mechanical Engineering,Universidad de Ingenieríay Tecnología(UTEC),Lima 15063,Peru

    bDepartment of Mechanical Engineering,University of New Mexico,Albuquerque 87131,USA

    Boundary discontinuous Fourier analysis of thick beams with clamped and simply supported edges via CUF

    F.G.CANALESa,J.L.MANTARIa,b,*

    aFaculty of Mechanical Engineering,Universidad de Ingenieríay Tecnología(UTEC),Lima 15063,Peru

    bDepartment of Mechanical Engineering,University of New Mexico,Albuquerque 87131,USA

    This paper presents an analytical solution for static analysis of thick rectangular beams with different boundary conditions.Carrera’s Unified Formulation(CUF)is used in order to consider shear deformation the ories of arbitrary order.The novelty of the present work is that a boundary discontinuous Fourier approach is used to consider clamped boundary conditions in the analytical solution,unlike Navier-type solutions which are restricted to simply supported beams.Governing equations are obtained by employing the principle of virtual work.The numerical accuracy of results is ascertained by studying the convergence of the solution and comparing the results to those of a 3D finite element solution.Beams subjected to bending due to a uniform pressure load and subjected to torsion due to opposite linear forces are considered.Overall,accurate results close to those of 3D finite element solutions are obtained,which can be used to validate finite element results or other approximate methods.

    1.Introduction

    1D the ories are widely used to analyze behaviors of slender bodies in a computationally efficient manner.For this reason,many beam models have been developed.The most wellknown beam the ory is the classical or Euler-Bernoulli beam the ory,which yields reasonably good results for slender beams.However,this model does not take into account shear deformations in a beam.The Timoshenko beam the ory is an improvement over the classical the ory that considers a uniform shear distribution across the thickness of a beam.However,this the ory requires a shear correction factor to correct the strain energy of deformation.Discussion of shear coefficients has been presented in Refs.1–4

    A large amount of Higher-order Shear Deformation Theories(HSDTs)have been developed in order to consider a nonuniform shear distribution in a beam’s cross-section.HSDTs with polynomial distributions of shear deformation across the thickness are common due to the ir simplicity,and some have been presented in Refs.5–13Theories containing trigonometric functions in thickness coordinates are also common.A trigonometric shear deformation the ory has been presented by Dahake and Ghugal.14Many polynomial and trigonometric deformation the ories have been developed for analysis of laminated beams,as presented in Refs.15–20Firstorder shear deformation the ories are popular due to the ir computational efficiency,and some have been given in Refs.21–24

    In order to analyze the ories with arbitrary order in a systematic manner,a unified formulation known as Carrera’s Unified Formulation(CUF)has been developed in Ref.25This formulation has been applied to solve multifield problems,as presented in Refs.26–28Carrera and Giunta29used the 1DCUF model to analyze 1D problems with complex crosssections,and furthe r development has been presented by Carrera et al.30–32The capability of the se models to obtain quasi-3D solutions has been exploited to develop accurate static33,free vibration34,35,and buckling analysis36of composite beams.

    Analytical solutions for bending of simply supported beams are obtained by using a Fourier series in Navier-type solutions.Other boundary conditions such as clamped conditions can be considered in a finite element formulation or by using the Ritz method,but accurate analytical solutions for the se boundary conditions are a fairly scarce topic in the literature.Since finite element formulations or variational methods obtain approximate results,exact analytical solutions are required as a benchmark in order to assess the validity of the results.The present work intends to provide such analytical solutions for clamped boundary conditions.

    A generalization of the Fourier series method known as the boundary discontinuous Fourier method can take into account clamped boundary conditions.This method was developed by Chaudhuri in Refs.37,38Discontinuities are introduced in order to satisfy boundary constraints.This solution methodology has been applied for static and free vibration analysis of cylindrical panels,39,40doubly-curved panels,41–48and plates.49–54Since the rate of convergence of a Fourier series is slower in the presence of discontinuities,a mixed Fourier solution has also been developed in Refs.55,56in order to produce accelerated convergence.Oktem and Chaudhuri have applied the boundary discontinuous Fourier method for analysis of plates57–59and shells60–63using HSDTs.

    In this paper,an analytical solution for static analysis of thick beams with Clamped-Clamped(C-C)and Clamped-Simple(C-S)boundary conditions is obtained.A general approach to obtain such an analytical solution using a unified formulation is currently unavailable in the literature,since the other option commonly used for static analysis of beams is a Navier-type solution,which can only consider simply supported edges.Theories of arbitrary order are considered in a systematic manner by using CUF.The principle of virtual work is used to obtain governing equations.The convergence of the solution is analyzed and 3D finite element solutions are obtained in order to assess the validity of results.Good results agreements with 3D finite element solutions are obtained.The results can be used as a benchmark for comparison with approximate solution methods.

    2.Analytical modeling

    A beam of length L,width b,and total thickness h is considered in the present analysis.The rectangular Cartesian coordinate system used in the present work is shown in Fig.1.The beam occupies the following region:-b/2≤x≤b/2,0≤y≤L,-h/2≤z≤h/2.

    2.1.Elastic stress-strain relations

    A general displacement vector is introduced:

    The cross-sectional plane of the beam is denoted by Ω.The stress and strain components are grouped as

    where σijand εijare the components of the stress and strain vectors,respectively.Subscript ‘p” stands for terms lying on planes orthogonal to the cross-section,while subscript ‘n”stands for terms lying on the cross-section.Considering small amplitude displacements,the strain-displacement relations are

    The linear differential operators Dp,DnΩ,and Dnyare given by

    Fig.1 Coordinate frame of beam model.

    The stress components are given by constitutive laws:

    where σ is the stress vector,ε is the strain vector andis the constitutive matrix.Eq.(5)can be split by using Eq.(2):

    In the case of an isotropic material,the matrices,,andare given by

    2.2.Displacement field

    The displacement field is expressed within the framework of CUF:

    where Fτare the functions of coordinates x and z on the crosssection,Mstands for the number of terms used in the expansion,uτis the vector of the generalized displacements,and the repeated subscript ‘τ” indicates summation.A Taylor-type expansion is used to determine the functions Fτ,consisting of a MacLaurin series that uses the 2D polynomials xizjas a base.Table 1 presents Mand Fτas functions of the expansion orderN.

    For example,the displacement field of the second-order(N=2)Taylor-type expansion model can be expressed as

    Table 1 MacLaurin’s polynomials.

