• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于四元羧酸鈣配位聚合物的合成、結(jié)構(gòu)及其熒光性能

    2017-11-10 00:49:57楊樂樂韓宇陽(yáng)陸云霞邵彩云楊立榮
    化學(xué)研究 2017年5期
    關(guān)鍵詞:河南大學(xué)化工學(xué)院羧酸

    陳 一,杜 毅,蔡 婷,楊樂樂,韓宇陽(yáng),陸云霞,邵彩云,楊立榮*

    (1.河南大學(xué) 化學(xué)化工學(xué)院,河南省多酸化學(xué)重點(diǎn)實(shí)驗(yàn)室,河南 開封 475004; 2.河南大學(xué) 圖書館, 河南 開封 475001)

    基于四元羧酸鈣配位聚合物的合成、結(jié)構(gòu)及其熒光性能

    陳 一1,杜 毅1,蔡 婷1,楊樂樂1,韓宇陽(yáng)1,陸云霞2,邵彩云1,楊立榮1*

    (1.河南大學(xué) 化學(xué)化工學(xué)院,河南省多酸化學(xué)重點(diǎn)實(shí)驗(yàn)室,河南 開封 475004; 2.河南大學(xué) 圖書館, 河南 開封 475001)

    通過水熱法合成了一種結(jié)構(gòu)穩(wěn)定的金屬有機(jī)框架化合物{[Ca(atba)4·2H2O]·H2O}n(H4atba = 偶氮苯-3,3′,5,5′-四羧酸). 運(yùn)用X射線單晶衍射、紅外譜圖及X射線粉末衍射對(duì)其進(jìn)行了結(jié)構(gòu)表征. 晶體結(jié)構(gòu)測(cè)試表明該配合物通過{Ca2(CO2)2}結(jié)構(gòu)單元形成了一維鏈狀結(jié)構(gòu), 繼而通過配體之間的連接形成二維層狀結(jié)構(gòu), 進(jìn)一步通過共價(jià)鍵構(gòu)筑成三維結(jié)構(gòu). 熒光光譜分析表明, 標(biāo)題化合物對(duì)L-組氨酸具有選擇性識(shí)別作用.

    金屬-有機(jī)框架物;水熱合成;結(jié)構(gòu)表征;熒光識(shí)別

    Biography: CHEN Yi (1996-), male, majoring in coordination chemistry.*Corresponding author, E-mail: lirongyang@henu.edu.cn.

    1 Experimental section

    1.1 Materials and physical measurements

    All chemicals were commercially purchased and used without further purification. IR spectra in the range of 400-4 000 cm-1were obtained with an AVATAR 360 FT-IR spectrometer (KBr pellets were used). The crystal structure was determined with a Bruker Smart CCD X-ray single-crystal diffractometer. Excitation and emission spectra were recorded with an F-7000 FL spectrofluorometer at room temperature. Powder X-ray diffraction (PXRD) patterns were recorded on a Bruker D8.

    1.2 Synthesis of the coordination

    A mixture of calcium chloride (11.1 mg, 0.2 mmol), azobenzene-3,3,5,5-tetracarboxylic acid (37.4 mg, 0.1 mmol), 4′4 bipyridyl (13.6 mg, 0.1 mmol) and water (10 mL) was homogenized by stirring for 30 min, afterwards, the pH value of the mixture was tuned to 6, then transferred into 25 mL Teflon-linepd stainless steel autoclave under autogenous pressure at 125 ℃ for 3 days. After cooling the reaction system to room temperature at a rate of 5 ℃/h, and transparent block crystals suitable for X-ray diffraction analysis were obtained. IR data (KBr pellet, cm-1): 3 337(m), 3 117(w), 1 607(s), 1 563(s), 1 481(m), 1 439(s), 1 380(s), 1 208(m), 1 103(w), 1 006(w), 783(m), 670(w), 542(w), 484(w).

    1.3 Crystallographic data collection and refinement

    Single-crystal diffraction data were collected suitable single crystals of the coordination polymers on a Bruker Smart CCD X-ray single-crystal diffractometer with graphite monochromated Mo Kα-radiation (λ= 0.071 073 nm). All independent reections were collected in a range of 3.69°-26.37° for the coordination polymer. Multi-scan empirical absorption corrections were applied to the data using the SADABS. The crystal structure was solved by direct methods and Fourier synthesis. Positional and thermal parameters were refined by the full-matrix least-squares method onF2using the SHELXTL software package. The final least-square cycle of refinement gaveR1= 0.032 7,WR2= 0.087 9 for the coordination polymer, the weighting schemeW= 1/[δ2(F20)+(0.041 0P)2+0.139 9P] for the coordination polymer, whereP= (F20+2Fc2)/3. The crystallographic data, selected bond lengths and bond angles for coordination polymer {[Ca(atba)4·2H2O]·H2O}nare listed in Table 1 and Table 2, respectively.

