唐 平,項(xiàng)澤順,于博海,周永潮
?
輪休對(duì)垂直流人工濕地堵塞恢復(fù)的影響及其動(dòng)力學(xué)特性
唐 平1,項(xiàng)澤順1,于博海2,周永潮2※
(1. 杭州電子科技大學(xué)材料與環(huán)境工程學(xué)院,杭州 310007;2. 浙江大學(xué)建筑工程學(xué)院市政工程研究所,杭州 310007)
人工濕地是一種常見(jiàn)的污水處理技術(shù),但一直受到不可避免的堵塞問(wèn)題的困擾。該研究主要以不同堵塞現(xiàn)象下的垂直流人工濕地模型為對(duì)象(可溶性有機(jī)物堵塞,不溶性有機(jī)物堵塞,加入抑菌劑的不溶性有機(jī)物堵塞),在輪休操作下持續(xù)測(cè)量不同時(shí)期孔隙率與滲透系數(shù)變化情況,研究3種堵塞類型的恢復(fù)規(guī)律,并對(duì)其動(dòng)力學(xué)進(jìn)行分析。試驗(yàn)結(jié)果表明在相同輪休期下,生物膜堵塞和有機(jī)顆粒堵塞恢復(fù)效果較為明顯,其中,可溶性有機(jī)物堵塞、不溶性有機(jī)物堵塞裝置分別輪休至第9天、第20天后基本達(dá)到較好的恢復(fù)狀態(tài),當(dāng)輪休時(shí)間足夠充分,這2種堵塞類型基本可以恢復(fù)至正常狀態(tài)。其中可溶性有機(jī)物堵塞恢復(fù)速度最快,其次是不溶性有機(jī)顆粒堵塞。并在規(guī)律研究基礎(chǔ)上,進(jìn)一步推導(dǎo)了2種堵塞類型的滲透系數(shù)恢復(fù)的動(dòng)力學(xué)。研究同時(shí)發(fā)現(xiàn),輪休操作對(duì)無(wú)機(jī)顆粒類堵塞基本沒(méi)有恢復(fù)效果。
濕地;動(dòng)力學(xué);堵塞;垂直流人工濕地;輪休
人工濕地是近幾十年發(fā)展起來(lái)的一種新型污水處理技術(shù),它結(jié)合了自然濕地處理污水的特點(diǎn),利用自然生態(tài)系統(tǒng)的物理截留、生物降解等方式處理污染物,使水質(zhì)得到改善。然而,根據(jù)USEPA(美國(guó)環(huán)保署,U.S. Environmental Protection Agency)對(duì)投入使用的100多個(gè)人工濕地調(diào)查發(fā)現(xiàn),約有一半的人工濕地會(huì)在運(yùn)行5 a內(nèi)產(chǎn)生各種堵塞現(xiàn)象[1]。Mucha等[2]通過(guò)研究Kickuth型濕地的坡面流,發(fā)現(xiàn)濕地在運(yùn)行12 a后的內(nèi)部多孔介質(zhì)發(fā)生堵塞。中國(guó)早期建立的一些人工濕地也產(chǎn)生不同程度堵塞[3]。濕地堵塞過(guò)程,其實(shí)是濕地填料內(nèi)有效孔隙減少,滲透系數(shù)逐漸降低的過(guò)程,該過(guò)程將導(dǎo)致水力停留時(shí)間縮短,出現(xiàn)表面流,短流等問(wèn)題,從而嚴(yán)重降低濕地凈化能力,甚至出現(xiàn)積水、惡臭等現(xiàn)象,影響周圍生態(tài)環(huán)境[4]。因此,開(kāi)展?jié)竦囟氯揽卮胧┑难芯恳饬x重大。
針對(duì)人工濕地填料堵塞問(wèn)題,國(guó)內(nèi)外學(xué)者對(duì)堵塞預(yù)防及滲透系數(shù)恢復(fù)方式開(kāi)展了大量研究?,F(xiàn)有的堵塞防控措施主要有2類,一是堵塞預(yù)防手段,目的是延緩或者盡可能減少濕地的堵塞;二是采用恢復(fù)性手段,使?jié)竦鼗謴?fù)至堵塞前狀態(tài),實(shí)現(xiàn)正常運(yùn)行。預(yù)防性措施一般包括適當(dāng)?shù)墓芾泶胧5]、水力負(fù)荷控制[6]、進(jìn)水前處理或者改變濕地的運(yùn)行條件[7]。Huang等[8]通過(guò)優(yōu)化復(fù)合垂直流濕地結(jié)構(gòu)和工藝,使?jié)竦氐氖褂脡勖黾又猎邢到y(tǒng)的2.77倍。吳振斌等[9-10]針對(duì)濕地的易堵塞位置設(shè)計(jì)了補(bǔ)水反沖裝置和回流補(bǔ)水裝置,從而有效預(yù)防堵塞?;謴?fù)手段主要可分為替換污染的填料;挖出、清洗并回用污染的填料;直接向填料中加入氧化劑;以及生物恢復(fù)法等。