• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    On the hydrodynamics of hydraulic machinery and flow control *

    2017-11-02 09:09:15HongxunChen陳紅勛ZhengMa馬崢WeiZhang張偉BingZhu朱兵RuiZhang張睿QunWei魏群ZhengchuanZhang張正川ChaoLiu劉超JianwuHe何建武
    關(guān)鍵詞:建武張睿劉超

    Hong-xun Chen (陳紅勛), Zheng Ma (馬崢), Wei Zhang (張偉), Bing Zhu (朱兵), Rui Zhang (張睿),Qun Wei (魏群), Zheng-chuan Zhang (張正川), Chao Liu (劉超), Jian-wu He (何建武)

    1. Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, China,

    E-mail: chenhx@shu.edu.cn

    2. Chinese Ship Scientific Research Center, Wuxi 214082, China

    On the hydrodynamics of hydraulic machinery and flow control*

    Hong-xun Chen (陳紅勛)1, Zheng Ma (馬崢)2, Wei Zhang (張偉)1, Bing Zhu (朱兵)1, Rui Zhang (張睿)1,Qun Wei (魏群)1, Zheng-chuan Zhang (張正川)1, Chao Liu (劉超)1, Jian-wu He (何建武)1

    1. Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, China,

    E-mail: chenhx@shu.edu.cn

    2. Chinese Ship Scientific Research Center, Wuxi 214082, China

    Hydraulic machinery mainly includes turbine and pump, which is closely related to national economy and people's livelihood involving aerospace industry, marine engineering, hydropower engineering, petroleum industry, chemical industry, mining industry, biomedical engineering, environmental engineering, agricultural water-soil engineering, etc.. The internal flow of hydraulic machinery is extremely complex, and its characteristics can be summarized as high Reynolds number, multi-scales, inhomogeneous and vortex-dominant unsteady turbulence which interact with the rotating dynamic boundary (rotor blade). Based on the analysis of the internal flow characteristics of hydraulic machinery, the author and his research team successively proposed a rotation correction model,a curvature corrected filter-based model, a scalable detached eddy simulation method, and a non-linear hybrid RANS/LES turbulence model to capture unsteady flow structures and then predict hydraulic performance and dynamic characteristics more accurately.According to the analysis on the internal flow, the corresponding flow control measures were put forward. It was verified by experiments that these methods could significantly improve the hydraulic performance, anti-cavitation performance and dynamic characteristics (pressure pulsation and vibration) of hydraulic machinery in a certain range of operating conditions. In addition, the mechanism how flow control measures influence internal flow was analyzed in depth, aiming at finding a feasible and effective way to improve hydraulic performance, anti-cavitation performance and dynamic characteristics of hydraulic machinery.

    Hydraulic machinery, unsteady flow, turbulence model, flow control method, dynamic characteristic

    Introduction

    Hydraulic machinery is a kind of mechanical equipment which takes water or other liquid as working mediums and energy conversion carrier to achieve the mutual transformation between liquid energy and mechanical energy. According to the way of working, it can be divided into positive displacement hydraulic machinery and blade type hydraulic machinery, of which the latter is a device to achieve energy conversion between the rotor with blades and the fluid medium flowing around blades. Blade type hydraulic machinery that mainly includes turbine,pump and hydraulic propulsion etc., has been applied widely in multiple fields which closely related to national economy and people's livelihood involving aerospace industry, marine engineering, hydropower engineering, petroleum industry, chemical industry,mining industry, biomedical engineering, environmental engineering, agricultural water-soil engineering , etc.. Though the blade type of hydraulic machinery need to be changed in different fields, the working principle and driving mode are actually the same.

    Many scholars[1-9]have studied in depth the internal flow of hydraulic machinery by experimental and numerical simulation methods, indicating that the internal flow of hydraulic machinery is extremely complex, and its characteristics can be summarized as high Reynolds number, multi-scales, inhomogeneous and vortex-dominant unsteady turbulence which interact with rotating dynamic boundary (rotor blade).The solution of complicated internal flow in hydraulic machinery has to proceed from the comprehensive Navier-Stokes equation. As is known to all, DNS and LES have enough capacity to resolve these unsteady turbulence problems, but there still exist many difficulties for requiring huge computing resources.Therefore, it is crucial to explore more effectivenumerical simulation methods which reflect complex flow characteristics in hydraulic machinery and enhance prediction precision with the efficiency being taken into account.

    1. Turbulence model

    In order to take both efficiency and accuracy into account, effective turbulence models which include rotation correction with extend intrinsic mean spin tensor (EIMST), curvature corrected filter-based turbulence model (FBM-CC), scalable detached eddy simulation (SDES) and non-linear hybrid RANS/LES were developed to enhance the accuracy of capturing unsteady flow structures inside hydraulic machinery,and then effectively predict the hydraulic performance and dynamic characteristics.

    1.1 Rotation correction with extend intrinsic mean spin tensor

    Zhang et al.[10,11]proposed a method to modify the eddy viscosity coefficient of conventional turbulence model based on redefined Richardson number with extend intrinsic mean spin tensor (EIMST),which made turbulence models sensitive to the rotation.

    In rotating coordinate system, the rotation effect affects the distribution of turbulent kinetic energy, and the turbulent kinetic energy spectrum in inertial sub area should be k-3(negative third power) instead of k-5/3(negative three-fifths power). The results showed that the modified turbulence model could successfully capture the stall phenomenon of the interphase channel of centrifugal pumps under offdesign conditions, and obtain more abundant turbulent structure.

