• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Capillary-gravity ship wave patterns *

    2017-11-02 09:09:15HuiLiangXiaoboChen

    Hui Liang, Xiaobo Chen,2

    1. Deepwater Technology Research Centre (DTRC), Bureau Veritas, Singapore,

    E-mail: hui.liang@sg.bureauveritas.com

    2. College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, China

    (Received June 6, 2017, Revised July 31, 2017)

    Capillary-gravity ship wave patterns*

    Hui Liang1, Xiaobo Chen1,2

    1. Deepwater Technology Research Centre (DTRC), Bureau Veritas, Singapore,

    E-mail: hui.liang@sg.bureauveritas.com

    2. College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, China

    (Received June 6, 2017, Revised July 31, 2017)

    Ship wave pattern is a fascinating research topic in the fields of marine hydrodynamics and water waves. Within the pure-gravity wave theory, the ship wave pattern composed of transverse waves and divergent waves appearing on the downstream is confined within a sector symmetrical about the ship track with a half-angle 19o28′. However, when the surface tension is accounted for, the wave pattern is greatly modified especially at a low translating speed. Besides the minimum speed of capillary waves cmin=0.23m/s below which waves cannot be generated, there is another critical speed cdiv=0.45m/s associated with the disappearance of divergent waves. In the present paper, the wave patterns created by a steadily translating source are studied, and they are examined with the crestlines obtained from the asymptotic analysis.

    Ship waves, wave pattern, gravity-dominant waves, capillarity-dominant waves

    Introduction

    When a body (surface piecing or submerged) or a pressure patch steadily translates in calm water,free-surface waves are generated and they are referred to as “Kelvin ship waves”[1]. The Kelvin ship wave pattern composed of transverse waves and divergent waves is confined within a wedgeof half angle equal to 19o28′, and this angle is referred to as“Kelvin capillarity-dominant waves on the upstream. On the downstream,the pattern of gravity-dominant waves is close to the classical pure-gravity ship wavesat a high advancing speed. At a low travelling speed, however,the difference is obvious. A striking feature is that there is a critical speed cmin=0.23m/s belowon the upstream[2].

    Furthermore, there is another critical speed cdiv=0.45m/s which was firstly mentioned by Binnie[11]. Features of far-field ship wave patterns across the critical speedcdivhave been investigated recently[7-9]. When the travelling speedis greater than cdiv=0.45m/s, the gravity-dominant wave pattern is composed of three wave systems including: transverse waves, divergent waves and fan waves. At the critical speedcdiv=0.45m/s, divergent waves disappear just right, and transverse waves and fan waves are connected. When the speed is less than cdiv=0.45m/s but greater than cmin=0.23m/s,new transverse-fan wave system[9].

    In the present article, the capillary-gravity ship wave patterns generated by a translating source are studied, and numerical examples across the critical angle” which can be expounded by the stationary phase analysis[2].Recently, more sophisticated cases are also considered[3-5].

    In the water wave theory, the surface tension effect is usually ignored, because it is only significant to very short waves with wavelength in the order of centimeters[6]. However, the ship wave pattern accounting for the surface tension effect can be totally different from the classical Kelvin ship wave pattern predicted by the pure-gravity wave theory[7-9], and this difference is noted as early as Lamb[10].When the surface tension effect is accounted for, there exist speed cdivare demonstrated. The layout of the paper is as follows. The basic equations are firstly presented.Then, the fundamental solution for the steady capillary-gravity ship wave problem based on the Fourier transform is formulated. Finally, numerical implementations are made to study the features of the wave patterns for different travelling speeds.

    1. Basic equations

    A frame of reference OXYZ translating with the object at the forwardspeed U in the direction of the positive X-axis is defined with theXY plane coincidingwith the undisturbed free surface and Z-axis orienting positively upwards. Weassume the fluid inviscid, incompressible and flow irrotational so that thevelocity potential exists.

    For the sake of simplicity, we define the nondimensional coordinates (x,y,z ), Fourier coordinates(α,β) and velocity potentialφ as following:

    whereL denotes the reference length. In addition,the non-dimensional Froude number Fr associated with the travelling speed is defined as

    whereg represents the acceleration of gravity. Then,the linearized free-surface boundary condition in anon-dimensional form is expressed

    In (5),σ denotes a parameter associated with the surface tension effect which is defined as

    2. Fundamental solution

    In this section, we are concerned with the fundamental solution to the capillary-gravity ship wave problem, which is also referred to as the capillary-gravity ship wave Green function. The capillary-gravity ship wave Green function is useful in constructing the boundary integral equation which can be used to study the wave-resistance and wave patterns generated by a translating body or a pressure patch. Usually, the expression of Green function takes the form of

    where denotes the distance between the field point(x,y,z ) and the source point (ξ,η,ζ), and the term Gaccounting for the free-surface wavy effect is accompanied to make sure the potential φ satisfies the free-surface boundary condition given by (5). Here,the potentialφ satisfies

    whileG is harmonic in the fluid and satisfies the Laplace equation

    We suppose that the source point locates on the axis which means that ξ=0 and η=0 without loss of generality. In (7), expression 1/r representing the source potentialin theinfinite fluidcan bewritten in the form of a double Fourier