Platzer等[11]研究發(fā)現(xiàn)在濕地運(yùn)行期間,濕地中積累的有機(jī)物大部分集中在表層,堵塞主要發(fā)生在上層0~15 cm處,定期更換濕地系統(tǒng)基質(zhì),特別是表層填料,可以有效防止?jié)竦乇韺佣氯?,保證人工濕地的持續(xù)穩(wěn)定運(yùn)行。Batchelor等[12-13]在一個(gè)實(shí)際的水平潛流人工濕地中應(yīng)用了間歇運(yùn)行和輪休的方法,結(jié)果表明濕地表面的堵塞物質(zhì)減少,濕地滲透系數(shù)得到了一定程度的恢復(fù)。Hua等[14]通過(guò)模擬試驗(yàn)將HCl、NaOH、NaClO分別加入到垂直流濕地中用以去除堵塞物質(zhì),分別恢復(fù)了基質(zhì)15%、18%和23%的有效孔隙空間,取得了較好的處理效果。Mulligan等[15-16]研究生物表面活性劑在土壤有機(jī)污染修復(fù)中的影響,發(fā)現(xiàn)生物表面活性劑可以提高生物對(duì)低濃度有毒污染物降解有效性。Li等[17]使用了一種新型濕地堵塞恢復(fù)方法:投加蚯蚓等微型動(dòng)物,可以清通基質(zhì)并清除基質(zhì)表面的有機(jī)沉淀物,從而使人工濕地基質(zhì)的水力傳導(dǎo)性能得到恢復(fù)。
但是,更換填料、添加氧化劑等方式或成本高、或影響處理安全。輪休作業(yè)是連續(xù)流人工濕地通過(guò)周期性人為停止進(jìn)水,使其滲透系數(shù)逐漸恢復(fù)的運(yùn)行方法。該操作成本較低,不會(huì)破壞濕地,是一種緩解人工濕地堵塞經(jīng)濟(jì)有效的方式[18-19],也是國(guó)內(nèi)目前應(yīng)用較多的一種堵塞防控手段。然而,目前針對(duì)輪休操作下人工濕地滲透系數(shù)的恢復(fù)規(guī)律,特別是不同堵塞類型下恢復(fù)規(guī)律的研究仍有待深入。為此,本研究以葡萄糖溶液、淀粉懸濁液和淀粉抑菌劑混合懸濁液3種進(jìn)水的人工濕地的堵塞為研究對(duì)象,分別模擬生物膜堵塞、有機(jī)顆粒堵塞與無(wú)機(jī)顆粒堵塞現(xiàn)象,通過(guò)輪休操作,分析研究滲透系數(shù)的恢復(fù)規(guī)律,在此基礎(chǔ)上,結(jié)合生物內(nèi)源呼吸和底物降解動(dòng)力學(xué),探討人工濕地的滲透系數(shù)恢復(fù)的動(dòng)力學(xué)規(guī)律。
本試驗(yàn)裝置采用的是豎向潛流式人工濕地,裝置放置于一個(gè)透光避雨平臺(tái)上。裝置為有機(jī)玻璃加工,直徑為30 cm,裝置的底部有10 cm用來(lái)填裝卵石(粒徑3~5 mm),填料層高50 cm,填料為石英砂(粒徑:1~2 mm),分別編號(hào)1、2、3,依次模擬可溶性有機(jī)物堵塞,難溶性有機(jī)物堵塞,無(wú)機(jī)顆粒物堵塞,如圖1所示。在裝置的側(cè)面設(shè)有5個(gè)測(cè)壓管,分別設(shè)置在10、20、30、40、50 cm處,這些測(cè)壓管將填料分為5層,由上至下分別標(biāo)注為Q1、Q2、Q3、Q4、Q5。由于Q1層變化較大,該層又進(jìn)一步細(xì)分為Q1′和Q1′′兩層。填料部分進(jìn)行避光處理,防止光照對(duì)濕地內(nèi)部造成影響。
裝置運(yùn)行過(guò)程采用飽和進(jìn)水方式,底部采用卵石填充保證出水均勻。裝置頂部設(shè)有溢流口,保證進(jìn)水水位恒定,溢流的水重新流入攪拌桶,每個(gè)攪拌桶獨(dú)立運(yùn)行,從而保證每個(gè)試驗(yàn)裝置的水力停留時(shí)間和水力負(fù)荷相同。
1.測(cè)壓管 2.石英砂 3.溢流口 4.卵石 5出水口 6.輸水管 7.攪拌桶 8.攪拌槳
1.Piezometric tube 2.Quartz sand 3.Overflow holes 4.Pebble 5.Outlet 6.Water pipe 7. Mixing tank 8.Mixing propeller
注:Q1~Q5為填料分層的所對(duì)應(yīng)的編號(hào),Q1′和Q1′′為Q1的細(xì)分層編號(hào)。
Note: Q1-Q5 are the no. of filling material layer, Q1′ and Q1′′ are the hierarchy no. of Q1.