    1.2 Curvature corrected filter-based turbulence model

    Consideringthemulti-scaleand unsteady characteristics inside axial-flow pumps, as well as the effect of streamline curvature which caused by the curvy surface of flow passage components and the rotation of impellers, Zhang[12]proposed a curvature corrected filter-based turbulence model(FBM-CC). It was tested and verified that FBM-CC model could not only capture more abundant scales of turbulent structures, but also improve the sensitivity to the effect of streamline curvature and accuracy of computation. For the curvature correction of FBM model, it was considered that the generated itemskG in the k and ε transport equations could be corrected by referring to the method proposed in literature[13].

    1.3 Scalable detached eddy simulation method

    Zhu[14]modified the traditional DES method by introducing the von Karman scale based on local flow field. The newly developed scalable detached eddy simulation(SDES) method improved the shortage of direct dependence on grids for traditional DES method in identification simulation regions, which made RANS/LES method switched adaptively to solve the steady or unsteady area. The Strelets[15]two-equation DES model based on the SST turbulence model is

    where the hybrid-functionDESF is given by

    The von Karman length scale is redefined as Lvk= κ S/▽?duì)? so the hybrid-function is corrected as

    The newly-defined criteria for identification of simulation region is directly determined by local flow field, rather than the density and distribution of grids divided by users, so that the physical significance is expressed more correctly and the actual physical characteristics of flow field is reflected more clearly.

    1.4 Non-linear hybrid RANS/LES turbulence model

    In order to effectively simulate unsteady flow structures and pressure pulsation inside vane centrifugal pumps, Wei et al.[16,17]have proposed a new non-linear hybrid RANS/LES method.

    A non-linear eddy viscosity model has been developed based on data obtained from experiment[18,19]and DNS[20,21]to construct the coefficient of eddy viscosity, which well avoid imprecise predictions in the flows with a strong flow separation and adverse pressure gradients or streamline curvatures, and the expressions are as follows:

    In addition, a hybrid strategy was proposed to allow the adoption of the RANS in the near-wall region and the LES in the outer unstable flow region by introducing von Karman length scalevkLas the critical parameter to determine the transition instead of the local grid size in this hybrid RANS/LES frame system. The eddy viscosity and the smoothing function are as follows:

    2. The controlling of unsteady flow inside hydraulic machinery

    On the basis of the analysis on internal flow,corresponding flow control measures were put forward by the authors. It was proved that these methodscould improve hydraulic performance,anti-cavitation performance and dynamic characteristics of hydraulic machinery in a certain range of operating conditions.

    2.1Improvement on stall characteristics of a vane axial flow pump by applying the J-Groove flow control technology

    Under stall conditions, swirling flow appears at the inlet of the impeller, which is a main factor to promote the formation of “saddle zone”. When flow rate is lower, the swirling flow become stronger, and the performance and operation stability of the axial pump will be influenced more seriously. The feasibility was studied that the stall characteristics of a vane axial pump could be improved by setting a J-Groove in the inlet channel shown in Fig.1 and Fig.2,which was learned from Kurokawa's J-Groove flow control technology[22]that strip structures were distributed uniformly on the tube wall.

    Fig.1 (Color online) Axial flow pump model with additional

    Fig.2 (Color online) Pressure monitoring points at the impeller

    As shown in Fig.3, the intensity of swirling flow could be effectively weakened, which improved the uniformity of flow at the inlet of the impeller. This not only improved the work capacity of blades and restrained the formation of “saddle zone”, but also made low frequency pressure pulsation at the inlet of impeller reduced and the stability of axial flow pumps enhanced.

    2.2Improvement on hydraulic performance of a vane axial pump by applying a guide impeller

    Fig.3 (Color online) Impact of J-Groove on the performance of axial flow pumps[12]

    In order to control the flow separation around blade surfaces and improve the performance of axial flow pumps under low flow rate conditions, a new type of guide impeller based on the idea of the “flap” flow control technology was put forward. By comparing the internal flow field of original impeller with the one of guide impeller, it could be found that the flow separation around blade surfaces were inhibited under low flow rate conditions as a result of the front vice blades' function of guiding flow, and thus the performance of axial flow pumps was improved as shown in Fig.4 and Fig.5.

    Fig.4 (Color online) Hydraulic performance of axial-flow pumps with different impellers[12]

    Fig.5 (Color online) The distribution of relative velocity limi- ting streamline on suction surfaces of blade

    Fig. 6 (Color online) A barrier strip at the suction side of a

    Fig.7 (Color online) The change trend of vapor volume in axial flow pumps under different cavitation stages[12]

    2.3Improvement on anti-cavitation performance of a vane axial flow pump by setting barriers

    The blade cavitation of axial pumps, which belongs to a type of hydrofoil cavitation, is located at the rear edge of blades. On this account, a barrier strip was set along the radial direction of at 90%cLof suction side wherecLis the length of airfoil chord of middle section (blade inlet edge is defined as reference position), shown in Fig.6. As illustrated in Fig.7, the anti-cavitation performance of axial flow pump was improved to a certain extent as a result of setting barrier strips.