    Performing Fourier transform to velocity potential as conducted in Ref.[2] yields

    where the operator F denotes the Fourier transform.Its inverse Fourier transform is

    Performing the Fourier transform to the free-sur-face boundary condition yields

    where the Fourier transform of 1/r is expressed as

    Recalling the Laplace equation ▽2G=0, its Fourier transform is

    Accounting for the fact that the disturbance disappears at a large depth, the solution to (15) is in the form of

    By introducing (14) and (16) into (13), we can obtain the expression of A(α,β)

    By substituting (17) into (16) and performing inverse Fourier transform as conducted in (12), we can obtain the expression of G

    As a consequence, the capillary-gravity ship wave Green function is written as

    In (19),r′ represents the distance between the field point and the mirror source point above the free surface. The first two terms on the right-hand side of(19) are often called Rankine part of Green function.An equivalent expression of φ with 1/r - 1/r′ as the Rankine part is usually given in the case of pure-gravity ship waves. We prefer (19) here since the integrand in the double Fourier integral behaves as O (1 /k) ask→∞.

    By converting the Cartesian Fourier coordinates to polar Fourier coordinates, representation (19) becomes

    We define the denominator of the integrand in above double Fourier integral as dispersion function which is associated with the linear free-surface boundary condition (5) and expressed as

    The dispersion equation D(α,β)=0 gives two closed dispersion curves symmetrical about axes α=0 and β=0 by:

    where kGand kTdenote the gravity-dominant and capillarity-dominant wavenumbers[13], respectively.

    The dispersion relation described by these curves ties up with far-field waves. As described in Ref.[14],the close relationship reveals that kinematic behaviours including phase and group velocities, crestlines,cusp angles, etc can be determined by the geometrical property of dispersion curves. In Ref.[9], the analysis of the dispersion relation defined by (23) on the Fourier plane has been carried out. For pure-gravity ship waves, there are also two dispersion curves which are open, i.e., the wavenumber tends to infinity.However, when the surface tension effect is accounted for, the dispersion curves are closed with a minimum wavenumber and a finite maximum wavenumber.Each dispersion curve can be divided intotwo parts[15]:gravity-dominant dispersion part and capillaritydominant dispersion part corresponding to gravitydominant waves and capillarity-dominant waves,respectively. When the travelling speed is equal to the minimum speed of capillary waves cmin=0.23m/s,the dispersion curve reduces to an isolated point at(2,0), which means that far-field waves totally disappear and no wave exists[15].

    For the gravity-dominant dispersion curve, according to the asymptotic analysis in Ref.[9], constitution of gravity-dominant wave pattern is determined by the number of inflection points along the gravitydominant dispersion curve. When the speed is greater than cdiv=0.45m/s (or σ<0.133), there are two inflection pointsdividingthegravity-dominant dispersion curve intothreesegmentswhich correspond to transverse waves, divergent waves and fan waves, respectively. At the critical speed cdiv=0.45m/s (or σ=0.133), two inflection points coincide, and the coalesced inflection point divides the gravity-dominant dispersion curve into two segments. In this scenario, divergent waves associated with the segment between two inflection points disappear, and transverse waves and fan waves joint together. When thespeed is less than cdiv=0.45m/s but larger than cmin=0.23m/s(0.133< σ <0.5), there is no inflection point along the gravity-dominant dispersion curve, and transverse waves and divergent waves are merged to the transverse-fan wave system.

    Expression (20) represents the capillary-gravity ship wave Green function consisting of the source term (1/r), image source term (1/r′)and the free-surface term (G) expressed by a double Fourier integral which provides the wavy properties. For the efficient and accurate computation of the double Fourier integral in (20), we first of all consider the inner k-integral. Unlike the ship wave Green function ignoring the surface tension effect, there are two poles in the denominator of (20) associated with two characteristic wavenumberskGand kTgiven by (22).

    Fig.1 (Color online) Sketch of the integration contours passing by poles kG and kT

    In order to identify the integration path passing by the poles given by (22), we introduce a small parameter following the weakly-damped free-surfaceflowto satisfy the radiation condition in the far field. As a consequence, the integration contour passes by the polefrom below while it goes acrossfrom above as depicted in Fig.1. By changing the integration contour on the complex kplane and applying Cauchy's theorem of residue, we can decompose the capillary-gravity ship wave Green function into two parts. One is the wave component in the form of a single integral with respect toθ which is dominant in the far field, and the other one is local component in the form of a double integralwith respect to both k and θ[17].

