• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    含TEMPO配合物的合成、表征、譜學(xué)性質(zhì)及光猝滅機(jī)理

    2017-11-01 17:29:19陳可先趙琛烜李浩然
    物理化學(xué)學(xué)報 2017年7期
    關(guān)鍵詞:聯(lián)吡啶浙江大學(xué)工程學(xué)院

    尹 璐 梁 程 陳可先 趙琛烜 姚 加 李浩然,,*

    (1浙江大學(xué)化學(xué)系,浙大-新和成聯(lián)合研發(fā)中心,杭州 310027;2浙江大學(xué)化學(xué)工程與生物工程學(xué)院,杭州 310027;3浙江工商大學(xué)食品與生物工程學(xué)院,杭州 310018)

    含TEMPO配合物的合成、表征、譜學(xué)性質(zhì)及光猝滅機(jī)理

    尹 璐1梁 程2陳可先3趙琛烜1姚 加1李浩然1,2,*

    (1浙江大學(xué)化學(xué)系,浙大-新和成聯(lián)合研發(fā)中心,杭州 310027;2浙江大學(xué)化學(xué)工程與生物工程學(xué)院,杭州 310027;3浙江工商大學(xué)食品與生物工程學(xué)院,杭州 310018)

    通過由2,2,6,6-四甲基哌啶-氮-氧化物(TEMPO)自由基修飾的三聯(lián)吡啶配體與二價金屬鉑鹽反應(yīng),合成得到一種新型的金屬配合物,[Pt(terpy-TEMPO)Cl]Cl·H2O·CH3OH (terpy指2,2?:6?,2?-三聯(lián)吡啶)。此配合物由于TEMPO自由基的作用呈現(xiàn)高效率的光猝滅現(xiàn)象。X衍射單晶數(shù)據(jù)證實此配合物的分子結(jié)構(gòu)信息。利用紫外、熒光及電子順磁共振光譜等譜學(xué)手段探討了該配合物的紫外吸收、發(fā)射及電子順磁共振(EPR)光譜性質(zhì)。[Pt(terpy-TEMPO)Cl]Cl·H2O·CH3OH的室溫紫外吸收光譜表明,此配合物有兩個典型的紫外吸收波段,強(qiáng)吸收段和次強(qiáng)吸收段,分別來源于配體到配體的躍遷(MLCT),金屬到配體的躍遷(LLCT)。另外,[Pt(terpy-TEMPO)Cl]Cl·H2O·CH3OH的室溫固體熒光光譜表明,TEMPO的單電子能有效地猝滅三聯(lián)吡啶鉑的熒光發(fā)射。我們對此猝滅機(jī)理進(jìn)行了詳細(xì)合理的闡述,并通過高斯09軟件包對配合物的能隙和能帶進(jìn)行了量化計算,結(jié)果進(jìn)一步證明配合物體系中的TEMPO單電子能極大的影響最高占有分子軌道(HOMO)與最低未占分子軌道(LUMO)之間的能級差,從理論上解釋了三聯(lián)吡啶鉑配合物的光猝滅的光學(xué)性質(zhì)與分子結(jié)構(gòu)之間的關(guān)系。EPR結(jié)果表明,穩(wěn)定自由基上接上金屬配合物,不影響自由基A值和g值(A值指自由基超精細(xì)耦合常數(shù),g值指自由基的g因子),但影響自由基轉(zhuǎn)動、弛豫時間。

    三聯(lián)吡啶鉑配合物;氮氧自由基;合成;光致發(fā)光;電子順磁共振光譜

    1 Introduction

    Free radicals are important in biological1,2and environmental process3, or catalytic reaction4. 2,2,6,6-Tetramethyl-1-piperridinyloxy (TEMPO) radical, an important class of stable free radicals with one unpaired electron5, has been widely employed as a mild and selective primary catalyst. It is well known that TEMPO could catalyze the oxidation of alcohols in the presence of co-oxidants6,7. More importantly, TEMPO could be applied as a typical paramagnetic species in the quenching of photo-excited molecules. Takeuchi, Ishii and other groups demonstrated that the combination of chromophoric moieties and TEMPO could provide the direct information of spin-sublevel dependence of quenching the excited singlet state (S1) and triplet state (T1) metalloporphyrins(MPs) or metallophthalocyanines (MPcs)8,9. Recently, Blough,et al., Ishii, et al., and other groups reported the photo-induced population transfer (PIPT) in which the TEMPO was covalently coupled to a chromophore10?12.