圖1 試驗(yàn)裝置圖
Fig.1 Scheme of experimental setup
3個(gè)試驗(yàn)裝置運(yùn)行前狀態(tài)一致,均種植相同大小植株的菖蒲。裝置1進(jìn)水為葡萄糖溶液,模擬純生物膜堵塞;裝置2進(jìn)水淀粉懸濁液,模擬不溶性有機(jī)物堵塞;裝置3進(jìn)水為含有抑菌劑的淀粉懸濁液,消除微生物作用影響,模擬無(wú)機(jī)顆粒物的堵塞。
3種進(jìn)水的COD質(zhì)量濃度均為200 mg/L。淀粉懸浮顆粒的粒度分布為0.1=8.8m,0.5=15.2m,0.9=26.1m。
裝置組裝完成后,對(duì)植物進(jìn)行一個(gè)月的培養(yǎng),然后連續(xù)運(yùn)行2個(gè)月,運(yùn)行參數(shù)見(jiàn)表1。
表1 運(yùn)行參數(shù)
根據(jù)Tong等[20]的研究,當(dāng)水流滲透系數(shù)達(dá)到1.61×10-3cm/s時(shí),濕地可定義為堵塞。以此為標(biāo)準(zhǔn),裝置運(yùn)行2個(gè)月后,1、2號(hào)均達(dá)到堵塞程度,裝置3滲透系數(shù)趨于穩(wěn)定,具體如表2所示。
表2 各裝置堵塞時(shí)間與累積表面負(fù)荷
在3個(gè)裝置運(yùn)行至堵塞末期,采用閑置輪休的方式使其慢慢恢復(fù)??紤]到過(guò)度輪休會(huì)導(dǎo)致人工濕地產(chǎn)生一系列問(wèn)題,因此輪休將液位控制在距離濕地表面下方20 cm處,以保證其不會(huì)因干化裂隙。堵塞層主要分布在0~15 cm,因此輪休運(yùn)行時(shí)將原水液位下降至Q2層底部,除測(cè)量孔隙率與滲透系數(shù)外,不再對(duì)裝置進(jìn)水,停止運(yùn)行一定時(shí)間。
本研究采用達(dá)西公式來(lái)測(cè)定滲透系數(shù)。測(cè)定方法是通過(guò)測(cè)定裝置2個(gè)測(cè)壓管的液位差,再使用達(dá)西滲流公式得出兩者之間的滲透系數(shù),如式(1)所示。
式中是填料的飽和滲透系數(shù),m/d;A是過(guò)流面積,m2;是流量,m3/d;是2個(gè)測(cè)點(diǎn)的水平距離,m;Δ表示2個(gè)測(cè)壓管的液位差,m。
孔隙率是指濕地內(nèi)部空隙空間占濕地總體體積的比例。測(cè)量方法是在濕地處于飽和的情況下,排空內(nèi)部液體,測(cè)量其體積,從而計(jì)算其內(nèi)部孔隙率。孔隙率測(cè)定的頻率與滲透系數(shù)測(cè)定的頻率保持一致。分層測(cè)定濕地內(nèi)的孔隙率,測(cè)量方法參照Z(yǔ)hao等[21]的方法,具體步驟是先讓濕地處于飽和狀態(tài),然后打開(kāi)出水口進(jìn)行排水并收集,通過(guò)觀察測(cè)壓管的水位來(lái)確定排水結(jié)束的時(shí)間。之后,將排出的水在電子秤上進(jìn)行稱量,測(cè)定排出水的質(zhì)量,經(jīng)換算可以得到排出水的體積。最后,裝置孔隙率可以用各層排出水的體積除以相對(duì)應(yīng)的填料的填充體積來(lái)得到。恢復(fù)率指不同輪休時(shí)間下,孔隙率或滲透系數(shù)與輪休前的孔隙率或滲透系數(shù)的百分比。
裝置1在輪休期中,滲透系數(shù)、孔隙率的恢復(fù)與輪休時(shí)間的關(guān)系如圖2所示。裝置輪休至第9天后,各層滲透系數(shù)均發(fā)生了明顯的變化,堵塞得到了明顯的恢復(fù)(圖2a)。在該過(guò)程中裝置滲透系數(shù)恢復(fù)率隨輪休時(shí)間呈增加趨勢(shì)(圖2b)??紫堵实幕謴?fù)率也同步隨停水時(shí)間的增大呈線性增加,之后逐漸趨于穩(wěn)定(圖2c和2d)。
裝置1的各層的滲透系數(shù)及恢復(fù)率呈現(xiàn)了不同的規(guī)律。輪休期后,Q1′層的滲透系數(shù)最終逐步上升到0.65 cm/s左右,與輪休前相比提高了500~600倍。Q1′′層的滲透系數(shù),最后穩(wěn)定在0.75 cm/s左右,與輪休前相比提高了數(shù)十倍。Hua等[13]通過(guò)對(duì)堵塞后人工濕地進(jìn)行輪休10 d,頂層(0~20 cm)滲透系數(shù)只達(dá)到初始階段的3倍,這主要是由于適當(dāng)降低水位以后,增加了上層填料孔隙內(nèi)堵塞物質(zhì)與空氣的接觸,生物膜的內(nèi)源呼吸將更為徹底。因此,適當(dāng)降低水位的輪休在滲透系數(shù)恢復(fù)方面具有更好的優(yōu)勢(shì)。Q2層的滲透系數(shù)也呈現(xiàn)逐步增大并于第9天恢復(fù)穩(wěn)定在1.2 cm/s左右,與輪休前相比提高了數(shù)十倍。Q3、Q4和Q5層的滲透系數(shù)變化較小,最后穩(wěn)定在1.8~2.0 cm/s,恢復(fù)率位于100%~350%之間。因此,對(duì)于生物膜堵塞的情況,如果采取輪休操作,濕地可以得到極大地恢復(fù),尤其是堵塞最嚴(yán)重的Q1、Q2層,滲透系數(shù)恢復(fù)效果非常明顯。