    2 Results and discussion

    2.1 FT-IR spectroscopy and X-ray powder diffraction

    The complex is stable at room temperature and insoluble in common solvents; such as CH3COCH3,CH3CH2OH and CH3CN, but they are slight soluble in H2O and soluble in CH3OH and DMF. The powder XRD patterns of the coordination polymer have been investigated. As shown in Fig.1, the experimental powder XRD patterns are consistent with the simulated ones on the basis of the single-crystal structure, which indicated that the corresponding samples are pure. Meanwhile, the structure of the coordination polymer was revealed by FT-IR (Fig.2). The strong and broad absorption bands within the scope of 3 496-3 342 cm-1are assigned to the water molecules in coordination and lattice forms. Some other strong absorption bands can be seen in the region of 1 610-1 606 cm-1and 1 383-1 375 cm-1, which may be ascribed to the asymmetric (COO-) and symmetric (COO-) stretching of carboxyl groups of atbt4-ligands in the coordination polymer. The values ofΔ[vas-vs] are about 223-235 cm-1, which indicate that the carboxyl groups are coordinated with the metal ions via bidentate-bridging mode. The absence of the characteristic bands around 1 700 cm-1demonstrate that the H4atba ligands are completely deprotonated in the form of atba4-anions upon reaction with the metal ions[24-27]. The same conclusions are also supported by the results obtained from X-ray diffraction measurements.

    Table 1 Summary of crystallographic data for the complex

    Table 2 Bond lengths and angles for the complex

    Fig.1 Simulated and experimental powder XRD patterns

    Fig.2 IR of coordination polymer

    2.2 Structural description of the coordination polymer

    The crystallographic data, selected bond lengths and bond angles for coordination polymer {[Ca(atba)4·2H2O]·H2O}nare listed in Table 1 and Table 2. The Single crystal X-ray diffraction analysis reveals that the complex crystallizes in the triclinic crystal system of theP-1 space group. The coordination geometry of center Ca (Ⅱ) is a contorted six-oxygen-coordinated octahedron (Fig.3d), and four of them are from four atba4-ligand, respectively, as well as another two oxygen atoms are from two water molecules (Fig.3a,b). The Ca-O bond distances range from 0.229 16(16) nm to 0.239 38(19) nm, and the angles of O-Ca-O are within the scopes of 7.753(6)°-17.405(6)°, which are consistent with the bond length data and angles in previous work covering the corresponding coordination polymers[28-29]. Two adjoining crystallographic equivalent Ca(Ⅱ) are bridged by two carboxyl groups from atba4-ligands to form the building unit of {Ca2(CO2)2}. Afterwards, based on such units, the complex is generated into a 1D infinite linear metallic chains (Fig.3c). The 1D chains are connected into 2D layers (Fig.3e) through atba4-ligands, which are further interlinked to a 3D porous framework (Fig.3f). Meanwhile, the stabilization are strengthen owing to the covalent bonding interactions between adjacent layers which contribute to the formation of 3D structure[30-31].

    Fig.3 a) Coordination environment of Ca (Ⅱ) ion; b) Coordination mode of the ligand; c) the 1D chain in the complex; d) Diagram showing the coordination environment for Ca(Ⅱ) center; e) view of 2D layer in the complex ; f) The 3D structure of the complex

    2.3 Luminescent properties

    As mentioned above, metal ions or SBUs and organic ligands constitute the MOFs, in which, the part of organic ligands often contain aromatic or conjugated moieties that are subject to excitation, giving rise to optical emission or photoluminescence (PL) upon irradiation. Furthermore, the metal components can also contribute to photoluminescence, in which case lanthanides or various inorganic clusters are often involved.

    Fig.4 Emission spectra of the coordination polymer and amino acids at room temperature (Black, coordination polymer; Red, amino acids; Blue, mixture of coordination polymer and amino acids). a) L-Aspartic, b) L-Threonine, c) L-Glutamate, d) L-Arginin, e) L-Histidine, f) L-Glitamine, g) L-Phenylalanine

    Luminescent properties of alkaline-earth metal coordination polymers are not well-studied up to now, although there are reports on the luminescent properties of alkaline earth metal-containing inorganic materials[32-34]. In this study, the original as-synthesized complex was used to sense amino acids. The investigation of luminescent properties for sensing amino acids was determined in the liquid state at room temperature. The crystalline samples were immersed in deionized water containing various amino acids to give 10-4mol/L solutions. Emission spectra of the complex in water containingL-Asp,L-Threonine,L-Glutamic acid,L-Arginine,L-Histidine,L-Glutamine,L-Hydrocinnamamide (10-4mol/L) are graphically shown in Fig.4 and Fig.5, respectively. The results indicate that most of the tested amino acids just gave slight effect on the fluorescence intensity of the initial coordination polymer exceptL-Histidine (as illustrated in Fig.4e). Furthermore, red shift occurs in the emission spectra. Detailedly, at the presence ofL-Histidine, the emission intensity is declined sharply. The high selectivity forL-Histidine sensing probably results from the electrostatic interaction between -COO-anions (deriving from the free carboxyl groups of side chains in the polymeric backbone) and -NH3+cations (belonging to amino acids), which affords signal amplification[35].

    Fig.5 Luminescent intensities of the coordination polymer upon the addition of various amino acids at room temperature

    3 Conclusion

    In summary, we have successfully synthesized the complex based on alkaline earth metal under hydrothermal conditions, namely, {[Ca(atba)4·2H2O]·H2O}n. Structural analysis indicates that the complex presents a 1D uniform Ca-carboxylate chain based on the building unit of {Ca2(CO2)2}, thereafter, the 1D chains are connected to fabricate a 2D layered structure. Furthermore, these 2D layers are assembled into 3D network via covalent bonding. Luminescent properties of the complex have been studied at ambient temperature. Remarkably, the synthesized complex presents highly sensitive and selective towardL-Histidine and it may be acting as a promising sensor for its rapid detection.

    [1] PERRY IV J J, PERMAN J A, ZAWOROTKO M J. Design and synthesis of metal-organic frameworks using metal-organic polyhedra as supermolecular building blocks[J]. Chemical Society Reviews, 2009, 38(5): 1400-1417.