    As a kind of luminescent material, the square-planar coordination geometry of d8Pt(II) complexes possess intriguing spectroscopic, luminescence and anticancer properties13?16. Some Pt(II) terpyridine complexes have three ordered intraligand charge transfer, ligand-to-ligand charge transfer, and metal-to-ligand charge transfer states in a single mononuclear17.The promising luminescence exhibited by these complexes was attributed mainly to the dπ(Pt) → π*(N-N-N)3MLCT excited state18,19. Diversified pendants can be attached to the central metal Pt(II)20?22or modified on the ring of terpyridine23?26to construct new structures. In these cases, the nature of the auxiliary ligand and counterion of the terpyridyl chelator would quench such3MLCT excited states in the presence of a low-lying non-emissive d-d ligand field (LF) or ligand-toligand charge transfer (LLCT) states27. Furthermore, the Lewis bases can attack the open coordination sites of Pt(II) terpyridine complex in the excited state resulting in exciplex quenching28,29,and even excimer quenching would occur in the fluid solution30,31. However, the luminescence quenching of Pt(II)terpyridine complex with the TEMPO substitution has seldom been reported. It was shown in our preliminary experiments that the ascorbic acid could turn on the luminescence in quenched luminescence of Pt(II) terpyridyl- TEMPO derivative system. To the best of our knowledge, few reports related to the synthesis of the metallobiomolecular of Pt(II) complex covalently linked with TEMPO radical have been reported. So in theory, Pt(II) terpyridine tethering TEMPO complex may act as both a transition metal catalyst and bi-functional probe,which could be applied as a precursor of photoluminescence and an EPR probe. On the analysis of the conversion of EPR signal and luminescence, more information about single electron behaviour would be achieved in the process of coordination between substrates and transition metal, which could explain the TEMPO-catalyzed oxidation or cytotoxic mechanism more clearly.

    Herein, we report the synthesis of a new kind of Pt(II)complex with the ligand of 2,2,6,6-tetramethyl-4-(2,2?:6?2?-terpyridin-4?-yloxy)piperidin-1-oxyl (L), in which the incorporation of TEMPO with the terpyridine derivative framework can significantly perturb the luminance and electron transition.Furthermore, the intramolecular paramagnetic quenching of singlet state by nitroxide radicals is found to be highly efficient.In this case of photoextinction effect, upon reaction with ascorbic acid to consume nitroxide radicals, the fluorescence would restore. The changes in fluorescence of the synthetic Pt(II) complex resemble to other “on/off sensor” analogous system, and can readily be applied to biological systems32.

    2 Experimental

    2.1 Materials and reagents

    Dimethylformamide (DMF), dimethylsulfoxide (DMSO),(purity ≥ 99%, Super Dry, water ≤ 3 × 10?5(mass fraction));ether (concentration purity ≥ 99.5%); menthol (purity ≥ 99.5%),were purchased from Aladdin. Ultra-pure water was used for the preparation of all solutions. DMF was dried by distillation from sodium wire/benzophenone. Commercial K2PtCl4(Sigma Aldrich, purity ≥ 99%), 4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl (Sigma Aldrich, purity ≥ 98%),2,2?:6?,2?-terpyridine (Sigma Aldrich, purity ≥ 98%), and 4?-chloro-2,2?:6?,2?-terpyridine (Sigma Aldrich, purity ≥ 98%)were used as received. All manipulations involving organometallic compounds were carried out in air atmosphere without pre-purified nitrogen or welding-grade argon using standard techniques for handling air-sensitive compounds, Except for special instructions Elemental analyses (CHN) were determined using a Vario MICRO cube instrument. X-ray crystal structure analyses were performed by using a Gemini A Ultra instrument. Structure solution and refinement was accomplished using SHELXL-97. CCDC 1063015 (compound 2) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12 Union Road,Cambridge CB21EZ, UK; Fax: +44-1223-336-033; Email:de-posit@ccdc.cam.ac.uk). The PL and absorption spectra were measured using an Edinburgh instruments FLS 920 spectrometer and an analytic Jena S600 UV/Vis spectrophotometer. EPR spectrometer used was a computer controlled X-band (9.5 GHz)EPR spectrometer (Bruker A300) equipped with a variable temperature control unit (Bruker ER 4131VT Variable Temperature Accessory, which can command the temperature with an accuracy of ±0.1 K at the site of the sample). Typical ESR parameters were as follows: 3508 G center field; 60 G sweep width; 9.439 GHz microwave frequency; 15.99 mW power; 1.59 × 103receiver gain; modulation frequency of 100 kHz; modulation amplitude of 1 G; with the conversion time being 42 msec and time constant being 10.24 msec with 1 X-scans for each 6144 point spectrum.