如圖2c和2d所示,隨著輪休時(shí)間增加,裝置1各層的孔隙率及其恢復(fù)率呈現(xiàn)了與滲透系數(shù)類似的變化規(guī)律。輪休期達(dá)到9 d后,Q1、Q2、Q3層的空隙率得到了很大的提高,分別達(dá)到了初始值的27%、32%、36%,恢復(fù)率均達(dá)到90%以上。Q4、Q5則由于前期堵塞較弱,孔隙率的變化不大。
由圖2可推測(cè),裝置1堵塞主要是生物膜生長(zhǎng)導(dǎo)致內(nèi)部孔隙空間發(fā)生變化造成的。而對(duì)于進(jìn)水中主要以溶解性有機(jī)物為主的人工濕地,孔隙間的堵塞物主要是生物膜及其胞外聚合物等外聚物組成[22],在輪休期由于處于貧養(yǎng)環(huán)境,生物膜開(kāi)始消耗胞外聚合物或內(nèi)源呼吸,因此,濕地開(kāi)始進(jìn)入了內(nèi)源呼吸階段,在這個(gè)階段,濕地自身的營(yíng)養(yǎng)物質(zhì)被消耗降解,內(nèi)部總生物量也開(kāi)始逐漸減少[13-24],孔隙率得以恢復(fù),從而填料床內(nèi)滲透系數(shù)逐漸提高。生物的內(nèi)源呼吸可以用活性污泥模擬的一級(jí)動(dòng)力學(xué)方程來(lái)進(jìn)行描述[25]。
式中是生物膜的量,g;是時(shí)間,d;是微生物的衰減速率。
在輪休期內(nèi),濕地滲透系數(shù)的恢復(fù)主要是內(nèi)部生物膜的內(nèi)源呼吸作用,因此,輪休期孔隙率的恢復(fù)動(dòng)力學(xué)可通過(guò)生物膜內(nèi)源呼吸動(dòng)力學(xué)推導(dǎo)。
圖2 可溶性有機(jī)物堵塞情況下滲透系數(shù)和孔隙率及其恢復(fù)率隨輪休時(shí)間的變化(1號(hào)裝置)
Clement[26-27]等在多孔填料堵塞研究的基礎(chǔ)上,得到了滲透系數(shù)與生物量之間的關(guān)系式,在輪休期,濕地中滲透系數(shù)與生物膜量之間的關(guān)系可推導(dǎo)如下
式中K為滲透系數(shù);0表示初始滲透系數(shù);n表示固體顆粒表面微生物所占的體積分?jǐn)?shù);表示總體積;0表示初始孔隙率;0表示初始生物膜總量;表示生物膜干質(zhì)量與濕質(zhì)量之比。
根據(jù)式(2)、式(3)、式(4),可得濕地滲透系數(shù)恢復(fù)動(dòng)力學(xué)如式(5)所示。
式(5)中生物膜量的變化可根據(jù)濕地孔隙率的變化推算[28]。由于生物膜一般含水率在90%以上,可以假定生物膜密度為1.0 g/cm3。以生物量較豐富的Q1、Q2、Q3為對(duì)象,將生物量的變化與輪休時(shí)間分別點(diǎn)繪在圖上,以Clement推導(dǎo)式以及動(dòng)力學(xué)方程對(duì)生物降解量與滲透系數(shù)變化進(jìn)行動(dòng)力學(xué)分析,如圖3所示,推導(dǎo)的動(dòng)力學(xué)變化較為符合實(shí)測(cè)趨勢(shì)。
裝置2在輪休期中,滲透系數(shù)與孔隙率的恢復(fù)與輪休時(shí)間的關(guān)系如圖4所示。如圖4a和4c所示,該裝置的滲透系數(shù)和孔隙率恢復(fù)較可容性有機(jī)物類型堵塞慢,在輪休了1個(gè)月的時(shí)間后,才逐漸趨于穩(wěn)定。在前20 d中,裝置2滲透系數(shù)恢復(fù)率隨時(shí)間呈線性增加,且由圖4c可知,在輪休期內(nèi)Q1和Q2孔隙率的恢復(fù)隨時(shí)間也呈線性增加,之后逐漸趨于穩(wěn)定。
如圖4a所示,Q1′層的滲透系數(shù),在輪休一段時(shí)間后,逐漸穩(wěn)定在1.2 cm/s左右,為試驗(yàn)裝置進(jìn)水運(yùn)行前滲透系數(shù)的46%左右,與輪休前相比提高了約3 000倍。Q1″層的滲透系數(shù),最后穩(wěn)定在1.0 cm/s左右,為試驗(yàn)裝置進(jìn)水運(yùn)行前滲透系數(shù)的35%左右,與輪休前相比提高了120倍左右。Q2層的滲透系數(shù),最后穩(wěn)定在1.25 cm/s左右,為試驗(yàn)裝置進(jìn)水運(yùn)行前滲透系數(shù)的37%左右,是輪休前的3~4倍。Q3、Q4和Q5層的滲透系數(shù),在整個(gè)輪休操作期間,變化較小,最后穩(wěn)定在1.7~2.3 cm/s,恢復(fù)率位于100%~130%之間。因此,通過(guò)觀察該裝置各層滲透系數(shù)在輪休期的恢復(fù)規(guī)律,可以發(fā)現(xiàn)在輪休時(shí)間足夠的情況下,該裝置的滲透系數(shù)變化非常大,而且能夠基本恢復(fù)至裝置進(jìn)水運(yùn)行前的滲透系數(shù),但與生物膜的堵塞裝置相比較慢,需要的輪休時(shí)間也較長(zhǎng)。