    [2] O’KEEFFE M, YAGHI O M. Deconstructing the crystal structures of metal-organic frameworks and related materials into their underlying nets[J]. Chemical Reviews, 2011, 112(2): 675-702.

    [3] HE Y, LI B, O’KEEFFE M, et al. Multifunctional metal-organic frameworks constructed from meta-benzenedicarbo-xylate units[J]. Chemical Society Reviews, 2014, 43(16): 5618-5656.

    [4] KITAGAWA S. Metal-organic frameworks (MOFs)[J]. Chemical Society Reviews, 2014, 43(16): 5415-5418.

    [5] HU Z, DEIBERT B J, LI J. Luminescent metal-organic frameworks for chemical sensing and explosive detection[J]. Chemical Society Reviews, 2014, 43(16): 5815-5840.

    [6] TRANCHEMONTAGNE D J, MENDOZA-CORTéS J L, O’KEEFFE M, et al. Secondary building units, nets and bonding in the chemistry of metal-organic frameworks[J]. Chemical Society Reviews, 2009, 38(5): 1257-1283.

    [7] O’KEEFFE M. Design of MOFs and intellectual content in reticular chemistry: a personal view[J]. Chemical Society Reviews, 2009, 38(5): 1215-1217.

    [8] PERRY IV J J, PERMAN J A, ZAWOROTKO M J. Design and synthesis of metal-organic frameworks using metal-organic polyhedra as supermolecular building blocks[J]. Chemical Society Reviews, 2009, 38(5): 1400-1417.

    [9] BROZEK C K, DINCM. Cation exchange at the secondary building units of metal-organic frameworks[J]. Chemical Society Reviews, 2014, 43(16): 5456-5467.

    [10] JASUJA H, PETERSON G W, DECOSTE J B, et al. Evaluation of MOFs for air purification and air quality control applications: Ammonia removal from air[J]. Chemical Engineering Science, 2015, 124: 118-124.

    [11] HASEGAWA S, HORIKE S, MATSUDA R, et al. Three-dimensional porous coordination polymer functionalized with amide groups based on tridentate ligand: selective sorption and catalysis[J]. Journal of the American Chemical Society, 2007, 129(9): 2607-2614.

    [12] ROSI N L, ECKERT J, EDDAOUDI M, et al. Hydrogen storage in microporous metal-organic frameworks[J]. Science, 2003, 300(5622): 1127-1129.

    [13] ZHAO X, XIAO B, FLETCHER A J, et al. Hysteretic adsorption and desorption of hydrogen by nanoporous metal-organic frameworks[J]. Science, 2004, 306(5698): 1012-1015.

    [14] LEE J Y, FARHA O K, ROBERTS J, et al. Metal-organic framework materials as catalysts[J]. Chemical Society Reviews, 2009, 38(5): 1450-1459.

    [15] STAVILA V, TALIN A A, ALLENDORF M D. MOF-based electronic and opto-electronic devices[J]. Chemical Society Reviews, 2014, 43(16): 5994-6010.

    [16] LOERA-SERNA S, OLIVER-TOLENTINO M A, DE LOURDES LPEZ-NU′EZ M, et al. Electrochemical behavior of [Cu3(BTC)2] metal-organic framework: the effect of the method of synthesis[J]. Journal of Alloys and Compounds, 2012, 540: 113-120.

    [17] KRENO L E, LEONG K, FARHA O K, et al. Metal-organic framework materials as chemical sensors[J]. Chemical Reviews, 2011, 112(2): 1105-1125.

    [18] ACHMANN S, HAGEN G, KITA J, et al. Metal-organic frameworks for sensing applications in the gas phase[J]. Sensors, 2009, 9(3): 1574-1589.

    [19] LIU J, CHEN L, CUI H, et al. Applications of metal-organic frameworks in heterogeneous supramolecular catalysis[J]. Chemical Society Reviews, 2014, 43(16): 6011-6061.

    [20] HU Z, DEIBERT B J, LI J. Luminescent metal-organic frameworks for chemical sensing and explosive detection[J]. Chemical Society Reviews, 2014, 43(16): 5815-5840.

    [21] PERRIER M, KENOUCHE S, LONG J, et al. Investigation on NMR relaxivity of nano-sized cyano-bridged coordination polymers[J]. Inorganic Chemistry, 2013, 52(23): 13402-13414.

    [22] ROESKY H W, ANDRUH M. The interplay of coordinative, hydrogen bonding and π-π stacking interactions in sustaining supramolecular solid-state architectures: A study case of bis (4-pyridyl)-and bis (4-pyridyl-N-oxide) tectons[J]. Coordination Chemistry Reviews, 2003, 236(1): 91-119.

    [23] LI X F, HAN Z B, CHENG X N, et al. Studies on the radii dependent lanthanide self-assembly coordination behaviors of a flexible dicarboxylate ligand[J]. Inorganic Chemistry Communications, 2006, 9(11): 1091-1095.

    [24] LI J R, YU Q, TAO Y, et al. Magnetic canting or not? two isomorphous 3D Co II and Ni II coordination polymers with the rare non-interpenetrated (10, 3)-d topological network, showing spin-canted antiferromagnetism only in the Co II system[J]. Chemical Communications, 2007(22): 2290-2292.

    [25] DANESHFAR R, KLASSEN J S. Arrhenius activation parameters for the loss of neutral nucleobases from deprotonated oligonucleotide anions in the gas phase[J]. Journal of the American Society for Mass Spectrometry, 2004, 15(1): 55-64.