    Furthermore, for the local component in the form of double integral, the integral with respect tok can be represented by the complex exponential-integral function. Finally, the capillary-gravity ship wave Green function can be represented fully by a single integral with respect toθ, and the single integral can be evaluated using the numerical quadrature rule in an efficient and accurate way.

    3. Numerical implementations and wave patterns

    In the present section, the capillary-gravity ship wave patterns generated by a steadily translating source are studied, and the numerically evaluated wave patternis compared with the far-field crestlines obtained from the asymptotic analysis[9].

    In Fig.2, the classical pure-gravity ship wave pattern ignoring the surface tension effect is firstly investigated. On the upper part of Fig.2, the plan view of the free-surface profile induced by a submerged steadily translating source located at (0,0,-0.2) is presented.The wake pattern obviously consists of transverse waves and divergent waves.Both wave systems are confined within a cusp line with Kelvin angle. The far-field crestlines are plotted on the lower part of the figure in which the phase jump of π/2 between two wave systems along the cusp line is omitted as in Ref.[18].

    Fig.2 (Colo r onl ine ) Pu re-gravity sh ip wav e pattern.Upper part: reliefp lotof thefree -surfacep rofilegenerated by a tran- slatingpointsourcelocatingat (x,y,z) =(0,0,-0.2). Lower part: crestlines obtained from the asymptotic ana- lysis

    Then, we consider the capillary-gravity ship wave patterns for different translating velocities.Figure 3 depicts the free-surface profile generated by a travelling source with the same submergence as in Fig.2 on the upper part and far-field wave creastlines on the lower part at σ=0.06. In this scenario, the translating speed isU=0.67m/s which is larger than the critical speedcdiv=0.45m/s, and thus the gravity-dominant wave pattern is composed of three wave systems including transverse waves, divergent waves and fan waves as illustrated on the lower part of Fig.3. On the upper part where the wave profile is exhibited, however, the contour lines at large polar angles are not smooth. In this region, fan waves and capillarity-dominant waves extending to infinity are present. Therefore, the non-smooth contour lines are caused by the interference between different wave systems.

    Fig.3 (Color online) Capillary-gravity ship wave pattern for σ=0.06 at which Fr =0.21 and U=0.67m/s>cdiv. Up pe r part: relief plot of the free -surface p rofile generated byatransla tingpo ints ourceloca tingat (x,y ,z)=(0,0,-0.2).Lowerpart:crestlinesobtainedfromthe asymptotic analysis

    In Fig.4, the case at the translating speed equal to is considered. The numerically calculated wave pattern is presented on the upper part while the crestlines obtained from the asymptotic analysis are plotted on the lower part. From the asymptotic analysis conducted in Ref.[9], the divergent waves disappear just right while transverse waves and fan waves joint together as depicted on the lower part of the figure. On the upper part, divergent waves are also invisible, and the contours of the gravitydominant waves are smooth which is different from Fig.3. In addition, the capillarity-dominant waves with very short wavelength are observed.

    Figure 5 displays the free-surface profile and the=0.45m/s corresponding far-field wave crestlines for =0.4σ at which the translating speed is 0.26 m/s less thanthis numerical example, the transverse waves and fan waves are merged to a new wave system referred to as transverse-fan waves, and this wave system is curved and extends smoothly outwards. The wave pattern generated by the translating source exhibited on the upper part is consistent with the crestlines plotted on the lower part with very obvious capillarity-dominant waves.

    Fig.4 (Color online) Capillary-gravity ship wave pattern for=0.133 σ at which =0.14 Fr and div= =U c file generated by a translating point source locating at 0.45m/s . Upper part: relief plot of the free-surface pro-(,,)=(0,0,0.2)xyz -. Lower part: crestlines obtained from the asymptotic analysis

    Fig.5 (Color online) Capillary-gravity ship wave pattern foratw hich =0.083 andU=0.26m/s<pper part: relief plot of the free-surfa ce profile ge- nerated bya transla ting point sourcelo cating at.Lower part:crestlinesobtained from the asymptotic analysis

    4. Conclusion

    In the present article, the capillary-gravity ship wave patterns generated by a steadily translating source are numerically studied for various travelling speeds across the critical speed cdiv=0.45m/s through formulating the free-surface Green function.Generally, the numerical calculation is consistent with the wave crestlines obtained from the asymptotic analysis. When the translating speed is greater than the critical speed cdiv=0.45m/s, fan waves are present and they pass through the region where transverse waves and divergent waves appear. So, the interference occurs between these wave systems resulting in non-smooth contours of the wave pattern.As the speed is less thancdiv=0.45m/s but larger thancmin=0.23m/s, the resultant transverse-fan wave pattern is curved and extends smoothly outwards.

    Acknowledgements

    The first author is indebted to Prof. Zhi Zong for his supervision on anearlywork of the subject when the first author was studying in Dalian University of Technology.