如圖4c和4d所示,經(jīng)過(guò)一段輪休期后,裝置1的孔隙率及其恢復(fù)率也發(fā)生明顯的變化。與輪休前相比,Q1、Q2、Q3層的孔隙率得到了很大的提高,分別達(dá)到了20%、29%、96%,恢復(fù)率達(dá)到77%、80%、96%。Q4、Q5則由于前期堵塞較弱,孔隙率的變化不大。
圖4 不溶性有機(jī)物堵塞情況下滲透系數(shù)和孔隙率及其恢復(fù)率隨輪休時(shí)間的變化(2號(hào)裝置)
李懷正等[23]對(duì)于濕地堵塞中不可過(guò)濾物質(zhì)分析可知,輪休階段中濕地內(nèi)部有機(jī)物質(zhì)減少較快,而裝置2產(chǎn)生堵塞主要由于高濃度有機(jī)物積累,并在微生物作用下形成致密的黏性網(wǎng)狀結(jié)構(gòu)所致,在輪休期中,微生物繼續(xù)分解孔隙中截慮的有機(jī)物,使得空隙逐漸增大,滲透系數(shù)得到恢復(fù)。因此,對(duì)于進(jìn)水中主要以不溶性有機(jī)物為主的堵塞類型,滲透系數(shù)的恢復(fù)動(dòng)力學(xué)可以根據(jù)高濃度有機(jī)物降解動(dòng)力學(xué)進(jìn)行推導(dǎo)。
高濃度有機(jī)物降解過(guò)程可以使用莫諾特微生物生長(zhǎng)模型描述。根據(jù)莫諾特方程[29],可以推導(dǎo)得到底物的降解速率和底物之間的關(guān)系,如下式所示
式中是底物濃度,mg/L;是時(shí)間,d;max是底物的最大比降解速率,d-1;K是飽和常數(shù),mg/L;是微生物量,mg/L。
裝置2的主要堵塞物質(zhì)為淀粉,相比于裝置1,由于有機(jī)質(zhì)含量較高,且主要集中在上層,因此可假設(shè)Q1層處于高濃度底物條件下,即>>,上式簡(jiǎn)化為
因此,可以表明在這種情況下,底物以恒定速率降解,裝置內(nèi)的淀粉所占體積與時(shí)間的變化呈線性變化。
Plazer等[11]曾通過(guò)研究滲透系數(shù)和堵塞物量之間的關(guān)系,得到經(jīng)驗(yàn)公式,如式(8)所示。
=0·exp(?·S) (8)
式中是濕地的滲透系數(shù),cm/s;0是濕地的初始滲透系數(shù),cm/s;S是濕地的累積去除量,g/m2;是描述濕地堵塞趨勢(shì)的參數(shù),m2/g。
結(jié)合上式,滲透系數(shù)恢復(fù)動(dòng)力學(xué)方程可推導(dǎo)如下:
根據(jù)式(9)得到動(dòng)力學(xué)變化曲線,如圖5所示,理論推導(dǎo)的滲透系數(shù)恢復(fù)過(guò)程與實(shí)際變化基本一致。
圖6a和6b描述裝置3滲透系數(shù)及其恢復(fù)率隨輪休時(shí)間的變化,圖6c和6d描述裝置3孔隙率及其恢復(fù)率的隨輪休時(shí)間的變化情況。經(jīng)過(guò)一段時(shí)間輪休后,與前2個(gè)裝置相比,裝置3基本可以看作未恢復(fù),由此輪休操作對(duì)裝置3滲透系數(shù)恢復(fù)效果不大。Hatt等[30]研究也認(rèn)為泥沙等細(xì)小的無(wú)機(jī)顆粒隨著污水進(jìn)入基質(zhì)中,決定了人工濕地的使用壽命。由此可見(jiàn)由于生物膜產(chǎn)生的堵塞更加容易在輪休操作下恢復(fù),無(wú)機(jī)顆粒物產(chǎn)生的堵塞無(wú)法通過(guò)輪休操作得到有效控制。
圖6 無(wú)機(jī)顆粒物堵塞情況下滲透系數(shù)和孔隙率及其恢復(fù)率隨輪休時(shí)間的變化(3號(hào)裝置)
通過(guò)對(duì)比3種不同人工濕地堵塞現(xiàn)象下,輪休操作后堵塞的滲透系數(shù)和孔隙率的恢復(fù)規(guī)律及恢復(fù)動(dòng)力學(xué)分析,可以得到以下結(jié)論:
1)在濕地輪休期中,除了無(wú)機(jī)顆粒物堵塞的裝置,可溶性有機(jī)物和不溶性有機(jī)物2個(gè)裝置的堵塞都出現(xiàn)了十分顯著的恢復(fù),分別在第9天和第20天恢復(fù)至較好狀態(tài)。當(dāng)輪休時(shí)間足夠長(zhǎng)時(shí),這2個(gè)裝置的滲透系數(shù)和孔隙率可以基本恢復(fù)到模型裝置運(yùn)行前的狀態(tài)。其中,生物膜類型的堵塞恢復(fù)時(shí)間較有機(jī)顆粒類的堵塞短。然而輪休操作在實(shí)際應(yīng)用中,應(yīng)結(jié)合人工濕地實(shí)際連續(xù)運(yùn)行情況、基質(zhì)滲透系數(shù)恢復(fù)目標(biāo)等因素,合理確定輪休時(shí)間。
2)溶解性有機(jī)物產(chǎn)生堵塞的人工濕地,滲透系數(shù)的恢復(fù)主要是由于微生物內(nèi)源呼吸導(dǎo)致,該類型堵塞下滲透系數(shù)的恢復(fù)動(dòng)力學(xué)可根據(jù)內(nèi)源呼吸動(dòng)力學(xué)推導(dǎo)。不溶性有機(jī)物產(chǎn)生的堵塞,在輪休期滲透系數(shù)的恢復(fù)是因?yàn)槲⑸飳⑻盍蟽?nèi)截慮的有機(jī)物進(jìn)一步降解導(dǎo)致,因此,該類型堵塞的滲透系數(shù)恢復(fù)動(dòng)力學(xué)可根據(jù)莫諾特方程進(jìn)行推導(dǎo)。
3)由于無(wú)機(jī)顆粒在填料床內(nèi)產(chǎn)生的堵塞無(wú)法通過(guò)微生物作用或內(nèi)源呼吸進(jìn)行降解,因此,無(wú)機(jī)顆粒物類型的堵塞無(wú)法通過(guò)輪休操作恢復(fù)滲透系數(shù)。
雖然輪休操作可以提高濕地的滲透系數(shù),但輪休后,由于生物量的減少以及不均勻裂隙的出現(xiàn),的確有可能出現(xiàn)進(jìn)水短路、處理效率下降等問(wèn)題。但由于傳統(tǒng)示蹤方法僅能間接測(cè)出短路與死水分布情況,無(wú)法發(fā)現(xiàn)細(xì)小滲流路徑的改變,本課題組將進(jìn)一步深入研究此問(wèn)題。
[1] USEPA. Constructed wetlands treatment of municipal wastewaters, cincinnati: ohio: Office of research and development[R]. 1999: 625-699.
[2] Mucha Zbigniew, Wojcik Wlodzimierz, Jozwiakowski Krzysztof, et al. Long-term operation of Kickuth-type constructed wetland applied to municipal wastewater treatment in temperate climate[J]. Environmental Technology, 2017: 1-22. doi.org/10.1080/09593330.2017.1323014
[3] 李亞峰,田西滿,劉佳. 人工濕地處理北方小區(qū)生活污水[J]. 中國(guó)給水排水,2009(12):53-56.
Li Yafeng, Tian Ximan, Liu Jia. Application of constructed wetland to treatment of domestic sewage from residential areain northern region[J]. China Water & Wastewater, 2009(12): 53-56. (in Chinese with English abstract)
[4] Sun G, Zhao Y Q, Allen S J. An alternative arrangement of gravel media in tidal flow reed beds treating pig farm wastewater[J]. Water, Air, and Soil Pollution, 2007, 182: 13-19.
[5] Turon Clàudia, Comas Joaquim, Poch Manel. Constructed wetland clogging: A proposal for the integration and reuse of existing knowledge[J]. Ecological Engineering, 2009, 35: 1710-1718.
[6] Morvannou A, Forquet N, Vanclooster M, et al. Characterizing hydraulic properties of filter material of a vertical flow constructed wetland[J]. Ecological Engineering, 2013, 60: 325-335.