    2.4Influence of gap drainage blades on internal flow of a vane centrifugal pump

    2.4.1 Improvement on the hydraulic performance of centrifugal pumps by applying two-dimensional gap drainage blades

    Fig.8 (Color online) Traditional impeller and gap impeller[14]

    Fig.9 (Color online) Velocity surface[14] distribution on central stream

    Gap drainage blade is a newly-designed blade structure based on flow control theory[23-25]. Compared with a traditional impeller, a gap impeller was added with a vice blade overlapped with main blade and hold a narrow gap at the suction side of the leading edge of main blade, shown in Fig.8. The essential reason that gap drainage blades improve the hydraulic performance of centrifugal pumps is its improving of the distribution of velocity fields in the flow channel, so that the velocity field become more smooth and uniform shown as Fig.9.Gap impeller was designed with the vice blade at the leading edge deviating from original position and overlapping partly with main blade. On one hand, this would increase flow area to avoid the blocking effect at the inlet zone. On the other hand, due to the guiding flow function of vice blade, some fluid on the pressure surface would pass through the gap into the suction surface which makes the velocity field distribution more uniform in the flow channel.

    2.4.2 Improvement on the anti-cavitation performance mensional gap drainage blades

    The anti-cavitation performance of centrifugal pumps could be improved by applying the gap drainage blades. Under the characteristic flow rate and large flow rate conditions, the centrifugal pump with gap impeller had better anti-cavitation characteristics than the one with traditional impeller, illustrated in Fig.10 and Fig.11. On one hand, the vice blade at the leading edge of gap drainage impeller played a role in guiding flow and changed the attack angle of main blades, so that the flow separation at the leading edge of main blades would be inhibited, especially near the pressure under the large flow rate condition. On the other hand, high pressure fluid on the pressure surface would be guided through the gap into the suction surface, which compensated pressure to low pressure zones to some extent. At the same time, the fluid ejected from the gap would isolate the cavitation zone between main blades and vice blades, and have a disturbance to the cavitation regions that have been formed, which accelerated the cavity shedding and suppressed the formation of the large cavitation area to improve the cavitation performance. Obviously, the single blades of the traditional impeller cut off the ties between the fluids on the pressure surfaces and suction surfaces, so that the anti-cavitation mechanism above could be achieved. of vane centrifugal pumps by applying two-di-

    Fig.10 Comparison of the anti-cavitation between the two impellers[14]

    Fig.11 Vapor volume fraction distribution on the central plane[14]

    Fig.12 The layout of monitoring points of pressure pulsation

    Fig.13 The change curves of amplitude of pressure pulsation at different monitoring points along the circumferential di- rection of blades

    2.4.3 Improvement on dynamic characteristics of a vane centrifugal pump by applying two-dimen- sional gap drainage blades

    The author also carried out the researches about the pressure pulsation characteristics and related mechanism of centrifugal pumps with gap drainage blades. The gap drainage blades with the function of guiding flow improved the problem about the asymmetrical rate of inflow in different flow channels under characteristic to large flow rate conditions, which was leaded by non-uniform circumferential pressure in volute, and made the distribution of the flow and the relative velocity of the trailing edge of each pressure surface more uniform, so that the fundamental frequency pressure pulsation in the volute was radically improved. In addition, the unsteady flow problem caused by the excess flow rate of the individual flow channel was also weakened, and the amplitude of the fundamental frequency pressure pulsation was further reduced. Figures 12-14 respectively show the layout of monitoring points of pressure pulsation, amplitude of pressure pulsation at different positions, and the spectrum of pressure pulsation.

    Fig.14 Comparison of pressure pulsation spectrums in the volu- tes of two pumps

    Fig.15 (Color online) The three-dimensional model of two im- pellers

    2.4.4 Study on improving the performance of a vane centrifugal pump by applying three-dimensional gap drainage blades

    Based on the above researches, it was verified that the two-dimensional gap drainage blade structure could effectively improve the hydraulic performance and anti-cavitation performance of vane centrifugal pumps, and enhance the hydraulic dynamic characteristics to a certain extent. In order to introduce this technology into practical application, a new threedimensional gap drainage impeller was designed as shown in Fig.15.

    The experimental results showed that the new three-dimensional gap drainage impeller significantly improved the hydraulic performance, anti-cavitation performance and dynamic characteristics of the vane centrifugal pumps, which laid a solid foundation for introducing the gap drainage technology to the practical application.

    3. Conclusion

    (1) Based on the study of turbulence models,which is suitable for the internal flow characteristics of hydraulic machinery, the author effectively achieved the simulation of the internal flow and performance prediction of hydraulic machinery. This provides the basis for improving the performance of hydraulic machinery by applying flow control measures, and confirms that these methods are effective by a series of measures such as experiments, calculation and analysis.

    (2) In the aspect of controlling flow, the relationship between geometry and performance, anti- cavitation and pressure pulsation will be further studied and more effective flow control methods will be proposed to improve the performance of hydraulic machinery.

    (3) The relationship between pressure pulsation and vibration would be studied and the mechanism how internal flow induce the structure vibration,which provides the theoretical basis for restraining harmful vibration during the operation process of hydraulic machinery.

    [1] Paone N., Riethmuller M. L., Braembussche R. A. V. D.Experimental investigation of the flow in the vaneless diffuser of a centrifugal pump by particle image displacement velocimetry [J]. Experiments in Fluids, 1989, 7(6):371-378.