    [1] Dias F. Ship waves and Kelvin [J]. Journal of Fluid Mechanics, 2014, 746: 1-4.

    [2] Lighthill J. Waves in fluids [M]. Cambridge, UK: Cambridge University Press, 1960.

    [3] Ellingsen S. A. Ship waves in the presence of uniform vorticity [J]. Journal of Fluid Mechanics, 2013, 742: R2.

    [4] Zhu Y., He J., Zhang C. et al. Farfield waves created by a monohull ship in shallow water [J]. European Journal of Mechanics-B/Fluids, 2015, 49: 226-234.

    [5] Pethiyagoda R., McCue S. W., Moroney T. J. et al.Jacobian-free Newton-Krylov methods with GPU acceleration for computing nonlinear ship wave patterns [J].Journal of Computational Physics, 2014, 269(10):297-313.

    [6] Faltinsen O. M. Hydrodynamics of high-speed marine vehicles [M]. Cambridge, UK: Cambridge University Press, 2005.

    [7] Doyle T. B., McKenzie J. F. Stationary wave patterns in deep water [J]. Quaestiones Mathematicae, 2013, 36(4):487-500.

    [8] Moisy F., Rabaud M. Mach-like capillary-gravity wakes[J]. Physical Review E, 2014, 90(2): 023009.

    [9] Liang H., Chen X. Far-field behaviours of steady capillary-gravity ship waves [C]. The 32nd International Workshop on Water Waves and Floating Bodies. Dalian,China, 2017.

    [10] Lamb H. Hydrodynamics [M]. Sixth Edition. Cambridge,UK: Cambridge University Press, 1932.

    [11] Binnie A. M. Solutions of the fish-line problem at intermediate velocities [J]. British Journal of Applied Physics,1965, 16(11): 1755-1758.

    [12] Gradshtejn I. S., Ryzhik I. M. Table of integrals, series and products [M]. New York, USA: Academic Press, 1965.

    [13] Crapper G. D. Surface waves generated by a travelling pressure point [J]. Proceedings of the Royal Society London, 1964, 282(1391): 547-558.

    [14] Chen X. B., Noblesse F. Dispersion relation and far-field waves [C]. The 12th International WorkshoponWater Waves and Floating Bodies. Carry le Rouet, France, 1997.

    [15] Chen X. B. Analytical features of unsteady ship waves(Chwang A. T., Teng M. H., Valentine D. T. Advances in Engineering Mechanic–Reflections and outlook [M].Singapore: World Scientific, 2004, 371-389.

    [16] Dias F., Dyachenko A. I., Zakharov V. E. Theory of weakly damped free-surface flows: A new formulation based on potential flow solutions [J]. Physics Letters A, 2008,372(8): 1297-1302.

    [17] Noblesse F., Chen X. B. Decomposition of free-surface effects into wave and near-field components [J]. Ship Technology Research, 1995, 42: 167-185.

    [18] Noblesse F., He J., Zhu Y. Why can ship wakes appear narrower than Kelvin's angle?[J]. EuropeanJournal of Mechanics-B/Fluids, 2014, 46: 164-171.