    Classical beam the ories can be obtained as a special case of the generalized formulation.For example,the Timoshenko beam the ory is obtained in two steps:(a)a first-order displacement field is considered:

    and(b)the displacements uxand uzmust be constant in the cross-section:

    2.3.Principle of virtual work

    The static version of the principle of virtual work is applied:

    where δ stands for the virtual variation operator,Lintstands for the strain energy,and Lextis the external work.Substituting Eqs.(3),(4),and(6)in Eq.(12),the following expression is obtained:

    Substituting Eqs.(4),(7),and(8)in Eq.(13)and integrating by parts results in the following:

    where Kτsis the stiffness matrix and Πτsis the matrix of the natural boundary conditions.The components of Kτsare provided as

    where a cross-sectional moment parameter has been used,and a generic term is defined as

    The suffix after the comma denotes the derivatives.The components of Πτsare provided as follows:

    Letting Pτ= [PxτPyτPzτ]Tdefine a vector of the generalized forces,the natural boundary conditions can be obtained by substituting Eq.(17)in Eq.(14):

    2.4.Boundary discontinuous solution

    Geometric boundary conditions for simply supported beams,in terms of the displacement variables given in Eq.(8),are expressed as

    Geometricboundaryconditionsforclamped-clamped beams,in terms of the displacement variables given in Eq.(8),are additional constraints to those given in Eq.(19),which are given as

    The displacement variables are assumed as follows:

    where m is the wave number of the trigonometric term and p is the number of trigonometric terms of the series.The coefficient αmis given by

    The total number of unknown Fourier coefficients introduced in Eq.(21)is M(3p+1).The assumed solution satisfies the simply supported geometric boundary conditions given in Eq.(19).However,the clamped support boundary condition,given in Eq.(20),is not satisfied.In order to obtain an analytical solution for clamped beams,the boundary discontinuous method is used.The details of the procedure are given in Refs.37,38

    The boundary discontinuous method introduces boundary Fourier coefficients arising from discontinuities of a solution at the edges y=0,L.The displacement variable uyτas given by Eq.(21b)does not satisfy the boundary condition for clamped supports given in Eq.(20).Therefore,it is forced to vanish at the se edges.The partial derivative uyτ,yis seen to vanish at the edges,thus violating the complementary boundary constraint or boundary discontinuities at the se edges;see Refs.37,38For furthe r differentiation,uyτ,yyis expanded in a Fourier series in order to satisfy the complementary boundary constraint.It is important to note that the derivative of the Fourier series of a given function is not necessarily the same as the Fourier series of the derivative of the function when this function has discontinuities.

    The Fourier series of the derivative uyτ,yis given by

    where Uyτm,yis the Fourier term associated with the Fourier series of the function uyτ,y.Integrating Eq.(23b)by parts and using the vanishing boundary conditions given in Eq.(20)obtains:

    The Fourier term Uyτmof the Fourier series of the function uyτis recognized:

    Thus,the first derivative can be obtained through term-byterm differentiation.However,it will be demonstrated that the second derivative has a different form.The Fourier series of the second derivative uyτ,yyis given by

    where Uyτm,yyis the Fourier term of the function uyτ,yyand aτis a Fourier coefficient.Integrating Eq.(26b)by parts obtains:

    Note that the function uyτ,yis not necessarily zero at the edges since discontinuities are introduced aty=0,L(Eq.(21b)is not valid at the edges).Substituting Eqs.(23b)and(25)in Eq.(27),the Fourier term is obtained as

    Substituting Eq.(28)in Eq.(26a)the following expression is obtained:

    where the Fourier coefficients aτand bτintroduce 2M new unknowns,resulting in a total of M(3p+3)unknowns.These coefficients are given by

    and γm,ψmare defined as

    2.5.Virtual work of load

    The external work of a load q0applied on the surface z=h/2 is given by

    Substituting Eq.(8)in Eq.(32)obtains:

    The load is expressed using a Fourier series:

    where Qmis a Fourier coefficient associated with the Fourier series of the load.Othe r types of loads can be analyzed in a similar manner.29

    2.6.Governing equations

    Substituting Eqs.(21a)–(21c)and the ir appropriate partial derivatives in Eq.(14),in conjunction with Eqs.(15),(29),(33),and(34),the following expressions are obtained for the case of a beam subjected to a distributed load on the surface z=h/2:

    Equating the coefficients of the trigonometric functions of Eqs.(35)and(36)to zero yields M(3p+1)linear algebraic equations.Additional equations are supplied by the geometric boundary conditions related to vanishing of the displacement variables uyτat the edges y=0,L:

    These equations can be expressed in a more convenient form58:

    This step generates 2M additional equations,resulting in a total of M(3p+3)linear algebraic equations with as many unknowns.

    2.7.Extension to other boundary conditions

    In addition to the clamped-clamped boundary condition,the clamped-simple boundary condition can also be analyzed by the present method.A clamped support is considered at y=0 and a simple support at y=L.Since the geometric boundary condition given in Eq.(20b)has been relaxed,the function uyτis no longer forced to vanish at y=L,and Eq.(37b)is no longer required.This step reduces the available equations in M compared to the clamped-clamped case.In addition,discontinuities are no longer introduced at y=L,and thus uyτ,yis equal to zero at this point.By substituting uyτ,y(L)=0 in Eqs.(30a),(30b),the following relation is obtained:

    This step eliminates M unknowns,and thus the system remains determinate.

    3.Numerical results and discussion

    The present development has been programmed in MATLAB,and numerical examples are given in the present section.An isotropic square beam,i.e.,with b=h,is considered in the numerical examples.The displacements,stresses,and geometric parameters are expressed in the following non-dimensional forms:

    where E is the modulus of elasticity.The Poisson’s ratio is considered to be ν=0.3.The boundary conditions of the beam are indicated by letters C(Clamped support)and S(Simple support).

    3.1.Convergence study

    A study of the convergence is performed first in order to assess the stability of the results.Fig.1 shows the geometry of the beam considered.Fig.2 shows the locations of evaluation points of the studied displacements and stresses.

    Fig.2 Location of evaluation points of transverse displacement,axial stress,axial displacement,transverse stress,and shear stress.

    Fig.3 Convergence of transverse displacementat(0,L/2,0)and axial stressat(0,L/2,h/2)of a C-C square beam with L/h=10 subjected to a uniform load.

    The beam is subjected to a uniform load q0on the surface z=h/2.Fig.3 show the transverse displacement and axial stress of a C-C square beam with L/h=10 as the number of terms in the Fourier series is increased for various expansion orders N.While Navier-type solutions converge quickly and 25 terms are usually sufficient20,a Fourier series converges slowly if the function has discontinuities.Due to this,the boundary discontinuous method has a slower convergence compared to that of a Navier solution.

    Table 2 presents numerical results for the displacements and stresses as the number of terms in the Fourier series is increased,considering N=4.The transverse stressˉσzzis seen to have a slower convergence.At least 4 significant figures can be expected from the numerical results when the number of terms is m=15000,except for the transverse stressˉσzz,and this number of terms is used in the remainder of the manuscript.