    [2] Abramian M., Howard J. H. G. Experimental investigation of the steady and unsteady relative flow in a model centrifugal impeller passage [J]. Journal of Imaging Science and Technology, 1994, 116(2): 269-279.

    [3] Hasmatuchi V., Farhat M., Roth S. et al. Experimental evidence of rotating stall in a pump-turbine at off-design conditions in generating mode [J]. Journal of Fluids Engineering, 2011, 133(5): 051104.

    [4] Medvitz R. B., Kunz R. F., Boger D. A. et al. Performance analysis of cavitating flow in centrifugal pumps using multiphase CFD [J]. Journal of Fluids Engineering,2002, 124(2): 377-383.

    [5] Huang B., Wang G. Y. Partially averaged Navier-Stokes method for time-dependent turbulent cavitating flows [J].Journal of Hydrodynamics, 2011, 23(1): 26-33.

    [6] Byskov R. K., Jacobsen C. B., Pedersen N. Flow in a centrifugal pump impeller at design and off-design conditions-Part II: Large eddy simulations [J]. Journal of Fluids Engineering, 2003, 125(1): 73-83.

    [7] Luo X., Zhang Y., Peng J. et al. Impeller inlet geometry effect on performance improvement for centrifugal pumps[J]. Journal of Mechanical Science and Technology, 2008,22(10): 1971-1976.

    [8] Shi Y., Xiao Z., Chen S. Constrained subgrid-scale stress model for large eddy simulation [J]. Physics of Fluids,2008, 20(1): 011701.

    [9] Zhang R., Mao F., Wu J. Z. et al. Characteristics and control of the draft-tube flow in part-load Francis turbine[J]. Journal of Fluids Engineering, 2009, 131(2): 021101.

    [10] Zhang W., Ma Z., Yu Y. C. et al. Validation and verification study of RANS simulation in centrifugal pump impeller: Design and off-design condition [J]. Chinese Journal of Hydrodynamics,2011, 28(1):73-74(in Chinese).

    [11] Zhang W. Analysis and prediction of the internal flow in the vane pump impeller at off-design condition [D].Doctoral Thesis, Shanghai, China: Shanghai University,2010(in Chinese).

    [12] Zhang R. Research on the stall and cavitation flow characteristics and the performance improvement of axial-flow pump [D]. Doctoral Thesis, Shanghai, China: Shanghai University, 2014(in Chinese).

    [13] Smirnov P. E., Menter F. R. Sensitization of the SST turbulence model to rotation and curvature by applying the Spalart-Shur correction term [J]. Journal of Turbomachinery, 2009, 131(4): 1-8.

    [14] Zhu B. Research on the mechanism of performance improving in low specific speed centrifugal pump with gap drainage blades [D]. Doctoral Thesis, Shanghai, China:Shanghai University, 2014(in Chinese).

    [15] Strelets M. Detached eddy simulation of massively separated flows [R]. AIAA paper 2001-0879, 2001.

    [16] Wei Q. Chen H. X., Ma Z. A hybrid RANS/LES model for simulation of complex turbulent flow [J]. Journal of Hydrodynamics, 2016, 28(5): 811-820.

    [17] Wei Q. Chen H. X., Ma Z. Numerical simulation of flow around airfoil with non-linear RANS model [C].ASME/JSME/KSME 2015 Joint Fluids Engineering Conference. Seoul, Korea, 2015.

    [18] Champagne F. H., Harris V. G., Corrsin S. Experiments on nearly homogeneous turbulent shear flow [J]. Journal of Fluid Mechanics, 1970, 41(1): 81-139.

    [19] Tavoularis S., Corrsin S. Experiments in nearly homogeneous turbulent shear flow with a uniform mean temperature gradient. Part 1 [J]. Journal of Fluid Mechanics, 1981, 178: 459-475.

    [20] Lee M. J., Kim J., Moin P. Structure of turbulence at high shear rate [J]. Journal of Fluid Mechanics, 2006, 216(4):561-583.

    [21] Rogers M. M., Moin P. The structure of the vorticity field in homogeneous turbulent shear flow [J]. Journal of Fluid Mechanics, 1987, 176: 33-66.

    [22] Kurokawa J., Imamura H., Choi Y. D. et al. Effect of J-Groove on the suppression of swirl flow in a conical diffuser [J]. Journal of Fluids Engineering, 2010, 132(7):1773-1780.

    [23] Chen H. X., Liu W. W., Jian W. et al. Development of low specific-speed centrifugal pump impellers based on flow control technique [J]. Journal of Drainage and Irrigation Machinery Engineering, 2011, 29(6): 466-470(in Chinese).

    [24] Chen H. X., Huo C. C., Liu W. M. Study on control of multi-element airfoil based on CFD [J]. Journal of Drainage and Irrigation Machinery Engineering, 2012,30(5): 513-516, 557(in Chinese).

    [25] Chen H. X., Lin Y. Z., Zhu B. Experimental study cavitation performance of centrifugal pump with impeller having leading edge slots [J]. Journal of Drainage and IrrigationMachinery Engineering, 2013, 31(7):570-574(in Chinese).

    August 1, 2017, Revised August 5, 2017)

    * Project supported by the National Natural Science Foundation of China (Grant Nos. 51379120, 51179100 ).