    [26] TANCREZ N, FEUVRIE C, LEDOUX I, et al. Lanthanide complexes for second order nonlinear optics: evidence for the direct contribution of electrons to the quadratic hyperpolarizability 1[J]. Journal of the American Chemical Society, 2005, 127(39): 13474-13475.

    [27] HUGHES C E, REDDY G N M, MASIERO S, et al. Determination of a complex crystal structure in the absence of single crystals: analysis of powder X-ray diffraction data, guided by solid-state NMR and periodic DFT calculations, reveals a new 2′-deoxyguanosine structural motif[J]. Chemical Science, 2017, 8(5): 3971-3979.

    [28] ZHANG D, ZHANG R, LI J, et al. Two new 2D coordination polymers constructed from 2, 6-dimethylpyridine-3, 5-dicarboxylic acid ligands and alkaline earth metals (Sr and Ba)[J]. Inorganic Chemistry Communications, 2013, 35: 307-310.

    [29] RUI-FEN D, FENG L, FU-WEI L, et al. Stabilization variation of organic conductor surfaces induced by π-π stacking interactions[J]. Chinese Physics B, 2012, 21(5): 056801.

    [30] POATER J, SWART M, BICKELHAUPT F M, et al. B-DNA structure and stability: the role of hydrogen bonding, π-π stacking interactions, twist-angle, and solvation[J]. Organic & Biomolecular Chemistry, 2014, 12(26): 4691-4700.

    [31] HU Z, DEIBERT B J, LI J. Luminescent metal-organic frameworks for chemical sensing and explosive detection[J]. Chemical Society Reviews, 2014, 43(16): 5815-5840.

    [32] SHUSTOVA N B, COZZOLINO A F, REINEKE S, et al. Selective turn-on ammonia sensing enabled by high-temperature fluorescence in metal-organic frameworks with open metal sites[J]. Journal of the American Chemical Society, 2013, 135(36): 13326-13329.

    [33] JAYARAMULU K, KANOO P, GEORGE S J, et al. Tunable emission from a porous metal-organic framework by employing an excited-state intramolecular proton transfer responsive ligand[J]. Chemical Communications, 2010, 46(42): 7906-7908.

    [34] DOUVALI A, PAPAEFSTATHIOU G S, GULLO M P, et al. Alkaline earth metal ion/dihydroxy-terephthalate MOFs: Structural diversity and unusual luminescent pro-perties[J]. Inorganic Chemistry, 2015, 54(12): 5813-5826.

    [35] ZHOU Y, YOON J. Recent progress in fluorescent and colorimetric chemosensors for detection of amino acids[J]. Chemical Society Reviews, 2012, 41(1): 52-67.

    date: 2017-06-26.

    Synthesis,structure,characterizationandfluorescencepropertiesofpolymersbasedoncalcium(Ⅱ)andazoxybenzene-3,3′,5,5′-tetracarboxyicacid

    CHEN Yi1, DU Yi1, CAI Ting1, YANG Lele1, HAN Yuyang1, LU Yunxia2, SHAO Caiyun1, YANG Lirong1*

    (1.HenanKeyLaboratoryofPolyoxometalateChemistry,CollegeofChemistryandChemicalEngineering,HenanUniversity,Kaifeng475004,Henan,China; 2.LibraryofHenanUniversity,Kaifeng475001,Henan,China)

    A sable metal-organic framework of Ca (Ⅱ), namely, {[Ca(atba)4·2H2O]·H2O}n(H4atba=azoxybenzene-3,3′,5,5′-tetracarboxyic acid) has been synthesized under solvothermal conditions. The complex was characterized by single crystal X-ray analysis, IR spectroscopy and X-ray powder diffraction. Structural determination shows that the complex presents a 1D (one-dimensional) uniform Ca-carboxylate chain based on the building unit of {Ca2(CO2)2}, thereafter, the 1D chains are connected to form a 2D (two-dimensional) layered structure by ligands. These 2D layers are further linked into 3D (three-dimensional) network via covalent bonding. Luminescent properties of the complex have been studied at ambient temperature. The complex shows selective response toL-Histidine, suggesting that it may be promising luminescent selective recognition sensor forL-Histidine.

    metal-organic framework; hydrothermal synthesis; structural characterization; luminescent property

    O627.1DocumentcodeA

    1008-1011(2017)05-0548-08

    This research is financially supported by the Natural Science Foundation of Henan Province of China (Nos. 162300410010 and 13A150056).

    Metal-organic frameworks (MOFs), also termed as porous coordination polymers (PCPs), are fascinating materials that are both fundamentally important and technologically relevant[1-5]. As indicated by the name, MOFs are consist of inorganic metal ions or metal-containing clusters (secondary building units or SBUs) and organic ligands via metal coordination bonds, and this mode formed the porous crystalline solid which possess the coordination mode of conjugate bridging ligands and the topological features the geometry of metal centers. Owing to the special structure, it’s significant to select suitable ligands with fixed geometry and variable bonding modes for designing and synthetizing coordination polymers with interesting geometric configurations[6-9]. Based on the intrinsic permanent porous interpenetration networks, various functionalities and potential applications in numerous areas can be accessed, such as gas storage and separation, heterogeneous catalysis, guest-exchange, molecular recognition, magnetic properties and selective luminescent probes[10-18]. Given the nearly limitless choices of metal and ligand combinations, MOFs can thrive on structural diversity, tunable chemical and physical properties[19-20]. Much effort has been focused on coordination polymers for decades, this filed has got enormous development, especially in lanthanide- and transition-metal-based coordination polymers. The assembly of the lanthanide ions and the transition metal ions in combination with organic linkers already could be systematically investigated. Nevertheless, the coordination polymers of the alkaline-earth metal ions still remain much less developed, and only several coordination polymers have been reported[21-23]. Following our longstanding research on the synthesis and separation of novel coordination polymers, in this work, we have successfully synthesized the complex {[Ca(atba)4·2H2O]·H2O}nbased on alkaline earth metal under hydrothermal conditions.