    * Biography: Hui Liang (1988-), Male, Ph. D.,Research Engineer

    Xiaobo Chen,

    E-mail: xiao-bo.chen@bureauveritas.com

    国产一区二区在线观看日韩| 一级a做视频免费观看| 国产亚洲最大av| 六月丁香七月| 麻豆乱淫一区二区| 国产av一区二区精品久久| 国产av精品麻豆| 日韩精品有码人妻一区| 嫩草影院入口| 国产深夜福利视频在线观看| 一个人看视频在线观看www免费| 日本黄大片高清| 亚洲av国产av综合av卡| 少妇人妻 视频| 国产成人91sexporn| 99久久精品热视频| 亚洲av国产av综合av卡| 国产男女超爽视频在线观看| 人妻制服诱惑在线中文字幕| 亚洲精品一二三| 免费看不卡的av| 国产精品人妻久久久久久| kizo精华| 国产一区二区三区综合在线观看 | 亚州av有码| 亚洲精品色激情综合| 国产精品三级大全| 久久精品久久精品一区二区三区| 99热这里只有是精品在线观看| 午夜免费观看性视频| 日本黄大片高清| 各种免费的搞黄视频| 精品少妇内射三级| 少妇精品久久久久久久| 纵有疾风起免费观看全集完整版| 又粗又硬又长又爽又黄的视频| 中文字幕精品免费在线观看视频 | 婷婷色综合www| 高清毛片免费看| 看免费成人av毛片| 九九久久精品国产亚洲av麻豆| 卡戴珊不雅视频在线播放| 嘟嘟电影网在线观看| 久久久久久久久久成人| 亚洲欧洲国产日韩| 亚洲欧美清纯卡通| 丁香六月天网| 中文天堂在线官网| 久久综合国产亚洲精品| 中文字幕制服av| 久久久久国产网址| www.色视频.com| 久久午夜福利片| 99久久人妻综合| 波野结衣二区三区在线| 国产欧美另类精品又又久久亚洲欧美| 国产成人aa在线观看| 日韩欧美一区视频在线观看 | 欧美 日韩 精品 国产| 一个人看视频在线观看www免费| 日本av免费视频播放| 青青草视频在线视频观看| 在线观看www视频免费| 熟女av电影| 街头女战士在线观看网站| 亚洲av电影在线观看一区二区三区| 少妇 在线观看| 亚洲人成网站在线观看播放| 亚洲天堂av无毛| 综合色丁香网| 日日啪夜夜爽| 肉色欧美久久久久久久蜜桃| 免费av中文字幕在线| 狂野欧美白嫩少妇大欣赏| 国产在线男女| 精华霜和精华液先用哪个| 国产av国产精品国产| 女的被弄到高潮叫床怎么办| 九九在线视频观看精品| 黑人猛操日本美女一级片| 亚洲欧美日韩另类电影网站| 日韩,欧美,国产一区二区三区| 日本色播在线视频| 国模一区二区三区四区视频| 曰老女人黄片| 建设人人有责人人尽责人人享有的| 亚洲国产毛片av蜜桃av| 国产午夜精品一二区理论片| h日本视频在线播放| 婷婷色麻豆天堂久久| 亚州av有码| 欧美少妇被猛烈插入视频| 美女福利国产在线| 少妇熟女欧美另类| 狂野欧美白嫩少妇大欣赏| 丝袜在线中文字幕| 亚洲人成网站在线播| 国产日韩欧美在线精品| 免费看不卡的av| 欧美最新免费一区二区三区| 熟女电影av网| 日产精品乱码卡一卡2卡三| 人人妻人人澡人人看| 久久国产亚洲av麻豆专区| 少妇猛男粗大的猛烈进出视频| 人妻少妇偷人精品九色| 久久精品国产亚洲av天美| 99精国产麻豆久久婷婷| 色哟哟·www| 秋霞在线观看毛片| 亚洲经典国产精华液单| 高清av免费在线| 久久久久国产精品人妻一区二区| 免费大片黄手机在线观看| 观看av在线不卡| 久久韩国三级中文字幕| 91成人精品电影| 男女免费视频国产| 国产综合精华液| 自线自在国产av| 夜夜看夜夜爽夜夜摸| 日韩av免费高清视频| 狂野欧美白嫩少妇大欣赏| 人人妻人人爽人人添夜夜欢视频 | 曰老女人黄片| 人妻制服诱惑在线中文字幕| 成人国产av品久久久| 成人二区视频| 欧美日韩一区二区视频在线观看视频在线| 日韩强制内射视频| 欧美 日韩 精品 国产| 久久国产精品大桥未久av | 午夜福利,免费看| 精品国产乱码久久久久久小说| 精品卡一卡二卡四卡免费| 国产高清三级在线| 亚洲欧美精品专区久久| 午夜老司机福利剧场| 精品一区二区三卡| 最黄视频免费看| 国模一区二区三区四区视频| 在线播放无遮挡| 日韩中字成人| 国产精品一区www在线观看| 免费看不卡的av| 3wmmmm亚洲av在线观看| 下体分泌物呈黄色| 五月开心婷婷网| 日韩大片免费观看网站| 