    Biography: Hong-xun Chen (1962- ), Male, Ph. D., Professor

    猜你喜歡
    建武張睿劉超
    老吳的拉面館
    玩轉(zhuǎn)高考題
    Theoretical study of novel B-C-O compounds with non-diamond isoelectronic
    Removal of GaN film over AlGaN with inductively coupled BCl3/Ar atomic layer etch
    如夢(mèng)似幻
    金秋(2021年4期)2021-05-27 06:42:46
    征程萬(wàn)里,初心如一
    雷鋒(2021年12期)2021-04-12 00:57:22
    The dilemma and development of industrial design in contemporary life
    杜鵑黃化病的發(fā)生與防治
    Wechat, life in our Palm
    Design and experiment of the centrifugal pump impellers with twisted inlet vice blades *
    国产极品天堂在线| 熟女av电影| 精品人妻视频免费看| 国产黄片美女视频| 亚洲经典国产精华液单| 亚洲久久久国产精品| 赤兔流量卡办理| 午夜免费观看性视频| 内射极品少妇av片p| av天堂中文字幕网| 91午夜精品亚洲一区二区三区| av天堂中文字幕网| 人妻夜夜爽99麻豆av| 亚洲色图av天堂| 精品国产一区二区三区久久久樱花 | 一级毛片 在线播放| 男女下面进入的视频免费午夜| av免费在线看不卡| 一级毛片 在线播放| 国产精品一区二区在线不卡| 欧美日韩视频高清一区二区三区二| 美女内射精品一级片tv| 国产老妇伦熟女老妇高清| 秋霞在线观看毛片| 狠狠精品人妻久久久久久综合| 亚洲精品乱码久久久v下载方式| 国产精品一区www在线观看| 久久99热6这里只有精品| 国产精品伦人一区二区| 国产无遮挡羞羞视频在线观看| 狠狠精品人妻久久久久久综合| av在线老鸭窝| 欧美一级a爱片免费观看看| 夜夜爽夜夜爽视频| 熟女av电影| 亚洲在久久综合| 成人免费观看视频高清| 国产男女超爽视频在线观看| 国产精品久久久久久久电影| 这个男人来自地球电影免费观看 | 亚洲欧美成人综合另类久久久| 亚洲国产精品专区欧美| 男女边摸边吃奶| 亚洲精品日韩av片在线观看| av免费在线看不卡| 中国国产av一级| 丝瓜视频免费看黄片| 美女视频免费永久观看网站| 最近最新中文字幕大全电影3| h视频一区二区三区| 久久精品国产亚洲av涩爱| 女人久久www免费人成看片| 夜夜爽夜夜爽视频| 少妇人妻一区二区三区视频| 大片电影免费在线观看免费| 日韩成人av中文字幕在线观看| 国产免费一区二区三区四区乱码| 国产精品久久久久久精品电影小说 | 国产免费视频播放在线视频| 国产成人免费无遮挡视频| 国产精品久久久久成人av| 国模一区二区三区四区视频| 下体分泌物呈黄色| 美女脱内裤让男人舔精品视频| 日韩国内少妇激情av| 午夜视频国产福利| 日本免费在线观看一区| 大话2 男鬼变身卡| 日韩伦理黄色片| 亚洲欧洲日产国产| 欧美日韩视频高清一区二区三区二| 国产精品熟女久久久久浪| 建设人人有责人人尽责人人享有的 | 涩涩av久久男人的天堂| 免费看光身美女| 亚洲av国产av综合av卡| 日日撸夜夜添| 一级a做视频免费观看| 午夜福利网站1000一区二区三区| 亚洲精品色激情综合| 国内少妇人妻偷人精品xxx网站| 免费观看在线日韩| 日本午夜av视频| 少妇丰满av| 91久久精品国产一区二区三区| 大片免费播放器 马上看| 麻豆乱淫一区二区| 国产乱人偷精品视频| 亚洲丝袜综合中文字幕| 国产白丝娇喘喷水9色精品| 男女啪啪激烈高潮av片| 99久久中文字幕三级久久日本| 91久久精品国产一区二区三区| 免费观看的影片在线观看| 麻豆精品久久久久久蜜桃| 观看免费一级毛片| 欧美高清成人免费视频www| 国产欧美亚洲国产| 2022亚洲国产成人精品| 免费不卡的大黄色大毛片视频在线观看| 激情五月婷婷亚洲| 婷婷色综合www| 最近2019中文字幕mv第一页| 老司机影院成人| 晚上一个人看的免费电影| 久久久久久久亚洲中文字幕| 免费看光身美女| 交换朋友夫妻互换小说| 最黄视频免费看| 十分钟在线观看高清视频www | 人体艺术视频欧美日本| 久久99蜜桃精品久久| 久久99热这里只有精品18| 国产亚洲最大av| 