    [責(zé)任編輯:劉紅玲]

    猜你喜歡
    河南大學(xué)化工學(xué)院羧酸
    使固態(tài)化學(xué)反應(yīng)100%完成的方法
    吡啶-2-羧酸鉻的制備研究
    云南化工(2021年10期)2021-12-21 07:33:28
    國(guó)家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心列表
    【鏈接】國(guó)家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心(第四批)名單
    攪拌對(duì)聚羧酸減水劑分散性的影響
    歸 去 兮
    新生代(2019年5期)2019-11-14 06:17:33
    詠 河 大
    新生代(2018年15期)2018-11-13 19:48:53
    故 鄉(xiāng)
    《化工學(xué)報(bào)》贊助單位
    www日本在线高清视频| 欧美激情国产日韩精品一区| 久久热在线av| 婷婷色综合大香蕉| 人成视频在线观看免费观看| 人人妻人人澡人人爽人人夜夜| 亚洲性久久影院| 丝瓜视频免费看黄片| 欧美亚洲日本最大视频资源| 99热6这里只有精品| 欧美人与性动交α欧美软件 | 少妇熟女欧美另类| 日日爽夜夜爽网站| 一本色道久久久久久精品综合| 欧美人与性动交α欧美精品济南到 | 天美传媒精品一区二区| 中文字幕最新亚洲高清| 免费观看a级毛片全部| 亚洲av欧美aⅴ国产| 国产av码专区亚洲av| 精品少妇黑人巨大在线播放| 亚洲美女搞黄在线观看| 亚洲国产欧美日韩在线播放| 亚洲精品国产av蜜桃| 国产爽快片一区二区三区| 日韩欧美精品免费久久| 搡女人真爽免费视频火全软件| 成人国语在线视频| 国产一区亚洲一区在线观看| 69精品国产乱码久久久| av网站免费在线观看视频| 亚洲成国产人片在线观看| 大片免费播放器 马上看| 欧美日韩亚洲高清精品| 伦精品一区二区三区| 一区二区三区精品91| 黑人猛操日本美女一级片| 国产片特级美女逼逼视频| 91成人精品电影| 亚洲av电影在线进入| 国产一区二区在线观看日韩| 免费观看性生交大片5| 性色av一级| 国产不卡av网站在线观看| 日韩一本色道免费dvd| 日韩av免费高清视频| 亚洲av免费高清在线观看| 日本91视频免费播放| 免费av不卡在线播放| 99热国产这里只有精品6| 亚洲 欧美一区二区三区| 欧美亚洲日本最大视频资源| 捣出白浆h1v1| 欧美bdsm另类| 国产免费视频播放在线视频| 纯流量卡能插随身wifi吗| 捣出白浆h1v1| 久久久久精品久久久久真实原创| 亚洲精品av麻豆狂野| 国产成人欧美| 久久久久国产网址| 99热国产这里只有精品6| 国产成人免费无遮挡视频| 内地一区二区视频在线| 国产免费现黄频在线看| 亚洲欧洲国产日韩| 丝袜美足系列| 高清在线视频一区二区三区| 90打野战视频偷拍视频| 亚洲av国产av综合av卡| 制服丝袜香蕉在线| 国产永久视频网站| 国产成人精品久久久久久| 制服丝袜香蕉在线| 看十八女毛片水多多多| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 天堂8中文在线网| 欧美另类一区| 咕卡用的链子| 丝袜喷水一区| 边亲边吃奶的免费视频| 亚洲内射少妇av| 黄色视频在线播放观看不卡| 80岁老熟妇乱子伦牲交| a级毛片在线看网站| 搡老乐熟女国产| 三级国产精品片| 午夜福利,免费看| 如日韩欧美国产精品一区二区三区| 国产综合精华液| 婷婷色av中文字幕| 国产在线免费精品| 国产精品秋霞免费鲁丝片| 亚洲婷婷狠狠爱综合网| 涩涩av久久男人的天堂| 国产av精品麻豆| 久久久久久伊人网av| 男女边吃奶边做爰视频| a 毛片基地| 黑人巨大精品欧美一区二区蜜桃 | 男男h啪啪无遮挡| 乱人伦中国视频| 一级毛片黄色毛片免费观看视频| 亚洲国产欧美在线一区| 国产精品99久久99久久久不卡 | 亚洲情色 制服丝袜| 一本大道久久a久久精品| 老女人水多毛片| 成年美女黄网站色视频大全免费| 我的女老师完整版在线观看| 性色avwww在线观看| 成人综合一区亚洲| 亚洲av中文av极速乱| 夫妻午夜视频| 最后的刺客免费高清国语| 高清欧美精品videossex| 国产精品久久久久久精品电影小说| 在线 av 中文字幕| 韩国av在线不卡| 一级黄片播放器| a级毛色黄片| 欧美成人午夜精品| 亚洲av在线观看美女高潮| 国产成人午夜福利电影在线观看| 人人妻人人澡人人爽人人夜夜| 亚洲精品日韩在线中文字幕| 人人妻人人澡人人看| 