丰满饥渴人妻一区二区三| 五月开心婷婷网| 日韩中文字幕视频在线看片| 另类精品久久| 欧美xxⅹ黑人| av国产精品久久久久影院| 中文在线观看免费www的网站| 亚洲av欧美aⅴ国产| 9色porny在线观看| 欧美一级a爱片免费观看看| 2022亚洲国产成人精品| 精品卡一卡二卡四卡免费| 免费人成在线观看视频色| 日本与韩国留学比较| 人人妻人人看人人澡| 久久99蜜桃精品久久| 美女内射精品一级片tv| 日韩成人伦理影院| 亚州av有码| 麻豆精品久久久久久蜜桃| 看免费成人av毛片| 多毛熟女@视频| 亚洲成人一二三区av| 久久女婷五月综合色啪小说| 国产亚洲最大av| 九九爱精品视频在线观看| 国产免费一级a男人的天堂| 欧美性感艳星| 大又大粗又爽又黄少妇毛片口| 国产精品国产三级专区第一集| 91久久精品国产一区二区成人| 在线观看美女被高潮喷水网站| 亚洲精品乱码久久久v下载方式| 国产免费福利视频在线观看| 久久6这里有精品| 99热这里只有是精品50| 观看av在线不卡| 日本欧美国产在线视频| 亚洲,欧美,日韩| 最近最新中文字幕免费大全7| 免费在线观看成人毛片| 日本-黄色视频高清免费观看| 国产日韩一区二区三区精品不卡 | 国产亚洲av片在线观看秒播厂| 午夜日本视频在线| 一本久久精品| 欧美日本中文国产一区发布| 国产精品三级大全| 久久久国产欧美日韩av| 久久精品国产自在天天线| 久久久久网色| av天堂中文字幕网| 视频中文字幕在线观看| 国产淫语在线视频| 精品一区二区免费观看| 免费看av在线观看网站| 欧美精品一区二区大全| 国精品久久久久久国模美| 亚洲三级黄色毛片| 3wmmmm亚洲av在线观看| 六月丁香七月| 国产探花极品一区二区| 一本色道久久久久久精品综合| 国产成人免费无遮挡视频| 女的被弄到高潮叫床怎么办| 国产伦精品一区二区三区四那| 亚洲国产欧美在线一区| 曰老女人黄片| 国产成人午夜福利电影在线观看| av.在线天堂| 日韩大片免费观看网站| 最近的中文字幕免费完整| 中国美白少妇内射xxxbb| 日本与韩国留学比较| 啦啦啦中文免费视频观看日本| 国产视频内射| 赤兔流量卡办理| 国产精品国产三级专区第一集| 在线观看国产h片| 观看美女的网站| 99久久精品热视频| 丰满少妇做爰视频| 欧美成人精品欧美一级黄| 亚洲四区av| 久久久久久久亚洲中文字幕| 大话2 男鬼变身卡| 亚洲欧美成人综合另类久久久| 综合色丁香网| 久久国内精品自在自线图片| 亚洲精品456在线播放app| 亚洲精品一二三| 日韩av在线免费看完整版不卡| 国产一区二区在线观看av| 免费观看无遮挡的男女| 亚洲欧美日韩另类电影网站| 久久久久久人妻| av有码第一页| 午夜av观看不卡| 丰满迷人的少妇在线观看| 国产成人aa在线观看| 久久国产精品男人的天堂亚洲 | 日本欧美国产在线视频| 中国美白少妇内射xxxbb| 亚州av有码| 中文字幕制服av| 亚洲精品视频女| 性色avwww在线观看| 午夜福利,免费看| 亚洲av福利一区| 男人狂女人下面高潮的视频| av在线观看视频网站免费| av不卡在线播放| 久久久久国产网址| 久久久久久久精品精品| 久久这里有精品视频免费| 我的女老师完整版在线观看| 香蕉精品网在线| 高清午夜精品一区二区三区| xxx大片免费视频| 一级毛片我不卡| 九九爱精品视频在线观看| 国产永久视频网站| 久久ye,这里只有精品| 欧美成人精品欧美一级黄| 久久久久国产网址| 女人精品久久久久毛片| 亚洲综合精品二区| 高清毛片免费看| 精品国产一区二区三区久久久樱花| 黑人高潮一二区| 在线 av 中文字幕| 亚洲人成网站在线观看播放| 男人舔奶头视频| 校园人妻丝袜中文字幕| 欧美日韩亚洲高清精品| 欧美最新免费一区二区三区| av免费在线看不卡| 国内精品宾馆在线| 80岁老熟妇乱子伦牲交| 亚洲欧美精品专区久久| 久久 成人 亚洲| 亚洲av成人精品一区久久| 久久久亚洲精品成人影院| 日韩成人av中文字幕在线观看| 精品视频人人做人人爽| 国产亚洲欧美精品永久| 国产色爽女视频免费观看| 日韩精品有码人妻一区| 中文字幕免费在线视频6| 久久久午夜欧美精品| 老司机亚洲免费影院| av福利片在线观看| 美女内射精品一级片tv| 黄色日韩在线| 王馨瑶露胸无遮挡在线观看| 性高湖久久久久久久久免费观看| 久久 成人 亚洲| 久久久久久久久久成人| 爱豆传媒免费全集在线观看| 