    Dichloro (l,5-cyclooctadiene) Pt(II)[Pt(COD)Cl2] was synthesized following the literature33. Yield 99%, Anal. Calc.(%) for C8H12Cl2Pt: C, 25.67; H, 3.21. Found (%): C, 25.56; H,3.19. The dichlo-ro(l,5-cyclooctadiene) Pt(II) was used without recrystallization in the syntheses of the following Pt(II)complexes.

    [Pt(terpy)Cl]·Cl·2H2O (compound 1) (Scheme 1) was synthesized according to the method reported in the literature34.Yield 95%, ESI-MS: [M-Cl]+464.10; Anal. Calcd (%) for C15H15N3O2Cl2Pt: C, 33.62; H, 2.80; N, 7.85. Found (%): C,33.56; H, 2.81; N, 7.89.

    2.2 Experimental and synthesis procedures

    2.2.1 Synthesis of 2,2,6,6-tetramethyl-4-(2,2′:6′,2′-terpyridin-4′-yloxy)-piperidi-1-oxyl (L, terpy-TEMPO)

    Ligand L was prepared by a reported procedure35: To a suspension of freshly ground KOH (2.64 g, 47.2 mmol) in DMSO (35 mL) was added 4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl (2.00 g, 11.8 mmol), followed by 4?-chloro-2,2?:6?,2?-terpyridine (3.33 g, 11.8 mmol). The mixture was stirred at 50 °C for 22 h, and then quenched with an equal volume of water to afford a pink solid which was dried over under reduced pressure at 50 °C. Recrystallization from hot hexanes gave feathery pale pink needles. Yield 3.9 g, 81%. M.P.128?130 °C. ESI-MS: [M+H]+404.01, 426.13. Anal. Calcd (%)for C12H27N4O2: C, 71.44; H, 6.74; N, 13.90. Found (%): C,71.09; H, 6.72; N, 13.87.

    2.2.2 Synthesis of

    [Pt(terpy-TEMPO)Cl]·Cl·H2O·CH3OH

    (compound 2)

    Method 1: To a suspension of [Pt(COD)Cl2] (1.50 g, 4.00 mmol) in methanol (100 mL), Ligand L (1.61 g, 4.00 mmol)dissolved in 20 mL methanol was added with stirring and the mixture warmed at 50 °C on oil bath. After 15 min all the pale yellow suspension liquid turned to bright yellow, and stirred for 20 h until completion of the reaction, then was cooled at room temperature. Equal volume of ethyl ether was added, in this case, the product was precipitated from the solution, and then filtered to get filter residue, washed with methanol, diethyl ether three times (3 × 50 mL), solvent was then removed under reduced pressure leaving a bright yellow tiny needle, which was collected and vacuum oven dried overnight. Yield: 2.68 g,95%. ESI-MS: [M-Cl]+634.5. Anal. Calc. (%) for C25H33Cl2N4O5Pt: C, 41.72; H, 4.62; N, 7.79. Found (%): C,41.63; H, 4.64; N, 7.70. Method 2: to a suspension of[Pt(DMSO)2Cl2] (1.50 g, 4.00 mmol) in methanol (100 mL),Ligand L (1.68 g, 4.00 mmol) dissolved in 20 mL methanol was added (cis-[Pt(DMSO)2Cl2] was synthesized according to relevant reference36). In this case, however, except for the desired compound 2, the salt [Pt(terpy-TEMPO)Cl][Pt(DMSO)Cl3] (compound 4) was also formed. The compound 4 seems to be total if the reaction time was increased to 20 h. The failure of obtaining the only [Pt(terpy-TEMPO)Cl]+is a consequence of the almost complete insolubility of 4, which subtracts the [Pt(DMSO)Cl3]?anion formed by reaction (1). Therefore, method 2 is not as good as method 1, we employed method 1 at last.Cis-[Pt(DMSO)2Cl2] + Cl?→ [Pt(DMSO)Cl3]?+ DMSO (1)