    3.2.Bending loads

    In order to validate the results,a 3D finite element solution of static analysis of the beam has been obtained using ANSYS general purpose program.The 20-noded Solid186 element was used to model the beam,and the mesh was constructed using equally sized cubic elements.In the tables,the 3D finite element solution is denoted by ANS3Dxxx,where the subscript indicates the number of elements in the beam axis.For example,for a beam with L/h=5,the notation ANS3D200stands for a mesh with 200 elements in the beam axis and 40 elements in each axis of the cross-section,resulting in a mesh of 200×40×40.The error between the results from the present model and the 3D finite element solution(FEM)is defined as

    where the most refined finite element mesh solution(i.e.the ANS3Dxxxmodel with the largest numerical subscript)is used for calculation of the error

    The beam considered and the points of evaluation are the same as those in the previous section,as shown in Figs.1 and 2.Table 3 presents the values of displacements and stresses at specified points of C-C and C-S square beams with L/h=10,as obtained by the present model,and the corresponding results obtained by the 3D FEM.In order to correctly predict the shear stressˉσyz,an expansion order of at least N=3 is required.Very close agreements can be obtained for all the displacements and stresses using an expansion order of N=6 or higher.For higher expansion orders(N≥5),ahigher reported error is obtained for the transverse stressˉσzz;however,for N=7,the higher reported error is around 0.05%and within the margin of error of the 3D FEM solution.Similar trends are observed between the results for C-C and C-S beams.

    Table 2 Convergence of transverse displacement,axial stress,transverse normal stress,axial displacement,and shear stressfor a C-C isotropic square beam with L/h=10 subjected to a uniform load.

    Table 2 Convergence of transverse displacement,axial stress,transverse normal stress,axial displacement,and shear stressfor a C-C isotropic square beam with L/h=10 subjected to a uniform load.

    Number of termsˉuzˉσyyˉσzzˉuyˉσyz 400 3.4342 25.406 1.0436 0.46820 3.5096 600 3.4375 25.386 1.0314 0.46853 3.5096 1000 3.4402 25.370 1.0206 0.46879 3.5096 1500 3.4415 25.361 1.0150 0.46892 3.5096 2500 3.4426 25.355 1.0105 0.46902 3.5096 4000 3.4431 25.351 1.0079 0.46908 3.5096 6000 3.4435 25.349 1.0065 0.46911 3.5096 10000 3.4437 25.347 1.0053 0.46914 3.5096 15000 3.4439 25.347 1.0048 0.46915 3.5096

    Table 3 Comparison of transverse displacementˉuz,axial stressˉσyy,transverse normal stressˉσzz,axial displacementˉuy,and shear stressˉσyzfor C-C and C-S isotropic square beams with L/h=10 subjected to a uniform load.

    Fig.4 show the distributions of the transverse displacementˉuzacross the thickness of C-C and C-S beams with L/h=10,respectively.As the expansion order increases,the results converge to those of the 3D finite element solution in an increasingly slow manner.

    Fig.4 Distribution of transverse displacementˉuzat(0,L/2,z)through thickness of C-C and C-S square beams subjected to uniform load with L/h=10.

    Fig.5 shows the distribution of the transverse normal stressˉσzzacross the thickness of a C-C beam with L/h=10.An overshoot in the maximum stress is observed for an expansion order of N=3.However,this is corrected by using a higher expansion order.It can be seen that the distributions of the transverse stress across the thickness obtained by using expansion orders of N=4 and N=5 are in close agreements with that of the 3D finite element solution.

    Fig.6 shows the distribution of the shear stressˉσyzacross the thickness of a C-C beam with L/h=10.Higher expansion orders are required in order to obtain zero shear stress on the top and bottom surfaces of the beam.

    Tables 4 and 5 present the values of displacements and stresses at specified points of C-C and C-S square beams with L/h=5 and 2,respectively.For the critical case of a thick beam with L/h=2,using an expansion order of N=7,the higher reported error is 0.23%.

    Fig.7 shows the distributions of the transverse displacementˉuzacross the thickness of C-C and C-S beams with L/h=5,respectively.Results obtained from higher expansion orders gradually converge to that of the 3D FEM solution,similar to the case with L/h=10.

    Fig.5 Distribution of transverse normal stressˉσzzat(0,L/2,z)through thickness of C-C square beam subjected to uniform load with L/h=10.

    Fig.6 Distribution of transverse shear stressat(0,L/4,z)through thickness of C-C square beam subjected to uniform load with L/h=10.

    Fig.8 shows the distribution of the transverse displacementacross the thickness of a C-C beam with L/h=2.It can be observed that the thickness stretching effect,i.e.,variation of the transverse displacement across the thickness,is more pronounced for beams with lower aspect ratios.

    3.3.Torsional loads

    A beam subjected to two linear loads of equal magnitude q0and opposite directions is considered,as shown in Fig.9.Classic beam models are unable to detect displacement and stresses for this loading case.Table 6 presents results of the shear stressevaluated at Point A with coordinates(0,0,h/2).It can be observed that higher expansion orders are required in order to correctly predict the shear stress.These results can be used as a benchmark for future finite element works.

    Table 4 Comparison of transverse displacement,axial stress,transverse normal stress,axial displacement,and shear stressfor C-C and C-S isotropic square beams with L/h=5 subjected to uniform load.

    Table 4 Comparison of transverse displacement,axial stress,transverse normal stress,axial displacement,and shear stressfor C-C and C-S isotropic square beams with L/h=5 subjected to uniform load.

    ?

    Table 5 Comparison of the transverse displacementˉuz,axial stress,transverse normal stress,axial displacement,and shear stressfor C-C and C-S isotropic square beams with L/h=2 subjected to a uniform load.

    Table 5 Comparison of the transverse displacementˉuz,axial stress,transverse normal stress,axial displacement,and shear stressfor C-C and C-S isotropic square beams with L/h=2 subjected to a uniform load.

    ?

    Fig.7 Distribution of transverse displacementˉuzat(0,L/2,z)through thickness of C-C and C-S square beams subjected to uniform load with L/h=5.

    Fig.8 Distribution of transverse displacementˉuzat(0,L/2,z)through thickness of C-C square beam subjected to uniform load with L/h=2.

    Fig.9 Geometry of beam subject to torsion loads.

    Table 6 Comparison of the shear stressˉσxyfor C-C isotropic square beam with L/h=2 subjected to torsional loads.

    4.Conclusions

    This paper presents an analytical solution for bending and torsion of a thick rectangular beam with clamped or simple supports.The boundary discontinuous Fourier approach is used in conjunction with shear deformation the ories of arbitrary order via Carrera’s Unified Formulation(CUF).The important conclusions that emerge from this paper can be summarized as follows:

    (1)Accurate analytical results of the stresses and displacements for clamped beams can be obtained by the present model with a low computational effort.