韩国高清视频一区二区三区| 久久人妻熟女aⅴ| 久久97久久精品| 日韩精品免费视频一区二区三区 | a 毛片基地| 国产毛片在线视频| 又大又黄又爽视频免费| 亚洲精品国产av成人精品| a级一级毛片免费在线观看| 哪个播放器可以免费观看大片| 热re99久久国产66热| 国产色婷婷99| 男人舔奶头视频| 精品卡一卡二卡四卡免费| 精品一品国产午夜福利视频| 日产精品乱码卡一卡2卡三| 毛片一级片免费看久久久久| 午夜影院在线不卡| 免费高清在线观看视频在线观看| 久久韩国三级中文字幕| 一级毛片aaaaaa免费看小| 国产熟女午夜一区二区三区 | 狂野欧美白嫩少妇大欣赏| 免费大片黄手机在线观看| 多毛熟女@视频| 大又大粗又爽又黄少妇毛片口| 日韩大片免费观看网站| 欧美精品高潮呻吟av久久| 国产伦精品一区二区三区视频9| 91精品国产九色| av播播在线观看一区| 国产乱来视频区| 91午夜精品亚洲一区二区三区| 亚洲国产色片| 亚洲av欧美aⅴ国产| 中文乱码字字幕精品一区二区三区| 欧美三级亚洲精品| 五月天丁香电影| 亚洲欧美精品自产自拍| 色婷婷久久久亚洲欧美| 亚洲精品aⅴ在线观看| 国产老妇伦熟女老妇高清| 你懂的网址亚洲精品在线观看| 亚洲高清免费不卡视频| 国产白丝娇喘喷水9色精品| av国产精品久久久久影院| 内射极品少妇av片p| 少妇裸体淫交视频免费看高清| av在线老鸭窝| 又大又黄又爽视频免费| 最黄视频免费看| 在线观看三级黄色| 啦啦啦啦在线视频资源| 老司机影院毛片| 亚洲精品国产成人久久av| 乱码一卡2卡4卡精品| 亚洲精品日韩在线中文字幕| 一区二区三区乱码不卡18| 日韩成人伦理影院| 久久人人爽人人爽人人片va| 久久精品国产a三级三级三级| 天天操日日干夜夜撸| 毛片一级片免费看久久久久| 日韩在线高清观看一区二区三区| 又粗又硬又长又爽又黄的视频| 97在线人人人人妻| 午夜av观看不卡| 精品人妻熟女av久视频| 精品国产露脸久久av麻豆| 高清不卡的av网站| av视频免费观看在线观看| 一级毛片 在线播放| 曰老女人黄片| 国产在线视频一区二区| 日韩中文字幕视频在线看片| 免费av中文字幕在线| 丝瓜视频免费看黄片| a级毛片在线看网站| 王馨瑶露胸无遮挡在线观看| 亚洲人成网站在线观看播放| 国产一区二区在线观看av| 国产中年淑女户外野战色| av天堂中文字幕网| 美女xxoo啪啪120秒动态图| 免费黄频网站在线观看国产| 日产精品乱码卡一卡2卡三| 人妻人人澡人人爽人人| 人妻一区二区av| 亚洲av福利一区| 一级爰片在线观看| 黑人猛操日本美女一级片| 少妇被粗大的猛进出69影院 | 高清午夜精品一区二区三区| 国产老妇伦熟女老妇高清| 亚洲av欧美aⅴ国产| 国产黄色视频一区二区在线观看| 国产精品福利在线免费观看| 国产欧美日韩一区二区三区在线 | 最后的刺客免费高清国语| 国产av精品麻豆| 国产亚洲精品久久久com| 成人毛片60女人毛片免费| 国产 精品1| 91午夜精品亚洲一区二区三区| 国产日韩欧美视频二区| 精品久久久久久久久亚洲| 亚洲国产欧美日韩在线播放 | 日韩精品免费视频一区二区三区 | 街头女战士在线观看网站| 欧美成人精品欧美一级黄| 亚洲欧洲国产日韩| 一级爰片在线观看| 国产亚洲最大av| 欧美人与善性xxx| 久久 成人 亚洲| 成人亚洲欧美一区二区av| 亚洲四区av| 22中文网久久字幕| 热re99久久精品国产66热6| 3wmmmm亚洲av在线观看| 91成人精品电影| 又粗又硬又长又爽又黄的视频| 久久久精品免费免费高清| 一级二级三级毛片免费看| 麻豆成人av视频| 国产成人免费无遮挡视频| 最近中文字幕2019免费版| 欧美 亚洲 国产 日韩一| 美女大奶头黄色视频| 国产视频内射| 人人妻人人澡人人看| av在线老鸭窝| 国产亚洲最大av| 久久精品国产亚洲av涩爱| 国产成人a∨麻豆精品| 你懂的网址亚洲精品在线观看| 国产精品久久久久久精品电影小说| freevideosex欧美| 亚洲人成网站在线播| 国产精品国产三级国产av玫瑰| 亚洲三级黄色毛片| 免费大片18禁| 亚洲成色77777| 一本一本综合久久| 亚洲真实伦在线观看| 亚洲国产成人一精品久久久| 各种免费的搞黄视频| 亚洲人成网站在线观看播放| 亚洲,一卡二卡三卡| 亚洲成人av在线免费| 国产片特级美女逼逼视频| 亚洲精品日韩在线中文字幕| 