    Scheme 1 Molecular structures of the 2,2,6,6-tetramethyl-1-piperridinyloxy (TEMPO) radical (T),complex ligand L, [Pt(terpy)Cl]+ derivatives, and the proposed reaction mechanism of compound 2 with ascorbic acid.

    2.2.3 Synthesis of [Pt(terpy-TEMPOH)Cl]·Cl·H2O·CH3OH(compound 3)

    Compound 3 was synthesized by means of “one pot process”,and all reactions were performed under an inert atmosphere of nitrogen. The ascorbic acid (0.21 g, 1.2 mmol) was added to a stirred solution of terpy-TEMPO (L, 0.16 g, 0.4 mmol) in 20 mL methanol. The resultant solution was stirred at room temperature for 3 h. Pt(COD)Cl2(0.15 g, 0.4 mmol) dissolved in methanol was dropwise added to the reaction mixture via syringe, which turned out light yellow precipitation slowly and was then stirred for another 2 h in 50 °C. The product was isolated, washed with deionized water (3 × 20 mL), methanol(3 × 20 mL), and dried in vacuum. Yield 80%. ESI-MS:[M-Cl]+635.2. Anal. Calc. for C25H34Cl2N4O5Pt: C, 41.67; H,4.76; N, 7.78. Found: C, 41.60; H, 4.69; N, 7.76.

    As a final note on the complex 3, it is a kind of unstable complex, and is more inclined to transform into complex 2, so NMR data of complex 3 is difficult to obtain.

    Complex 3 was stored in the anhydrous glove box under nitrogen atmosphere. The solid film layer of the complex 3 was prepared as follow: firstly, dissolved in degassed DMF solution(10?3mol·L?1); secondly, the homogeneous solution (about 0.1 mL) was dropped onto a glass sheet of 1 cm × 1 cm; finally, let it dry in flowing N2, forming a uniform sample spot, and then the glass sheet was transferred to the sealed vessel. Before we manipulated fluorescence spectrophotometry detection, the glass sheet was quickly transferred to the sample tank,subsequent purged air from the sample tank system to ensure that there is no oxygen or water prior to inject dry nitrogen. In this operation, we can guarantee that the data of fluorescence test and other experiments are reliable, repeatable.

    Additionally, the solid film layers of complexes 1 and 2 were prepared in a similar method to complex 3, except that rigorous conditions (no anhydrous anaerobic) were not necessary.