    (2)At least an expansion order of N=3 is required in order to correctly predict the maximum shear stress σyzdue to bending loads.

    (3)An overshoot of the maximum transverse normal stress σzzis observed for an expansion order of N=3 when bending loads are considered.However,this is corrected by using higher expansion orders.

    (4)The boundary discontinuous method requires a higher computational effort compared to that of Navier-type solutions,but it is much lower than that required for a 3D finite element solution.

    Acknowledgment

    This paper is dedicated to Professor Reaz Chaudhurifor his outstanding contribution to computational mechanics.

    1.Kaneko T.On Timoshenko’s correction for shear in vibrating beams.J Phys D:Appl Phys 1975;8(16):1927–36.

    2.Hutchinson JR.Transverse vibrations of beams,exact versus approximate solutions.J Appl Mech 1981;48(4):923–8.

    3.Hutchinson JR,Zillmer SD.On the transverse vibration of beams with rectangular cross-section.J Appl Mech 1986;53(1):39–44.

    4.Rychter Z.On the shear coefficient in beam bending.Mech Res Commun 1987;14(5–6):379–85.

    5.Essenburg F.On the significance of the inclusion of transverse normal strain in problems involving beams with surface constraints.J Appl Mech 1975;42(1):127–32.

    6.Levinson M.A new rectangular beam the ory.J Sound Vibrat 1981;74(1):81–7.

    7.Rychter Z.On the accuracy of a beam the ory.Mech Res Commun 1987;14(2):99–105.

    8.Rychter Z.A simple and accurate beam the ory.Acta Mech 1988;75(1):57–62.

    9.Petrolito J.Stiffness analysis of beams using a higher-order beam the ory.Comput Struct 1995;55(1):33–9.

    10.Murthy AVK.Towards a consistent beam the ory.AIAA J 1984;22(6):811–6.

    11.Bhimaraddi A,Chandrashekhara K.Ochigherorder beam the ory.J Aerospace Eng 1993;6(4):408–13.

    12.Heyliger PR,Reddy JN.A higher order beam finite element for bending and vibration problems.J Sound Vibrat 1988;126(2):309–26.

    13.Kant T,Gupta A.A finite element model for a higher-order shear deformable beam.J Sound Vibrat 1988;125(2):193–202.

    14.Dahake AG,Ghugal YM.A trigonometric shear deformation the ory for flexure of thick beam.Procedia Eng 2013;51:1–7.

    15.Khdeir AA,Reddy JN.An exact solution for the bending of thin and thick cross-ply laminated beams.Compos Struct 1997;37(2):195–203.

    16.Sayyad AS,Ghugal YM.Effect of transverse shear and transverse normal strain on bending analysis of cross-ply laminated beams.Int J Appl Math Mech 2011;7(12):85–118.

    17.Shimpi RP,Ghugal YM.A new layerwise trigonometric shear deformation the ory for two-layered cross-ply beams.Compos Sci Technol 2001;61(9):1271–83.

    18.Aydogdu M.A new shear deformation the ory for laminated composite plates.Compos Struct 2009;89(1):94–101.

    19.Arya H,Shimpi RP,Naik NK.A zigzag model for laminated composite beams.Compos Struct 2002;56(1):21–4.

    20.Mantari JL,Canales FG.A unified quasi-3D HSDT for the bending analysis of laminated beams.Aerospace Sci Technol 2016;54:267–75.

    21.Senjanovic′I,Vladimir N,Hadzˇic′N,Tomic′M.New first order shear deformation beam the ory with in-plane shear influence.Eng Struct 2016;110:169–83.

    22.Senjanovic′I,Vladimir N.Physical insight into Timoshenko beam the ory and its modification with extension.Struct Eng Mech 2013;48(4):519–45.

    23.Senjanovic′I,Rudan S,Vladimir N.Influence of shear on the torsion of thin-walled girders.Trans FAMENA 2009;33(2):35–50.

    24.Senjanovic′I,Tomasˇevic′S,Vladimir N.An advanced the ory of thin-walled girders with application to ship vibrations.Mar Struct 2009;22(3):387–437.

    25.Carrera E.Theories and finite elements for multilayered plates and shells:A unified compact formulation with numerical assessment and benchmarking.Arch Comput Methods Eng 2003;10(3):215–96.

    26.Carrera E.Transverse normal strain effects on the rmal stress analysis of homogeneous and layered plates.AIAA J 2005;43(10):2232–42.

    27.Carrera E,Boscolo M,Robaldo A.Hierarchic multilayered plate elements for coupled multifield problems of piezoelectric adaptive structures.Formulation and numerical assessment.Arch Comput Methods Eng 2007;14(4):383–430.

    28.Carrera E,Brischetto S,Nali P.Variational statements and computational models for multifield problems and multilayered structures.Mech Adv Mater Struct 2008;15(3–4):192–8.

    29.Carrera E,Giunta G.Refined beam the ories based on a unified formulation.Int J Appl Mech 2010;2(1):117–43.

    30.Carrera E,Giunta G,Nali P,Petrolo M.Refined beam elements with arbitrary cross-section geometries.Comput Struct 2010;88(5–6):283–93.

    31.Carrera E,Petrolo M.Refined beam elements with only displacement variables and plate/shell capabilities.Meccanica 2012;47(3):537–56.

    32.Carrera E,Filippi M,Zappino E.Laminated beam analysis by polynomial,trigonometric,exponential and zig-zag the ories.Eur J Mech A/Solids 2013;41:58–69.

    33.Catapano A,Giunta G,Belouettar S,Carrera E.Static analysis of laminated beams via a unified formulation.Compos Struct 2011;94(1):75–83.

    34.Giunta G,Biscani F,Belouettar S,Ferreira AJM,Carrera E.Free vibration analysis of composite beams via refined the ories.Compos Part B:Eng 2013;44(1):540–52.

    35.Filippi M,Pagani A,Petrolo M,Colonna G,Carrera E.Static and free vibration analysis of laminated beams by refined the ory based on Chebyshev polynomials.Compos Struct 2015;132:1248–59.

    36.Ibrahim SM,Carrera E,Petrolo M,Zappino E.Buckling of composite thin walled beams by refined the ory.Compos Struct 2012;94(2):563–70.

    37.Chaudhuri RA.On boundary-discontinuous double Fourier series solution to a system of completely coupled P.D.E’.s.Int J Eng Sci 1989;27(9):1005–22.