99久国产av精品国产电影| 国产v大片淫在线免费观看| 久久国产精品男人的天堂亚洲 | 欧美精品一区二区免费开放| 午夜福利高清视频| 欧美激情极品国产一区二区三区 | 久久99热6这里只有精品| 麻豆成人午夜福利视频| 综合色丁香网| 有码 亚洲区| 久久人人爽人人爽人人片va| 亚洲综合色惰| 少妇人妻一区二区三区视频| 亚洲真实伦在线观看| 亚洲精品aⅴ在线观看| 色综合色国产| 国产伦理片在线播放av一区| 国产色婷婷99| 伊人久久国产一区二区| 性色av一级| 免费看日本二区| 成人美女网站在线观看视频| 色综合色国产| 亚洲一区二区三区欧美精品| xxx大片免费视频| 91在线精品国自产拍蜜月| 亚洲欧美一区二区三区国产| 直男gayav资源| 亚洲欧美成人精品一区二区| 成人亚洲精品一区在线观看 | 免费大片18禁| 国产人妻一区二区三区在| 少妇精品久久久久久久| 精品一区二区三卡| 成人免费观看视频高清| 国产黄频视频在线观看| 成人特级av手机在线观看| 亚洲va在线va天堂va国产| 欧美丝袜亚洲另类| 又爽又黄a免费视频| 天堂8中文在线网| 夫妻午夜视频| 国产片特级美女逼逼视频| av国产免费在线观看| 美女cb高潮喷水在线观看| 80岁老熟妇乱子伦牲交| 99热这里只有是精品50| 中国美白少妇内射xxxbb| 一级毛片黄色毛片免费观看视频| 最新中文字幕久久久久| 久久影院123| 热99国产精品久久久久久7| 99久久人妻综合| 熟女电影av网| 美女主播在线视频| 亚洲av电影在线观看一区二区三区| 五月天丁香电影| tube8黄色片| .国产精品久久| 日产精品乱码卡一卡2卡三| 一级毛片电影观看| 麻豆成人午夜福利视频| 亚洲国产毛片av蜜桃av| 最近中文字幕2019免费版| 亚洲av成人精品一二三区| 偷拍熟女少妇极品色| 97热精品久久久久久| 国产人妻一区二区三区在| 精品亚洲成a人片在线观看 | 舔av片在线| 麻豆国产97在线/欧美| 亚洲色图综合在线观看| 一级毛片我不卡| 高清在线视频一区二区三区| 三级经典国产精品| 欧美bdsm另类| 欧美日韩视频高清一区二区三区二| 久久久久精品性色| 99热这里只有精品一区| 在线播放无遮挡| 国产永久视频网站| 欧美精品国产亚洲| 2021少妇久久久久久久久久久| 99久久人妻综合| 亚洲成人av在线免费| 亚洲欧洲国产日韩| 久久午夜福利片| 日韩亚洲欧美综合| 国产视频内射| 亚洲在久久综合| 久久精品国产自在天天线| 99久久综合免费| 丝瓜视频免费看黄片| 人人妻人人澡人人爽人人夜夜| 亚洲欧洲国产日韩| 国产精品久久久久成人av| 精品视频人人做人人爽| 寂寞人妻少妇视频99o| 国国产精品蜜臀av免费| 狂野欧美激情性bbbbbb| 一个人免费看片子| 91久久精品电影网| av又黄又爽大尺度在线免费看| 亚洲av免费高清在线观看| 男人添女人高潮全过程视频| 欧美精品人与动牲交sv欧美| 国产亚洲最大av| 亚洲欧美日韩另类电影网站 | 亚洲美女视频黄频| 久久午夜福利片| 一级爰片在线观看| 久久精品人妻少妇| 有码 亚洲区| 一级黄片播放器| 亚洲精品一二三| 中文欧美无线码| 一级片'在线观看视频| 熟女人妻精品中文字幕| av视频免费观看在线观看| 婷婷色麻豆天堂久久| 午夜免费鲁丝| 欧美日韩亚洲高清精品| 国产毛片在线视频| 国产免费福利视频在线观看| 一级a做视频免费观看| 久久久久性生活片| 国产成人一区二区在线| 免费播放大片免费观看视频在线观看| 99久久综合免费| 国产大屁股一区二区在线视频| 日韩,欧美,国产一区二区三区| 欧美日韩视频精品一区| 视频中文字幕在线观看| 少妇 在线观看| 欧美高清成人免费视频www| 一区二区三区精品91| 亚洲av电影在线观看一区二区三区| 欧美 日韩 精品 国产| 国产黄片美女视频| 亚洲av成人精品一二三区| 国产淫片久久久久久久久| 久热这里只有精品99| 国产高潮美女av| 午夜激情久久久久久久| 国产精品久久久久成人av| 成人午夜精彩视频在线观看| 亚洲av国产av综合av卡| 日韩成人av中文字幕在线观看| 99热这里只有精品一区| 一级毛片黄色毛片免费观看视频| 美女国产视频在线观看| 中文字幕精品免费在线观看视频 | 在线天堂最新版资源| 97超视频在线观看视频| 亚洲美女搞黄在线观看| 欧美精品国产亚洲| 在线精品无人区一区二区三 | 久久久久久久久大av| 精品少妇久久久久久888优播| 婷婷色av中文字幕| 色5月婷婷丁香| av免费观看日本| 性色avwww在线观看| 老女人水多毛片| 国产女主播在线喷水免费视频网站| 九色成人免费人妻av| 久久久久国产精品人妻一区二区| 日韩欧美一区视频在线观看 | 男的添女的下面高潮视频| 亚洲国产精品一区三区| 婷婷色av中文字幕| 五月开心婷婷网| 亚洲精品乱久久久久久| 老司机影院成人| 日韩欧美一区视频在线观看 | 久久国产乱子免费精品| 国产免费视频播放在线视频| 国产在线一区二区三区精| 国产免费福利视频在线观看| 男女边吃奶边做爰视频| 简卡轻食公司| 久久久欧美国产精品| 亚洲精品,欧美精品| 精品一区在线观看国产| 99热这里只有是精品在线观看| 亚洲在久久综合| 精品久久久久久电影网| 女性被躁到高潮视频| 亚洲欧美成人精品一区二区| 国产 一区精品| 免费观看无遮挡的男女| 亚洲人成网站在线播| 成人亚洲欧美一区二区av| 99久久中文字幕三级久久日本| 最近手机中文字幕大全| 国产日韩欧美在线精品| 国产黄频视频在线观看| 午夜福利视频精品| 女性被躁到高潮视频| 国产日韩欧美亚洲二区| 日本免费在线观看一区| 一级毛片电影观看| 一级av片app| 黑丝袜美女国产一区| 五月玫瑰六月丁香| 色婷婷久久久亚洲欧美| 小蜜桃在线观看免费完整版高清| 亚洲美女黄色视频免费看| 天天躁日日操中文字幕| 免费人成在线观看视频色| 国产极品天堂在线| 卡戴珊不雅视频在线播放| 国产亚洲av片在线观看秒播厂| 亚洲精品视频女| 欧美成人a在线观看| av专区在线播放| 3wmmmm亚洲av在线观看| 大片免费播放器 马上看| 夜夜爽夜夜爽视频| 亚洲真实伦在线观看| 91精品国产国语对白视频| 久久久久久久大尺度免费视频| 成年美女黄网站色视频大全免费 | 欧美激情国产日韩精品一区| 一区二区av电影网| 五月天丁香电影| 亚洲性久久影院| 免费观看a级毛片全部| 18禁在线播放成人免费| 在线免费观看不下载黄p国产| 99久久精品一区二区三区| 午夜日本视频在线| 亚洲欧美日韩卡通动漫| 国产一区有黄有色的免费视频| 久久99精品国语久久久| 91精品国产国语对白视频| 成年女人在线观看亚洲视频| 精华霜和精华液先用哪个| 婷婷色综合www| 久久av网站| 国产男人的电影天堂91| 妹子高潮喷水视频| 永久网站在线| 青青草视频在线视频观看| 夜夜爽夜夜爽视频| 日韩不卡一区二区三区视频在线| 国产美女午夜福利| 国产在线免费精品| 久久久久视频综合| 亚洲精品中文字幕在线视频 | 国产探花极品一区二区| 久久久成人免费电影| 青春草国产在线视频| 日本免费在线观看一区| 深爱激情五月婷婷| 亚洲第一av免费看| 黄片无遮挡物在线观看| 美女cb高潮喷水在线观看| 91狼人影院| 啦啦啦在线观看免费高清www| 美女视频免费永久观看网站| 欧美精品一区二区大全| 视频中文字幕在线观看| 成人美女网站在线观看视频| 在线观看一区二区三区| 欧美xxxx性猛交bbbb| 成年美女黄网站色视频大全免费 | 欧美日韩综合久久久久久| 夫妻午夜视频| 久久久久久久久久久丰满| 午夜日本视频在线| 日韩欧美精品免费久久| 伊人久久国产一区二区| 国产亚洲av片在线观看秒播厂| 蜜臀久久99精品久久宅男| 好男人视频免费观看在线| 国产精品人妻久久久久久| 爱豆传媒免费全集在线观看| 欧美成人精品欧美一级黄| 亚洲精品乱码久久久久久按摩| 一级毛片我不卡| 日韩国内少妇激情av| 国产成人精品婷婷| 国产久久久一区二区三区| av在线观看视频网站免费| 一区二区三区乱码不卡18| 久久亚洲国产成人精品v| 国产亚洲91精品色在线| 高清毛片免费看| 国产精品成人在线| 日韩 亚洲 欧美在线| 夜夜看夜夜爽夜夜摸| 一级二级三级毛片免费看| 国产成人a区在线观看| 免费观看a级毛片全部| 国产精品一区www在线观看| 亚洲在久久综合| 激情五月婷婷亚洲| 久久久a久久爽久久v久久| 日韩伦理黄色片| 51国产日韩欧美| 波野结衣二区三区在线| 欧美国产精品一级二级三级 | 少妇的逼水好多| 国产精品秋霞免费鲁丝片| 亚洲人与动物交配视频| 国产有黄有色有爽视频| 亚洲精品乱久久久久久| 最近2019中文字幕mv第一页| 国产男女超爽视频在线观看| 久久久久人妻精品一区果冻| 国产亚洲av片在线观看秒播厂| 免费观看在线日韩| 91久久精品国产一区二区三区| 97在线人人人人妻| 国产白丝娇喘喷水9色精品| 五月玫瑰六月丁香| 久久久久久久国产电影| 2022亚洲国产成人精品| 亚洲欧美清纯卡通| 久久鲁丝午夜福利片| 一级片'在线观看视频| 成年av动漫网址| 只有这里有精品99| 一本久久精品| 少妇高潮的动态图| 亚洲欧洲日产国产| 新久久久久国产一级毛片| 精品国产三级普通话版| 久久精品国产亚洲网站| 老司机影院毛片| 在线观看美女被高潮喷水网站| 国产av一区二区精品久久 | 亚洲精品日本国产第一区| 一个人看的www免费观看视频| 