国产91av在线免费观看| 自拍欧美九色日韩亚洲蝌蚪91 | 久久国产亚洲av麻豆专区| 全区人妻精品视频| 99热6这里只有精品| 午夜av观看不卡| 国产乱人偷精品视频| 国产国拍精品亚洲av在线观看| 亚洲成人av在线免费| 2021少妇久久久久久久久久久| 中国国产av一级| 人人妻人人爽人人添夜夜欢视频 | 少妇高潮的动态图| 中文字幕精品免费在线观看视频 | 欧美xxⅹ黑人| 丰满饥渴人妻一区二区三| 少妇人妻 视频| 国产色婷婷99| 日韩成人av中文字幕在线观看| 老司机影院毛片| 人妻少妇偷人精品九色| 观看av在线不卡| 久久久a久久爽久久v久久| 黑人猛操日本美女一级片| 成年人免费黄色播放视频 | 精品酒店卫生间| 亚洲精品国产av成人精品| 亚洲精品自拍成人| 狠狠精品人妻久久久久久综合| 亚洲自偷自拍三级| 亚洲,欧美,日韩| 午夜老司机福利剧场| 日韩人妻高清精品专区| 狠狠精品人妻久久久久久综合| 亚洲自偷自拍三级| 国产精品99久久久久久久久| 亚洲综合精品二区| av在线观看视频网站免费| 99久久人妻综合| 精品久久国产蜜桃| 久久久久国产网址| 女性被躁到高潮视频| 国产一区二区三区av在线| 精品亚洲成国产av| 亚洲国产精品一区三区| 久久韩国三级中文字幕| 国内少妇人妻偷人精品xxx网站| 亚洲精品456在线播放app| 日韩大片免费观看网站| 中文资源天堂在线| 午夜老司机福利剧场| 婷婷色麻豆天堂久久| 高清毛片免费看| 国产亚洲午夜精品一区二区久久| 大香蕉久久网| av女优亚洲男人天堂| 成人黄色视频免费在线看| 久久久久久久亚洲中文字幕| 少妇裸体淫交视频免费看高清| 国产av码专区亚洲av| 亚洲精品成人av观看孕妇| 亚洲怡红院男人天堂| 精品一品国产午夜福利视频| 中文字幕av电影在线播放| 久久99一区二区三区| 婷婷色av中文字幕| 一本—道久久a久久精品蜜桃钙片| 久久久欧美国产精品| 午夜老司机福利剧场| av网站免费在线观看视频| 特大巨黑吊av在线直播| 国产男女内射视频| 女人久久www免费人成看片| 欧美日韩av久久| 国内揄拍国产精品人妻在线| 人妻 亚洲 视频| 亚洲欧洲国产日韩| 青春草视频在线免费观看| 精品少妇久久久久久888优播| 成年美女黄网站色视频大全免费 | 亚洲性久久影院| 久久av网站| 久久韩国三级中文字幕| 日韩av在线免费看完整版不卡| 老熟女久久久| av天堂久久9| 美女脱内裤让男人舔精品视频| 三级国产精品片| 久久久久久久久大av| 中国美白少妇内射xxxbb| 夜夜骑夜夜射夜夜干| 欧美精品一区二区免费开放| 久久国产精品男人的天堂亚洲 | 午夜激情久久久久久久| 午夜福利,免费看| 青青草视频在线视频观看| 欧美三级亚洲精品| 晚上一个人看的免费电影| 九色成人免费人妻av| 色5月婷婷丁香| 亚洲婷婷狠狠爱综合网| 国产亚洲5aaaaa淫片| 国产高清三级在线| 国产高清有码在线观看视频| 亚洲av欧美aⅴ国产| 内地一区二区视频在线| 日韩三级伦理在线观看| 内射极品少妇av片p| 精品一区二区三区视频在线| 亚洲欧洲国产日韩| 日韩在线高清观看一区二区三区| 美女cb高潮喷水在线观看| av免费观看日本| 日韩一区二区视频免费看| 王馨瑶露胸无遮挡在线观看| 久久99蜜桃精品久久| 黄色欧美视频在线观看| 久久韩国三级中文字幕| 汤姆久久久久久久影院中文字幕| 又黄又爽又刺激的免费视频.| 最近中文字幕高清免费大全6| 男的添女的下面高潮视频| 99久久人妻综合| 18禁在线播放成人免费| 久久99一区二区三区| 亚洲美女搞黄在线观看| 国产日韩一区二区三区精品不卡 | 在线观看免费日韩欧美大片 | 亚洲成人av在线免费| 狂野欧美激情性bbbbbb| 亚洲av.av天堂| 国产精品人妻久久久久久| 国产免费视频播放在线视频| freevideosex欧美| 蜜桃久久精品国产亚洲av| 亚洲精品色激情综合| 国产精品.久久久| 三级国产精品片| 国产成人精品婷婷| 看十八女毛片水多多多| 久久人人爽人人片av| 五月玫瑰六月丁香| 色94色欧美一区二区| 性色av一级| 精品久久国产蜜桃| 全区人妻精品视频| 国产91av在线免费观看| 亚洲av电影在线观看一区二区三区| 亚洲电影在线观看av| 亚洲人成网站在线播| 99九九线精品视频在线观看视频| av.在线天堂| 亚洲不卡免费看| 观看美女的网站| 日韩av在线免费看完整版不卡|