    38.Chaudhuri RA.On the roles of complementary and admissible boundary constraints in Fourier solutions to the boundary value problems of completely coupled RTH order PDEs.J Sound Vibrat 2002;251(2):261–313.

    39.Chaudhuri RA,Abu-Arja KR.Static analysis of moderately-thick finite antisymmetric angle-ply cylindrical panels and shells.Int J Solids Struct 1991;28(1):1–15.

    40.Kabir HRH,Chaudhuri RA.A direct Fourier approach for the analysis of thin finite-dimensional cylindrical panels.Comput Struct 1993;46(2):279–87.

    41.Chaudhuri RA,Kabir HRH.On analytical solutions to boundaryvalue problems of doubly-curved moderately-thick orthotropic shells.Int J Eng Sci 1989;27(11):1325–36.

    42.Kabir HRH,Chaudhuri RA.Free vibration of shear-flexible antisymmetric angle-ply doubly curved panels.Int J Solids Struct 1991;28(1):17–32.

    43.Chaudhuri RA,Kabir HRH.A boundary-continuous-displacement based Fourier analysis of laminated doubly-curved panels using classical shallow shell the ories.Int J Eng Sci 1992;30(11):1647–64.

    44.Chaudhuri RA,Kabir HRH.Sensitivity of the response of moderately thick cross-ply doubly-curved panels to lamination and boundary constraint—I.Theory.Int J Solids Struct 1993;30(2):263–72.

    45.Chaudhuri RA,Kabir HRH.Sensitivity of the response of moderately thick cross-ply doubly-curved panels to lamination and boundary constraint—II.Application.Int J Solids Struct 1993;30(2):273–86.

    46.Chaudhuri RA,Kabir HRH.Boundary-discontinuous Fourier analysis of doubly-curved panels using classical shallow shell the ories.Int J Eng Sci 1993;31(11):1551–64.

    47.Chaudhuri RA,Kabir HRH.Static and dynamic Fourier analysis offinite cross-ply doubly curved panels using classical shallow shell the ories.Compos Struct 1994;28(1):73–91.

    48.Kabir V,Chaudhuri RA.On Gibbs-phenomenon-free Fourier solution for finite shear-flexible laminated clamped curved panel.Int J Eng Sci 1994;32(3):501–20.

    49.Chaudhuri RA,Kabir HRH.A boundary discontinuous Fourier solution for clamped transversely isotropic(pyrolytic graphite)Mindlin plates.Int J Solids Struct 1993;30(2):287–97.

    50.Kabir HRH,Chaudhuri RA.A generalized Navier’s approach for solution of clamped moderately-thick cross-ply plates.Comput Struct 1991;17(4):351–66.

    51.Chaudhuri RA,Kabir HRH.Vibration of clamped moderately thick general cross-ply plates using a generalized Navier approach.Compos Struct 1993;24(4):311–21.

    52.Chaudhuri RA.Effect of boundary constraint on the frequency response of moderately thick flat laminated panels.Compos Eng 1994;4(4):417–28.

    53.Kabir HRH.Free vibration of clamped,moderately thick,arbitrarily laminated plates using a generalized Navier’s approach.J Sound Vibrat 1994;171(3):397–410.

    54.Chaudhuri RA,Balaraman K,Kunukkasseril VX.A combined the oretical and experimental investigation on free vibration of thin symmetrically laminated anisotropic plates.ComposStruct 2005;67(1):85–97.

    55.Chaudhuri RA,Kabir HRH.Effect of boundary constraint on the frequency response of moderately thick doubly curved cross-ply panels using mixed Fourier solution functions.J Sound Vibrat 2005;283(1–2):263–93.

    56.KabirHRH,Al-KhaleefiAM,ChaudhuriRA.Frequency response of a moderately thick antisymmetric cross-ply cylindrical panel using mixed type of Fourier solution functions.J Sound Vibrat 2003;259(4):809–28.

    57.Oktem AS,Chaudhuri RA.Fourier solution to a thick cross-ply Levy type clamped plate problem.Compos Struct 2007;79(4):481–92.

    58.Oktem AS,Chaudhuri RA.Boundary discontinuous Fourier analysis of thick cross-ply clamped plates.Compos Struct 2007;82(4):539–48.

    59.Oktem AS,Chaudhuri RA.Effect ofinplane boundary constraints on the response of thick general(unsymmetric)cross-ply plates.Compos Struct 2008;83(1):1–12.

    60.Oktem AS,Chaudhuri RA.Sensitivity of the response of thick cross-ply doubly curved panels to edge clamping.Compos Struct 2009;87(4):293–306.

    61.Oktem AS,Chaudhuri RA.Fourier analysis of thick cross-ply Levy type clamped doubly-curved panels.Compos Struct 2007;80(4):489–503.

    62.Oktem AS,Chaudhuri RA.Levy type Fourier analysis of thick cross-ply doubly curved panels.Compos Struct 2007;80(4):475–88.

    63.Oktem AS,Chaudhuri RA.Higher-order the ory based boundarydiscontinuous Fourier analysis of simply supported thick cross-ply doubly curved panels.Compos Struct 2009;89(3):448–58.

    64.Reddy JN.Mechanics of laminated composite plates:Theory and analysis.2nd ed.Boca Raton:CRC Press;2004.

    30 June 2016;revised 28 October 2016;accepted 24 January 2017

    Available online 11 July 2017

    Analytical solution;

    Beam;

    Clamped;

    Fourier;

    Unified formulation

    *Corresponding author.

    E-mail address:jmantari@utec.edu.pe(J.L.MANTARI).

    Peer review under responsibility of Editorial Committee of CJA.

    Production and hosting by Elsevier

    http://dx.doi.org/10.1016/j.cja.2017.06.014

    1000-9361?2017 Chinese Society of Aeronautics and Astronautics.Production and hosting by Elsevier Ltd.