在线观看美女被高潮喷水网站| h视频一区二区三区| 97超视频在线观看视频| 久久久久久人妻| 国产一区二区三区av在线| 狂野欧美白嫩少妇大欣赏| 精品熟女少妇av免费看| av卡一久久| 一个人看视频在线观看www免费| 日本猛色少妇xxxxx猛交久久| 18禁裸乳无遮挡免费网站照片| 免费看日本二区| 男女边摸边吃奶| 国内精品宾馆在线| 三级经典国产精品| 少妇裸体淫交视频免费看高清| 久久久精品免费免费高清| 黑人高潮一二区| 97在线人人人人妻| 婷婷色综合大香蕉| 麻豆精品久久久久久蜜桃| 永久网站在线| 午夜老司机福利剧场| 国产白丝娇喘喷水9色精品| 人人妻人人添人人爽欧美一区卜 | freevideosex欧美| 国产精品一区www在线观看| 午夜福利在线观看免费完整高清在| videossex国产| 精品酒店卫生间| 日韩成人av中文字幕在线观看| 18+在线观看网站| 有码 亚洲区| 亚洲三级黄色毛片| 久久99热这里只有精品18| 免费看av在线观看网站| 日韩av在线免费看完整版不卡| 男人和女人高潮做爰伦理| 夫妻性生交免费视频一级片| 校园人妻丝袜中文字幕| 午夜免费男女啪啪视频观看| 2018国产大陆天天弄谢| 久久久a久久爽久久v久久| 九九久久精品国产亚洲av麻豆| 嘟嘟电影网在线观看| 国产成人精品久久久久久| 亚洲精品国产av成人精品| 色网站视频免费| 少妇猛男粗大的猛烈进出视频| 不卡视频在线观看欧美| 少妇裸体淫交视频免费看高清| 少妇的逼水好多| 亚洲精品国产色婷婷电影| 国产欧美日韩精品一区二区| 国产成人精品婷婷| 在线观看一区二区三区激情| 久久久成人免费电影| 国产久久久一区二区三区| 日韩伦理黄色片| 香蕉精品网在线| 欧美日韩视频精品一区| 色视频www国产| 国产精品成人在线| 少妇熟女欧美另类| 日韩av不卡免费在线播放| 中文字幕精品免费在线观看视频 | 日韩伦理黄色片| 亚洲av不卡在线观看| 国产精品福利在线免费观看| 久久人人爽人人片av| 在线 av 中文字幕| 欧美日本视频| 亚洲欧洲日产国产| 在线观看免费视频网站a站| 亚洲av福利一区| 日韩一区二区视频免费看| 色哟哟·www| h视频一区二区三区| 日本猛色少妇xxxxx猛交久久| 成人一区二区视频在线观看| 一级片'在线观看视频| 美女中出高潮动态图| 有码 亚洲区| av视频免费观看在线观看| 国产高清国产精品国产三级 | 色哟哟·www| 日韩欧美一区视频在线观看 | 天堂8中文在线网| 尾随美女入室| 黄色怎么调成土黄色| 亚洲久久久国产精品| 91在线精品国自产拍蜜月| www.av在线官网国产| 一区二区三区四区激情视频| 黄色一级大片看看| 欧美日韩国产mv在线观看视频 | 国语对白做爰xxxⅹ性视频网站| 成人亚洲欧美一区二区av| 国模一区二区三区四区视频| 在线天堂最新版资源| 一本一本综合久久| 国产精品一区二区性色av| 日本欧美国产在线视频| 男女免费视频国产| 国产成人aa在线观看| 国产黄色免费在线视频| 免费在线观看成人毛片| 亚洲精品久久久久久婷婷小说| 人妻系列 视频| 日本午夜av视频| 精品99又大又爽又粗少妇毛片| 亚洲欧洲国产日韩| 中文字幕免费在线视频6| 亚洲美女视频黄频| 中文在线观看免费www的网站| 97超视频在线观看视频| 夜夜爽夜夜爽视频| 欧美另类一区| 人妻 亚洲 视频| 精品一区在线观看国产| 亚洲国产精品999| 一区二区三区四区激情视频| 成人免费观看视频高清| 国模一区二区三区四区视频| 高清午夜精品一区二区三区| 在线 av 中文字幕| av网站免费在线观看视频| 99热全是精品| 哪个播放器可以免费观看大片| 99热这里只有精品一区| 国产成人91sexporn| 欧美一级a爱片免费观看看| 国产精品欧美亚洲77777| kizo精华| 久久久久久久精品精品| h日本视频在线播放| 免费观看的影片在线观看| 欧美精品人与动牲交sv欧美| 韩国高清视频一区二区三区| 免费人妻精品一区二区三区视频| 免费看av在线观看网站| 少妇被粗大猛烈的视频| 伊人久久国产一区二区| 国产亚洲欧美精品永久| 中文资源天堂在线| 国精品久久久久久国模美| h日本视频在线播放| 久久久色成人| 国产黄频视频在线观看| 狠狠精品人妻久久久久久综合| 色婷婷av一区二区三区视频| 亚洲av成人精品一区久久| 多毛熟女@视频| 麻豆成人av视频| 久久国产亚洲av麻豆专区| 国产精品久久久久久久电影| 丝袜脚勾引网站| 精品人妻视频免费看| 99热这里只有精品一区| 国产一区亚洲一区在线观看| 亚洲人成网站在线观看播放| 色视频在线一区二区三区| 夫妻性生交免费视频一级片| 夜夜骑夜夜射夜夜干| 男女啪啪激烈高潮av片| 18禁动态无遮挡网站|