午夜精品国产一区二区电影| 亚洲成av片中文字幕在线观看 | 美女国产视频在线观看| 99久国产av精品国产电影| 日韩一区二区视频免费看| 18在线观看网站| 色视频在线一区二区三区| 自线自在国产av| 一级毛片黄色毛片免费观看视频| 免费av中文字幕在线| 久久精品久久久久久久性| 女人久久www免费人成看片| 七月丁香在线播放| 九色亚洲精品在线播放| 亚洲精品美女久久av网站| 国产一区二区在线观看av| 老司机亚洲免费影院| 久久毛片免费看一区二区三区| 国产精品成人在线| 男男h啪啪无遮挡| 久久国产精品男人的天堂亚洲 | 成年av动漫网址| 99国产综合亚洲精品| 2018国产大陆天天弄谢| 另类精品久久| 99国产综合亚洲精品| 国产精品三级大全| 女的被弄到高潮叫床怎么办| 国产av码专区亚洲av| 黑人猛操日本美女一级片| 国产成人欧美| 亚洲第一区二区三区不卡| 免费av中文字幕在线| 亚洲精品中文字幕在线视频| 国产av精品麻豆| 男女边吃奶边做爰视频| 中文字幕制服av| 免费观看在线日韩| 国产高清国产精品国产三级| 久久精品国产亚洲av天美| 交换朋友夫妻互换小说| 国产成人精品在线电影| 亚洲欧美成人综合另类久久久| 夜夜骑夜夜射夜夜干| 赤兔流量卡办理| 五月伊人婷婷丁香| 国产亚洲精品久久久com| 少妇人妻久久综合中文| 亚洲精品久久午夜乱码| av不卡在线播放| 中文乱码字字幕精品一区二区三区| 久久久久精品性色| 久久精品久久久久久久性| 黄网站色视频无遮挡免费观看| 日韩 亚洲 欧美在线| 一边摸一边做爽爽视频免费| 18禁观看日本| 久久久久久久久久成人| 交换朋友夫妻互换小说| xxx大片免费视频| 国内精品宾馆在线| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲欧美成人综合另类久久久| 亚洲精品日本国产第一区| 人人妻人人爽人人添夜夜欢视频| 色婷婷av一区二区三区视频| 少妇熟女欧美另类| 美女脱内裤让男人舔精品视频| 国产片内射在线| 成年av动漫网址| 交换朋友夫妻互换小说| 久久 成人 亚洲| 夜夜爽夜夜爽视频| 亚洲熟女精品中文字幕| 2021少妇久久久久久久久久久| 色5月婷婷丁香| 日本vs欧美在线观看视频| av女优亚洲男人天堂| 黄色配什么色好看| √禁漫天堂资源中文www| 三上悠亚av全集在线观看| 亚洲欧美一区二区三区黑人 | 午夜激情av网站| 久久鲁丝午夜福利片| 亚洲综合色网址| 国产精品久久久久久精品古装| 熟女电影av网| 视频中文字幕在线观看| 久久国产精品男人的天堂亚洲 | 又黄又爽又刺激的免费视频.| 汤姆久久久久久久影院中文字幕| 九九在线视频观看精品| 亚洲av成人精品一二三区| 国产片特级美女逼逼视频| 岛国毛片在线播放| 黑人猛操日本美女一级片| 男人舔女人的私密视频| 久久免费观看电影| 一区二区三区乱码不卡18| 亚洲欧美成人精品一区二区| 日日撸夜夜添| 超碰97精品在线观看| 国产精品久久久久久久电影| 看免费av毛片| 精品国产一区二区三区四区第35| 26uuu在线亚洲综合色| 国产片特级美女逼逼视频| 国产一区二区激情短视频 | 久久久久精品性色| 免费高清在线观看日韩| 综合色丁香网| 在线观看免费视频网站a站| 黄片无遮挡物在线观看| av在线播放精品| 激情视频va一区二区三区| 国产成人精品一,二区| 99re6热这里在线精品视频| 国产成人精品久久久久久| 18在线观看网站| 国产成人91sexporn| 国产片内射在线| av国产久精品久网站免费入址| 少妇熟女欧美另类| 一区二区日韩欧美中文字幕 | 亚洲欧洲精品一区二区精品久久久 | 美女大奶头黄色视频| 国产免费视频播放在线视频| 中国美白少妇内射xxxbb| 精品午夜福利在线看| 午夜精品国产一区二区电影| 亚洲精品自拍成人| 国内精品宾馆在线| 90打野战视频偷拍视频| 欧美性感艳星| 午夜免费观看性视频| 亚洲欧洲国产日韩| 亚洲av综合色区一区| 中文天堂在线官网| 精品国产国语对白av| 久久av网站| 国产精品免费大片| 91成人精品电影| 99香蕉大伊视频| 亚洲精品成人av观看孕妇| 你懂的网址亚洲精品在线观看| 久久精品久久精品一区二区三区| 80岁老熟妇乱子伦牲交| 五月玫瑰六月丁香| 黑人巨大精品欧美一区二区蜜桃 | 蜜桃国产av成人99| 午夜福利网站1000一区二区三区| 亚洲婷婷狠狠爱综合网| 成年人免费黄色播放视频| 男女高潮啪啪啪动态图| 精品一区二区三卡| 国产成人91sexporn| 亚洲国产欧美日韩在线播放| 国产黄色免费在线视频| 精品一区二区三区视频在线| 国产精品久久久久久久电影| 99久久综合免费| 