    This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    ?2017 Chinese Society of Aeronautics and Astronautics.Production and hosting by Elsevier Ltd.This is an open access article under theCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    国产精品亚洲美女久久久| 老熟妇乱子伦视频在线观看| 国产精品免费一区二区三区在线| 亚洲美女黄片视频| 亚洲国产日韩欧美精品在线观看| 欧美高清性xxxxhd video| 两个人视频免费观看高清| 自拍偷自拍亚洲精品老妇| 欧美一级a爱片免费观看看| 俺也久久电影网| 国产精品国产三级国产av玫瑰| 大型黄色视频在线免费观看| 少妇熟女aⅴ在线视频| 精品日产1卡2卡| 在线免费十八禁| 成人无遮挡网站| 国产一区二区三区在线臀色熟女| 自拍偷自拍亚洲精品老妇| 国产熟女欧美一区二区| 日韩欧美在线乱码| 亚洲人与动物交配视频| 亚洲国产欧美人成| 天天一区二区日本电影三级| av在线播放精品| 国产一区二区三区av在线 | 国产一区二区三区在线臀色熟女| 夜夜看夜夜爽夜夜摸| 日本熟妇午夜| 日韩在线高清观看一区二区三区| 观看免费一级毛片| 非洲黑人性xxxx精品又粗又长| 日日摸夜夜添夜夜爱| 国产一区二区在线av高清观看| 亚洲美女视频黄频| 欧美日韩精品成人综合77777| 久久精品91蜜桃| 看十八女毛片水多多多| 国产 一区 欧美 日韩| 成年女人毛片免费观看观看9| 久99久视频精品免费| 国产成人a∨麻豆精品| 十八禁网站免费在线| 精品一区二区三区视频在线观看免费| 女人被狂操c到高潮| 俺也久久电影网| 久久久精品欧美日韩精品| 精品乱码久久久久久99久播| 91久久精品电影网| 联通29元200g的流量卡| 热99re8久久精品国产| 69人妻影院| 变态另类丝袜制服| 久久久久久久久久黄片| 婷婷色综合大香蕉| 日产精品乱码卡一卡2卡三| 一进一出抽搐gif免费好疼| 国产女主播在线喷水免费视频网站 | 亚洲一区高清亚洲精品| 精品乱码久久久久久99久播| 亚洲精品亚洲一区二区| 免费无遮挡裸体视频| 国产欧美日韩精品一区二区| 国产 一区 欧美 日韩| 中出人妻视频一区二区| 国产欧美日韩一区二区精品| 69av精品久久久久久| 少妇的逼好多水| 亚洲av免费在线观看| 国产精品久久久久久精品电影| 12—13女人毛片做爰片一| 三级经典国产精品| 久久久久免费精品人妻一区二区| 成熟少妇高潮喷水视频| 特大巨黑吊av在线直播| 久99久视频精品免费| 亚洲最大成人手机在线| 免费电影在线观看免费观看| 久久久久免费精品人妻一区二区| 国产综合懂色| 精品一区二区三区av网在线观看| 干丝袜人妻中文字幕| videossex国产| 色综合亚洲欧美另类图片| 国产三级中文精品| 日本成人三级电影网站| 99久久九九国产精品国产免费| 精品不卡国产一区二区三区| 网址你懂的国产日韩在线| 欧美+日韩+精品| 国产伦一二天堂av在线观看| 伦精品一区二区三区| 男女那种视频在线观看| 麻豆av噜噜一区二区三区| 给我免费播放毛片高清在线观看| 久久综合国产亚洲精品| 男女边吃奶边做爰视频| 久久久久久伊人网av| 亚洲精品成人久久久久久| 国产男靠女视频免费网站| 熟女电影av网| 青春草视频在线免费观看| 日本撒尿小便嘘嘘汇集6| 国产精华一区二区三区| 亚洲av熟女| 少妇裸体淫交视频免费看高清| 国产综合懂色| 国产高清三级在线| 国产又黄又爽又无遮挡在线| 成人鲁丝片一二三区免费| 日本三级黄在线观看| 色av中文字幕| 别揉我奶头 嗯啊视频| 久久久a久久爽久久v久久| 日本一本二区三区精品| 久久久精品大字幕| 黄色欧美视频在线观看| 国产精品99久久久久久久久| 久久久久久久久中文| 赤兔流量卡办理| 成人综合一区亚洲| 国产伦精品一区二区三区四那| 99热这里只有是精品50| 欧美高清性xxxxhd video| 色尼玛亚洲综合影院| av黄色大香蕉| 乱码一卡2卡4卡精品| 老女人水多毛片| av黄色大香蕉| 亚洲欧美精品综合久久99| 国产美女午夜福利| 免费观看的影片在线观看| 欧美日韩乱码在线| 国产av不卡久久| 亚洲内射少妇av| 成人漫画全彩无遮挡| av在线天堂中文字幕| 日本爱情动作片www.在线观看 | 99热这里只有精品一区| 久久久a久久爽久久v久久| 久久久久久久久久久丰满| 51国产日韩欧美| 午夜激情福利司机影院| 成人av在线播放网站| 少妇裸体淫交视频免费看高清| 床上黄色一级片| 国产一区二区激情短视频| 国产黄a三级三级三级人| 国产一区二区亚洲精品在线观看| 亚洲av美国av| 美女黄网站色视频| 色哟哟哟哟哟哟| 少妇熟女aⅴ在线视频| 成人精品一区二区免费| 久久久欧美国产精品| 国产精品一区www在线观看| 校园人妻丝袜中文字幕| 俄罗斯特黄特色一大片| 免费看美女性在线毛片视频| 男女边吃奶边做爰视频| 日韩人妻高清精品专区| 亚洲成av人片在线播放无| 在线看三级毛片| 99热这里只有是精品在线观看| 噜噜噜噜噜久久久久久91| 天堂动漫精品| 99热网站在线观看| 午夜a级毛片| 少妇被粗大猛烈的视频| 婷婷精品国产亚洲av| 精品福利观看| 婷婷精品国产亚洲av| 国产精品99久久久久久久久| 成人鲁丝片一二三区免费| 免费观看的影片在线观看| 国产色爽女视频免费观看| 精品午夜福利在线看| 久久久精品94久久精品| 免费人成视频x8x8入口观看| 一区二区三区四区激情视频 | 亚洲av成人av| 久久久久久国产a免费观看| 男女之事视频高清在线观看| 国产成人a∨麻豆精品| 国产欧美日韩一区二区精品| 成年av动漫网址| 亚洲不卡免费看| 日韩大尺度精品在线看网址| 亚洲精华国产精华液的使用体验 | 久久久久国产网址| 俺也久久电影网| 一a级毛片在线观看| 久久久久久九九精品二区国产| 亚洲av中文av极速乱| 色在线成人网| avwww免费| 久久中文看片网| 香蕉av资源在线| 色哟哟·www| 69人妻影院| 好男人在线观看高清免费视频| 99热6这里只有精品| 校园春色视频在线观看| 乱码一卡2卡4卡精品| 熟妇人妻久久中文字幕3abv| 亚洲第一区二区三区不卡| .