[7] García Joan, Rousseau Diederik, Caselles-Osorio Aracelly, et al. Impact of prior physico-chemical treatment on the clogging process of subsurface flow constructed wetlands: Model-based evaluation[J]. Water, Air, and Soil Pollution, 2007, 185: 101-109.
[8] Huang Fuqing, Chen Disong, Wu Junmei, et al. Optimization of configuration and process for effectively mitigating substrate clogging in integrated vertical-flow constructed wetland[J]. China Water & Wastewater, 2017, 33: 31-36.
[9] 吳振斌,王媚,徐棟,等.一種人工濕地抗堵塞布水和反沖洗的裝置:201620205458 [P]. [2016-03-17]
[10] 吳振斌,王媚,徐棟,等.一種人工濕地抗堵塞布水和反沖洗方法及裝置:201610152448 [P]. [2016-03-17]
[11] Platzer C, Mauch K. Soil clogging in vertical flow reed beds-mechanisms, parameters, consequences and ... Solutions?[J]. Water Science and Technology, 1997, 35: 175-181.
[12] Batchelor A, Loots P. A critical evaluation of a pilot scale subsurface flow wetland: 10 years after commissioning[J]. Water Science and Technology, 1997, 35: 337-343.
[13] Hua Guofen, Zeng Yitao, Zhao Zhongwei, et al. Applying a resting operation to alleviate bioclogging in vertical flow constructed wetlands: An experimental lab evaluation[J]. Journal of Environmental Management, 2014, 136: 47-53.
[14] Hua Guofen, Zhu Wei, Zhang Yunhui. Effects of solubilization treatment and intermittent operation on clogging in vertical flow constructed wetland[J]. 2013 Third International Conference On Intelligent System Design And Engineering Applications (ISDEA), 2013: 696-699.
[15] Mulligan Catherine N. Environmental applications for biosurfactants[J]. Environmental Pollution, 2005, 133: 183-198.
[16] Du Mingpu, Xu Dong, Trinh Xuantung, et al. EPSsolubilization treatment by applying the biosurfactant rhamnolipid to reduce clogging in constructed wetlands[J]. Bioresource Technology, 2016, 218: 833-841.
[17] Li Huaizheng, Wang Sheng, Ye Jianfeng, et al. A practical method for the restoration of clogged rural vertical subsurface flow constructed wetlands for domestic wastewater treatment using earthworm[J]. Water Science & Technology, 2011, 63: 283.
[18] Nivala Jaime, Knowles Paul, Dotro Gabriela, et al. Clogging in subsurface-flow treatment wetlands: Measurement, modeling and management[J]. Water Research, 2012, 46: 1625-1640.
[19] Li Man, Hua Guofen, Ji Yuyu. Research on variation law of flow pattern during clogging and alternate operation processes in vertical flow constructed wetlands[J]. Technology of Water Treatment, 2017, 43: 57-61.
[20] Tong Wei, Zhu Wei, Ruan Aidong. Primary study of clogging mechanisms of suhstrates in vertical flow constructed wetland[J]. Hupo Kexue, 2007, 19: 25-31.
[21] Zhao L F, Zhu W, Tong W. Clogging processes caused by biofilm growth and organic particle accumulation in lab-scale vertical flow constructed wetlands[J]. Journal of Environmental Sciences, 2009, 21: 750-757.
[22] 高泉祀,駱慧敏,陳細(xì)良,等. 潛流人工濕地堵塞及輪休解除機(jī)理[J]. 給水排水,2015(S1):146-151.
Gao Quansi, Luo Huimin, Chen Xiliang, et al. Clogging mechanism and alternate operation release mechanism in subsurface-flow constructed wetlands[J]. Water & Wastewater Engineering, 2015(S1): 146-15. (in Chinese with English abstract)
[23] 李懷正,葉建鋒,徐祖信. 輪休措施對(duì)堵塞型垂直潛流人工濕地的影響[J]. 環(huán)境科學(xué)學(xué)報(bào),2008(8):1555-1560.
Li Huaizheng, Ye Jianfeng, Xu Zuxin. Influence of alternate operation on clogging in a vertical-flow constructed wetland[J]. Acta Scientiae Circumstantiae, 2008(8): 1555-1560. (in Chinese with English abstract)
[24] Kim D S, Fogler H S. Biomass evolution in porous media and its effects on permeability under starvation conditions[J]. Biotechnology and Bioengineering, 2000, 69: 47-56.
[25] Hao Xiaodi, Wang Qilin, Cao Yali, et al. Evaluating sludge minimization caused by predation and viral infection based on the extended activated sludge model No. 2D[J]. Water Research, 2011, 45: 5130-5140.
[26] Clement T P, Hooker B S, Skeen R S. Macroscopic models for predicting changes in saturated porous media properties caused by microbial growth[J]. Ground Water, 1996, 34: 934-942.