免费在线观看完整版高清| 日本猛色少妇xxxxx猛交久久| 18禁观看日本| 哪个播放器可以免费观看大片| 久久精品夜色国产| 边亲边吃奶的免费视频| 2021少妇久久久久久久久久久| 成人亚洲精品一区在线观看| 看免费av毛片| 尾随美女入室| 国产片内射在线| 精品国产一区二区三区四区第35| 最近最新中文字幕免费大全7| 飞空精品影院首页| 亚洲精品视频女| 国产片特级美女逼逼视频| 国产不卡av网站在线观看| 精品国产乱码久久久久久小说| 天堂俺去俺来也www色官网| 国产欧美亚洲国产| 中文精品一卡2卡3卡4更新| 三上悠亚av全集在线观看| 日本免费在线观看一区| 日韩中文字幕视频在线看片| 黄色毛片三级朝国网站| 久久久久久人人人人人| 国产又色又爽无遮挡免| 你懂的网址亚洲精品在线观看| 久久久久精品久久久久真实原创| 一边亲一边摸免费视频| 欧美人与性动交α欧美软件 | 26uuu在线亚洲综合色| 国产亚洲精品久久久com| 久久久精品免费免费高清| 超色免费av| 久久精品久久精品一区二区三区| 亚洲精品一区蜜桃| 国产成人精品久久久久久| 欧美精品av麻豆av| 超碰97精品在线观看| 欧美日韩综合久久久久久| 亚洲国产欧美在线一区| 国产69精品久久久久777片| 色94色欧美一区二区| 国产亚洲欧美精品永久| 久久99热6这里只有精品| 免费av不卡在线播放| 久久97久久精品| 中国美白少妇内射xxxbb| 黑人猛操日本美女一级片| 久久狼人影院| 国产男人的电影天堂91| 国产高清三级在线| 十分钟在线观看高清视频www| 乱人伦中国视频| 国产国语露脸激情在线看| 成人二区视频| 日本av免费视频播放| a级毛色黄片| 国产极品天堂在线| 水蜜桃什么品种好| 日韩av在线免费看完整版不卡| 亚洲国产色片| 男女下面插进去视频免费观看 | av在线观看视频网站免费| 最近的中文字幕免费完整| 国产女主播在线喷水免费视频网站| 国产在视频线精品| 国产有黄有色有爽视频| 亚洲综合精品二区| 免费女性裸体啪啪无遮挡网站| 亚洲国产最新在线播放| 精品国产一区二区三区久久久樱花| 大片免费播放器 马上看| 成人免费观看视频高清| 亚洲高清免费不卡视频| 99国产综合亚洲精品| 最后的刺客免费高清国语| 99精国产麻豆久久婷婷| 中文字幕精品免费在线观看视频 | 青春草亚洲视频在线观看| 人妻 亚洲 视频| 国产国拍精品亚洲av在线观看| 日韩视频在线欧美| 亚洲av福利一区| 乱码一卡2卡4卡精品| 日本wwww免费看| 精品99又大又爽又粗少妇毛片| 国产一区二区三区av在线| 亚洲精品中文字幕在线视频| 国产一区二区在线观看日韩| 国产深夜福利视频在线观看| www.色视频.com| 亚洲精品一区蜜桃| 一本—道久久a久久精品蜜桃钙片| 精品亚洲成国产av| 亚洲av男天堂| 女人久久www免费人成看片| 黄片播放在线免费| 伦精品一区二区三区| 久久99热这里只频精品6学生| 午夜免费男女啪啪视频观看| 国产精品国产三级国产av玫瑰| 99热6这里只有精品| 欧美激情 高清一区二区三区| 少妇被粗大猛烈的视频| 亚洲欧美日韩卡通动漫| 人妻系列 视频| 宅男免费午夜| 亚洲一区二区三区欧美精品| 久久久精品94久久精品| 久久久精品区二区三区| 亚洲国产日韩一区二区| 有码 亚洲区| 高清在线视频一区二区三区| 欧美人与性动交α欧美精品济南到 | 1024视频免费在线观看| 少妇人妻精品综合一区二区| 午夜福利视频在线观看免费| 男的添女的下面高潮视频| 9191精品国产免费久久| 久久久欧美国产精品| 精品国产一区二区久久| 丝袜在线中文字幕| 国产免费一级a男人的天堂| 日日爽夜夜爽网站| 深夜精品福利| 久久精品久久久久久噜噜老黄| 人妻人人澡人人爽人人| 国产一区二区三区综合在线观看 | 久热久热在线精品观看| 美女国产高潮福利片在线看| 高清视频免费观看一区二区| 国产亚洲午夜精品一区二区久久| 国产欧美日韩一区二区三区在线| 日韩人妻精品一区2区三区| 国产av国产精品国产| 在线亚洲精品国产二区图片欧美| 欧美日韩综合久久久久久| 久久久久久久精品精品| 高清在线视频一区二区三区| 国产精品国产三级专区第一集| 国产老妇伦熟女老妇高清| av在线老鸭窝| 视频区图区小说| 亚洲国产精品一区三区| 精品人妻在线不人妻| av福利片在线| 另类精品久久| 男的添女的下面高潮视频| 亚洲 欧美一区二区三区| 日韩一区二区视频免费看| 精品国产一区二区久久| 国产精品久久久久久精品古装| 成人毛片60女人毛片免费| 99久国产av精品国产电影| 性高湖久久久久久久久免费观看| 欧美bdsm另类| 97人妻天天添夜夜摸| 欧美人与善性xxx| av国产久精品久网站免费入址| 国产片特级美女逼逼视频| 99re6热这里在线精品视频| 成人黄色视频免费在线看| 高清欧美精品videossex| 欧美激情极品国产一区二区三区 | kizo精华| 午夜久久久在线观看| 又黄又爽又刺激的免费视频.