国产精品久久| 一进一出抽搐gif免费好疼| 成人三级黄色视频| 久久久久久伊人网av| 少妇的逼好多水| 性插视频无遮挡在线免费观看| 一级黄片播放器| 亚洲av成人精品一区久久| 婷婷亚洲欧美| 久久精品人妻少妇| eeuss影院久久| eeuss影院久久| 精品一区二区免费观看| 亚洲av一区综合| а√天堂www在线а√下载| 亚洲精品久久国产高清桃花| 国产亚洲av嫩草精品影院| 日本欧美国产在线视频| 欧美3d第一页| 精品久久久久久成人av| 波多野结衣巨乳人妻| 国产视频一区二区在线看| 身体一侧抽搐| eeuss影院久久| 色综合站精品国产| 亚洲av熟女| 99久国产av精品| 别揉我奶头 嗯啊视频| 中文在线观看免费www的网站| 亚洲欧美成人精品一区二区| 久久久久国产精品人妻aⅴ院| 我的老师免费观看完整版| 国产不卡一卡二| 亚洲最大成人av| 狠狠狠狠99中文字幕| 日韩 亚洲 欧美在线| 国产在视频线在精品| 亚洲av二区三区四区| 九九久久精品国产亚洲av麻豆| 亚洲四区av| 性欧美人与动物交配| av黄色大香蕉| 国产精品野战在线观看| 免费无遮挡裸体视频| 色哟哟哟哟哟哟| 久久精品国产清高在天天线| 亚洲中文字幕日韩| 精品人妻偷拍中文字幕| 国产黄a三级三级三级人| 好男人在线观看高清免费视频| 欧美最黄视频在线播放免费| 国产高潮美女av| 91麻豆精品激情在线观看国产| 国产午夜福利久久久久久| 国产精品,欧美在线| 亚洲五月天丁香| 亚洲美女搞黄在线观看 | 国产精品免费一区二区三区在线| 精品福利观看| 日本免费一区二区三区高清不卡| 欧美bdsm另类| 美女xxoo啪啪120秒动态图| 久久九九热精品免费| 又黄又爽又刺激的免费视频.| 黄色一级大片看看| 国产av在哪里看| 亚州av有码| 日本a在线网址| 亚洲成人久久爱视频| 又黄又爽又刺激的免费视频.| 婷婷精品国产亚洲av| 国产午夜精品久久久久久一区二区三区 | 春色校园在线视频观看| 最新在线观看一区二区三区| 亚洲美女搞黄在线观看 | 日日撸夜夜添| 观看美女的网站| 日本一二三区视频观看| 亚洲久久久久久中文字幕| 欧美高清成人免费视频www| 欧美激情久久久久久爽电影| 亚洲激情五月婷婷啪啪| 十八禁网站免费在线| 一区二区三区免费毛片| 精品人妻一区二区三区麻豆 | 一区二区三区高清视频在线| 国产成人91sexporn| 日本爱情动作片www.在线观看 | 日本与韩国留学比较| 亚洲av成人av| 欧美在线一区亚洲| 午夜福利高清视频| 国产不卡一卡二| 免费大片18禁| 久久精品国产亚洲网站| 国产在线精品亚洲第一网站| 亚洲av五月六月丁香网| 亚洲精品亚洲一区二区| 少妇裸体淫交视频免费看高清| 最近2019中文字幕mv第一页| 久久久久久久久久成人| 国产高清激情床上av| 日韩亚洲欧美综合| 啦啦啦韩国在线观看视频| 波多野结衣高清无吗| 黄色视频,在线免费观看| a级毛色黄片| 久久亚洲国产成人精品v| 日本色播在线视频| 嫩草影院入口| 亚洲第一电影网av| 又粗又爽又猛毛片免费看| 国产精品女同一区二区软件| 精品午夜福利视频在线观看一区| h日本视频在线播放| 九九久久精品国产亚洲av麻豆| 亚洲av免费高清在线观看| 国内精品久久久久精免费| 12—13女人毛片做爰片一| 国产精品爽爽va在线观看网站| 国产亚洲欧美98| 伦理电影大哥的女人| 国产成人91sexporn| 好男人在线观看高清免费视频| 成人精品一区二区免费| 99久久精品热视频| 一级毛片我不卡| 可以在线观看毛片的网站| 国产三级在线视频| av卡一久久| 亚洲人成网站高清观看| 97人妻精品一区二区三区麻豆| 乱人视频在线观看| 日韩高清综合在线| 久久久久久久久久久丰满| 国产精品综合久久久久久久免费| АⅤ资源中文在线天堂| 最近在线观看免费完整版| 欧美高清成人免费视频www| 久久99热这里只有精品18| 欧美日韩乱码在线| 黄色欧美视频在线观看| 自拍偷自拍亚洲精品老妇| 99久久无色码亚洲精品果冻| 国产成人a区在线观看| 午夜福利在线在线| 超碰av人人做人人爽久久| 国内久久婷婷六月综合欲色啪| 亚洲欧美精品自产自拍| 精品久久久久久久久av| 国产人妻一区二区三区在| 国产av一区在线观看免费| 全区人妻精品视频| 亚洲熟妇熟女久久| 性欧美人与动物交配| 三级经典国产精品| 国产欧美日韩精品亚洲av| 久久99热6这里只有精品| 又黄又爽又免费观看的视频| 久久精品国产自在天天线| 亚洲欧美日韩高清专用| 亚洲av成人精品一区久久| 亚洲成人久久性| 色综合站精品国产| 能在线免费观看的黄片| 国内精品久久久久精免费| 亚洲真实伦在线观看| 久久久久久大精品| 精品日产1卡2卡| 日韩精品中文字幕看吧| 亚洲欧美成人综合另类久久久 | a级一级毛片免费在线观看| 久久久久免费精品人妻一区二区| 日韩欧美 国产精品| 十八禁网站免费在线| 久久久久性生活片| 国产精品国产高清国产av| 女生性感内裤真人,穿戴方法视频| 成人亚洲精品av一区二区| 你懂的网址亚洲精品在线观看 | 真人做人爱边吃奶动态| 欧美又色又爽又黄视频| a级毛片a级免费在线| 久久精品国产99精品国产亚洲性色| 熟女电影av网| 18禁在线播放成人免费| 中文字幕免费在线视频6| 中文字幕av成人在线电影| 免费人成视频x8x8入口观看| 国产色爽女视频免费观看| 看十八女毛片水多多多| 成人国产麻豆网| 久久午夜亚洲精品久久| 伦精品一区二区三区| 天堂√8在线中文| 成年av动漫网址| 两个人的视频大全免费| 久久久久久大精品| 亚洲欧美清纯卡通| 99久久成人亚洲精品观看| 悠悠久久av| 国产一区二区激情短视频| 日本黄色片子视频| 久久久欧美国产精品| 国内揄拍国产精品人妻在线| 最近手机中文字幕大全| 亚洲av电影不卡..