[27] 楊靖,葉淑君,吳吉春. 生物膜對(duì)飽和多孔介質(zhì)滲透性影響的實(shí)驗(yàn)和模型研究[J]. 環(huán)境科學(xué),2011(5):1364-1371.
Yang Jing, Ye Shujun, Wu Jichun. Study on the influence of bioclogging on permeability of saturated porous media by experiments and models[J]. Environmental Science, 2011(5): 1364-1371. (in Chinese with English abstract)
[28] Tanner C C, Sukias J P. Accumulation of organic solids in gravel-bed constructed wetlands[J]. Water Science and Technology, 1995, 32: 229-239.
[29] Mostafa M,Van Geel P J. Conceptual models and simulations for biological clogging in unsaturated soils[J]. Vadose Zone Journal, 2007, 6: 175.
[30] Hatt B E, Fletcher T D, Deletic A. Treatment performance of gravel filter media: Implications for design and application of stormwater infiltration systems[J]. Water Research, 2007, 41: 2513-2524.
Effect of resting operation on recovery of clogging and its dynamics for virtual flow constructed wetlands
Tang Ping1, Xiang Zeshun1, Yu Bohai2, Zhou Yongchao2※
(1.,,310007,; 2.,,,310007,)
Constructed wetlands (CWs) have been used in wastewater treatment. To understand the characteristic and the dynamics of the recovery of different clogging types forvirtual-flowconstructed wetland (VFCW), three vertical flow constructed wetlands (VFCW), fed glucose solution (bed1), starch suspension with (bed2) and without bacteriostat (bed3) were used to simulate different types clogging (clogging caused by biofilm, insoluble organic matter, and inert organic matter). The hydraulic conductivity and porosity of three VFCWs were measured regularly during the resting operation. The results indicated that the clogging caused by biofilm and organic matters can be recovered through applying resting operation. After resting for 15 days, the hydraulic conductivity recovery rate of the upper layer for bed 1 reached 500-600, and its hydraulic conductivity stabilized at 0.65cm/s. The recovery rate of lower layer (Q3, Q4 and Q5) decreased due to its higher initial value of hydraulic conductivity. The change of porosity had the same rulers.The main reason of clogging recovery of bed 1 were as follows: 1) the EPS was decreased, which made the biofilm became small and dispersive; 2) microorganisms enter an endogenous respiration state due to the short of nutrients, and endogenous respiration involves consumption of cell-internal substrate, which led to a loss of activity and slightly reduced biomass. Thus, the recovery dynamic can be deduced based on the rule ofendogenous respiration rate. The result showed that the theoretical value and the measured value were in good agreement. For bed 2, the hydraulic conductivity increased greatly in the first 20 days of resting operation, and then stabilized at 1.2 cm/s. its recovery rate was more than 3000. Similarly, the hydraulic conductivity recovery rates of Q3, Q4 and Q5 decreased gradually. After the resting operation, the porosity of Q1, Q2 and Q3 increased greatly, and it reached 20%, 29%, 96% of the initial porosity. The porosity recovery rate reached 77%, 80%, 96% respectively. During the resting operation, the trapped particles were decayed in a humid environment, and the porosity of bed 2 increased greatly during the first 12 days resting. After later resting operation, with organic particles decay, the particles’ bridging collapsed, which made the hydraulic conductivity of bed 2 increased greatly.Therefore, based on theorganic compound biodegradation, its hydraulic conductivity recovery dynamics can be deduced. The result showed that the theoretical value and the measured value were in good agreement. The recovery of clogging caused by biofilm and organic matters respectively can be complete basically after resting operation for 9 and 20 days, respectively. The recovery of clogging caused by biofilm was much faster than that of clogging caused by insoluble organic matters. In the actual operation, the resting time should be considered according to the target of recovery rate and the condition of continuum running. On the other hand, it was also found that the clogging caused by inert particles can’t be recovered through applying resting operation,which implies that clogging by inert particles is difficult to recover through applying resting operation.
wetlands; dynamics; clogging; virtual-flow constructed wetland; resting operation
10.11975/j.issn.1002-6819.2017.20.029
TU998
A
1002-6819(2017)-20-0234-07
2017-05-14
2017-10-10
國(guó)家水體污染控制與治理重大專項(xiàng)(2011ZX07301-004)
唐 平,女,博士,山東滕州,副教授,主要從事城市固體廢棄物與水環(huán)境方面研究。Email:tpshe@163.com
※通信作者:周永潮,浙江紹興人,副教授,博士,主要從事城市排水與水環(huán)境方面研究。Email:zhoutang@zju.edu.cn
唐 平,項(xiàng)澤順,于博海,周永潮. 輪休對(duì)垂直流人工濕地堵塞恢復(fù)的影響及其動(dòng)力學(xué)特性[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(20):234-240. doi:10.11975/j.issn.1002-6819.2017.20.029 http://www.tcsae.org
Tang Ping, Xiang Zeshun, Yu Bohai, Zhou Yongchao. Effect of resting operation on recovery of clogging and its dynamics for virtual flow constructed wetlands[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(20): 234-240. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.20.029 http://www.tcsae.org