| 国产 一区精品| 免费黄色在线免费观看| 免费观看在线日韩| 精品国产国语对白av| 欧美+日韩+精品| 视频中文字幕在线观看| 日韩成人伦理影院| 一级a做视频免费观看| 天天影视国产精品| av又黄又爽大尺度在线免费看| 韩国精品一区二区三区 | 黄色 视频免费看| 18在线观看网站| 九色亚洲精品在线播放| 欧美xxⅹ黑人| 欧美日韩国产mv在线观看视频| 国产欧美亚洲国产| 国产精品女同一区二区软件| 考比视频在线观看| 日韩av免费高清视频| 欧美97在线视频| 人妻 亚洲 视频| 亚洲欧美成人综合另类久久久| 建设人人有责人人尽责人人享有的| 国产亚洲一区二区精品| 亚洲av日韩在线播放| av在线播放精品| av在线播放精品| xxx大片免费视频| 日韩制服丝袜自拍偷拍| 日本色播在线视频| 免费看光身美女| 在线观看美女被高潮喷水网站| 亚洲欧美成人精品一区二区| 国产精品一区二区在线不卡| 中国美白少妇内射xxxbb| xxxhd国产人妻xxx| videosex国产| 一本大道久久a久久精品| 边亲边吃奶的免费视频| 99热6这里只有精品| 国产一区二区三区av在线| 免费看av在线观看网站| 亚洲熟女精品中文字幕| 黄网站色视频无遮挡免费观看| 这个男人来自地球电影免费观看 | 亚洲成国产人片在线观看| 国产成人午夜福利电影在线观看| 亚洲成人手机| 亚洲av欧美aⅴ国产| 国产精品久久久久成人av| 国产女主播在线喷水免费视频网站| 一区二区三区四区激情视频| 91精品国产国语对白视频| 亚洲,欧美精品.| 有码 亚洲区| 亚洲三级黄色毛片| 草草在线视频免费看| 欧美 日韩 精品 国产| 亚洲美女黄色视频免费看| 在线免费观看不下载黄p国产| 久久久国产精品麻豆| 亚洲情色 制服丝袜| 80岁老熟妇乱子伦牲交| 久久久精品94久久精品| 久热这里只有精品99| 多毛熟女@视频| 免费看不卡的av| 成人影院久久| 97超碰精品成人国产| 成人漫画全彩无遮挡| 伦精品一区二区三区| 亚洲精品久久午夜乱码| 岛国毛片在线播放| 国产1区2区3区精品| 国产精品一区二区在线观看99| 精品国产国语对白av| 中文字幕人妻丝袜制服| 女性被躁到高潮视频| 边亲边吃奶的免费视频| 少妇人妻精品综合一区二区| 欧美亚洲 丝袜 人妻 在线| 亚洲av综合色区一区| 少妇被粗大猛烈的视频| 伊人久久国产一区二区| 成人国产av品久久久| 嫩草影院入口| 久久久亚洲精品成人影院| 老熟女久久久| 搡老乐熟女国产| 九九在线视频观看精品| 免费看av在线观看网站| 久久人人爽人人爽人人片va| 欧美激情极品国产一区二区三区 | 亚洲天堂av无毛| 亚洲三级黄色毛片| 在线观看免费高清a一片| 久久免费观看电影| 国产日韩欧美亚洲二区| 人人澡人人妻人| 免费女性裸体啪啪无遮挡网站| 欧美亚洲日本最大视频资源| 少妇的逼好多水| 国产免费现黄频在线看| 日韩一区二区三区影片| 爱豆传媒免费全集在线观看| 久久鲁丝午夜福利片| 亚洲国产色片| 亚洲国产av新网站| 亚洲国产精品999| 午夜福利影视在线免费观看| 国产精品一国产av| 成年女人在线观看亚洲视频| 99久久综合免费| 一区二区三区精品91| 国产日韩欧美在线精品| 啦啦啦视频在线资源免费观看| 亚洲精品乱码久久久久久按摩| 国产日韩欧美亚洲二区| 日本爱情动作片www.在线观看| 天天操日日干夜夜撸| 国产在线一区二区三区精| 黑人欧美特级aaaaaa片| 亚洲一码二码三码区别大吗| 日韩制服丝袜自拍偷拍| 精品第一国产精品| 国产福利在线免费观看视频| 午夜精品国产一区二区电影| 91久久精品国产一区二区三区| 在线天堂最新版资源| 免费看av在线观看网站| 国产精品免费大片| 欧美日韩综合久久久久久| 成人二区视频| 国产精品欧美亚洲77777| 人体艺术视频欧美日本| 亚洲国产欧美日韩在线播放| 黑人猛操日本美女一级片| 国产有黄有色有爽视频| 18禁动态无遮挡网站| 国产视频首页在线观看| 永久网站在线| 欧美成人午夜免费资源| 亚洲情色 制服丝袜| 天天操日日干夜夜撸| 国产日韩欧美亚洲二区| 啦啦啦中文免费视频观看日本| 日韩人妻精品一区2区三区| 国产亚洲精品第一综合不卡 | 国产成人精品久久久久久| 成年av动漫网址| 久久热在线av| 男的添女的下面高潮视频| av在线app专区| 日韩成人av中文字幕在线观看| 99国产综合亚洲精品| 在线免费观看不下载黄p国产| 国产极品粉嫩免费观看在线|