在线观看| 成人亚洲欧美一区二区av| 日本与韩国留学比较| 国产伦精品一区二区三区视频9| 欧美性猛交黑人性爽| 麻豆乱淫一区二区| 欧美一级a爱片免费观看看| 国产视频一区二区在线看| 波多野结衣高清作品| 久久久国产成人精品二区| 国产熟女欧美一区二区| 国产亚洲91精品色在线| 麻豆精品久久久久久蜜桃| 亚洲专区国产一区二区| 九九热线精品视视频播放| 极品教师在线视频| 精品国内亚洲2022精品成人| 午夜影院日韩av| 春色校园在线视频观看| 在线国产一区二区在线| av.在线天堂| 国产精品一区二区三区四区免费观看 | 国产色婷婷99| 久久热精品热| 男女之事视频高清在线观看| 级片在线观看| 亚洲欧美日韩无卡精品| 亚洲国产精品成人综合色| 可以在线观看毛片的网站| 日韩中字成人| 1024手机看黄色片| 不卡视频在线观看欧美| 精品乱码久久久久久99久播| 韩国av在线不卡| av.在线天堂| 欧美成人a在线观看| 欧美激情国产日韩精品一区| 国产精品日韩av在线免费观看| 级片在线观看| 久久婷婷人人爽人人干人人爱| 欧美中文日本在线观看视频| 老熟妇仑乱视频hdxx| 久久6这里有精品| 99久久精品一区二区三区| 最新中文字幕久久久久| 午夜爱爱视频在线播放| 亚洲av五月六月丁香网| 亚洲熟妇熟女久久| 欧美高清性xxxxhd video| 大型黄色视频在线免费观看| 国产成人a∨麻豆精品| 久久久欧美国产精品| 精品99又大又爽又粗少妇毛片| 日本成人三级电影网站| 狂野欧美激情性xxxx在线观看| 色尼玛亚洲综合影院| 亚洲av中文av极速乱| 一区二区三区免费毛片| 欧美日韩国产亚洲二区| 国产伦精品一区二区三区视频9| 少妇人妻精品综合一区二区 | 亚洲精品456在线播放app| 悠悠久久av| 卡戴珊不雅视频在线播放| 成人精品一区二区免费| 久久婷婷人人爽人人干人人爱| 97超级碰碰碰精品色视频在线观看| 全区人妻精品视频| 一级毛片久久久久久久久女| 国产在线精品亚洲第一网站| 男女下面进入的视频免费午夜| 国产麻豆成人av免费视频| 在线观看免费视频日本深夜| 日本爱情动作片www.在线观看 | 精品午夜福利在线看| 国产精品久久电影中文字幕| av在线观看视频网站免费| 麻豆国产av国片精品| 亚洲经典国产精华液单| 我要看日韩黄色一级片| 国产乱人偷精品视频| 日本与韩国留学比较| 男人和女人高潮做爰伦理| 精品少妇黑人巨大在线播放 | 日韩大尺度精品在线看网址| 色噜噜av男人的天堂激情| 少妇人妻精品综合一区二区 | 亚洲三级黄色毛片| 婷婷六月久久综合丁香| 成年免费大片在线观看| 亚洲精品日韩在线中文字幕 | 亚洲高清免费不卡视频| 国产探花极品一区二区| 国产一区亚洲一区在线观看| 国产精品久久电影中文字幕| 久久人人精品亚洲av| 亚洲欧美中文字幕日韩二区| 伦理电影大哥的女人| 校园人妻丝袜中文字幕| 一级毛片aaaaaa免费看小| 菩萨蛮人人尽说江南好唐韦庄 | 国产成人一区二区在线| 欧美精品国产亚洲| 又爽又黄无遮挡网站| 欧美+亚洲+日韩+国产| 在线免费十八禁| 精品不卡国产一区二区三区| 亚洲av一区综合| 中文字幕久久专区| 精品久久久久久久久亚洲| 亚洲国产精品成人久久小说 | 久久久精品大字幕| 美女免费视频网站| 成人性生交大片免费视频hd| 婷婷亚洲欧美| 一夜夜www| 亚洲成av人片在线播放无| 久久久久久久久久黄片| 久久草成人影院| 自拍偷自拍亚洲精品老妇| 在线免费观看不下载黄p国产| 欧美又色又爽又黄视频| 国产人妻一区二区三区在| 日韩一本色道免费dvd| 在线免费十八禁| 精品一区二区三区人妻视频| 亚洲av免费高清在线观看| 久久久久久久久久成人| 色综合站精品国产| 国产高清三级在线| 久久久成人免费电影| 好男人在线观看高清免费视频| 国产精品1区2区在线观看.| 亚洲国产精品成人综合色| 国产黄片美女视频| 一个人免费在线观看电影| 精品国内亚洲2022精品成人| 有码 亚洲区| 日韩成人伦理影院| 99九九线精品视频在线观看视频| 日本熟妇午夜| 亚洲高清免费不卡视频| 亚洲电影在线观看av| 综合色丁香网| 搞女人的毛片| 日日摸夜夜添夜夜爱| 国语自产精品视频在线第100页| 免费人成视频x8x8入口观看| 一个人看的www免费观看视频| 国产精品久久视频播放| 黄色日韩在线| 免费搜索国产男女视频| 日韩精品中文字幕看吧| 99久久无色码亚洲精品果冻| 三级经典国产精品| 午夜免费激情av| 欧美三级亚洲精品| 午夜爱爱视频在线播放| 国产一区二区在线观看日韩| 日本在线视频免费播放| 少妇被粗大猛烈的视频| 国产乱人偷精品视频| 九九久久精品国产亚洲av麻豆| 久久久久精品国产欧美久久久| 亚州av有码| 国产伦精品一区二区三区四那| 18禁在线播放成人免费| 精品少妇黑人巨大在线播放 | 成人亚洲欧美一区二区av| 在线观看午夜福利视频| 寂寞人妻少妇视频99o| 一进一出抽搐动态| 日日啪夜夜撸| 免费看日本二区| 亚洲欧美成人综合另类久久久 | 噜噜噜噜噜久久久久久91| 搡老熟女国产l中国老女人| 69人妻影院| 国产精品1区2区在线观看.| 给我免费播放毛片高清在线观看| 国产高潮美女av| 久久精品国产亚洲网站| 亚洲国产精品sss在线观看| 国产91av在线免费观看| 亚洲av.av天堂| 精品久久久久久久久久免费视频| 国产欧美日韩精品亚洲av| 日日摸夜夜添夜夜添小说| 激情 狠狠 欧美| 黄色配什么色好看| 久久午夜福利片| 亚洲第一区二区三区不卡| 少妇人妻精品综合一区二区 | 一个人看的www免费观看视频| 插阴视频在线观看视频| 国产免费一级a男人的天堂| 亚洲成人久久爱视频| 成人三级黄色视频| 亚洲图色成人| 99在线人妻在线中文字幕| 午夜免费男女啪啪视频观看 | 欧美人与善性xxx| av视频在线观看入口| 欧美日韩综合久久久久久|