    3 Results and discussion

    3.1 Synthesis and characterization

    In this work, (terpy)-TEMPO (L) was prepared by the reaction of 4?-choro-2,2?:6?,2?-terpyridine (4-Cl-terpy) with 4-OH-TEMPO in the presence of KOH in DMSO solvent35.Chelation was carried out between K2PtCl4and 1,5-cyclooctadiene(COD) to afford the Pt(COD)Cl218. The reaction of Pt(COD)Cl2with L in methanol under reflux for 2 h gave compound 2, which was isolated as the red-orange solid in 95%yield (see Fig.S1, Supporting Information). Compound 2 was characterized by ESI-MS and elemental analysis. The ESI-MS showed that the [Pt(terpy-TEMPO)Cl]+molecular ion in CH3OH, revealed peak clusters centred at m/z 634.2 (M+, 100%)(Fig.S2, Supporting Information). We confirmed the composition of complex 2 by the X-ray crystallography, and further information was given by the TGA analysis (Fig.S3,Supporting Information). The X-ray structure provided evidence for the participation of one molecule of H2O and one molecule of CH3OH from the outer sphere in the crystallization of the compound 2 (see Fig.S4, Table S1, Supporting Information for details). It was found from the TGA result(Fig.S3, Supporting Information) that compound 2 lost its relative mass at about 200 °C due to the loss of a small amount of H2O and CH3OH, then lost sharply at 250?550 °C, and started to level off at high temperature (> 800 °C).

    3.2 Crystal structure of compound 2

    Crystal structure of compound 2 was obtained by layering diethyl ether into a mixed solvent of dichloromethane and methanol. In the crystal structure (Fig.1), the platinum atom adopted an approximately square planar geometry. This structure consisted of a monomeric [PtII(terpy-TEMPO)(Cl)]+cation, a chloride anion, and co-crystallized solvent molecules.The selected interatomic distances and angles were given in the Supporting Information. The metal center in the cationic complex of compound 2 adopted a very lightly distortedsquare-planar geometry with three pyridines nitrogen of terpyridine, and the chloride anion. The N―Pt―N angle was analyzed as ~80.7° which was typical in other related complexes37. The important bond distances of heteroatoms to Pt(II) [N1―Pt1: 0.2019(5) nm, N2―Pt1: 0.1934(5) nm,N3―Pt1: 0.2012(5) nm, Cl1―Pt1: 0.2296(2) nm] all fell in the range observed from [Pt(terpy)Cl]ClO4(0.1952?0.2003 nm)37or known Pt-terpyridyl complexes38,39. The angles and torsion angles were Pt1―N1―N2, 80.71(21)°; Pt1―N1―N3,161.42(23)°; Pt1―Cl1―N1, 99.08(17)°; N2―Pt1―N1―C5,2.3(4)°; N3―Pt1―N1―C1, ?179.2(6)°; and N2―Pt1―N3―C11, 0.2(4)° from which the whole molecule could be described as approximately planar. The different stacking of[Pt(terpy-TEMPO)Cl]+were observed: the Pt1?Pt2 distance[0.35235(4) nm)] was slightly longer than that of 0.3269(1) nm in [Pt(terpy)Cl]ClO437, in which the steric effects of TEMPO probably hinder short Pt―Pt distances. In order to avoid steric repulsion, the two stacked terpyridine planes would complement each other without complete overlap (Fig.S5, Supporting Information).

    Fig.1 Perspective drawing of the complex cation of compound 2 with selected atomic numbering scheme.

    3.3 UV/Vis absorption properties

    As a representative example of this class of [Pt(4-R?-terpy)Cl]+complexes, the electronic absorption spectra of complexes 1 and 2 in methyl alcohol are shown in Fig.2. When complexes 1 and 2 are dissolved in methyl alcohol, the absorbance of each platinum complex follows Beer?s law and is consistent with dissolution into monomeric ions. Chargetransfer electronic absorptions of Pt(II) terpyridine complexes tend to occur in the wavelength range from 350 to 450 nm,along with mainly intraligand π?π* absorptions at shorterwavelengths40?43. On the whole, the absorption spectrum of the Pt(terpy)Cl+system of compounds 1 and 2 were very similar,naturally breaks into two energy regimes (Fig.2): broad moderate intense absorption band of 370?450 nm (band A, ε ≈103dm3·mol?1·cm?1) and an intense band with distinct vibronic structures at 270?350 nm (band B, ε > 104dm3·mol?1·cm?1).Che, and others have explored in considerable details of photophysical properties of a series of Pt(II) terpyridine derivatives44?46. Take into consideration all these situations, we tentatively assign the bands B in Fig.2 more likely to represent π?π*transitions. On the other hand, band A (ε = 3.90 × 103dm3·mol?1·cm?1) in Fig.2 is broad with moderately intensity,which makes it difficult to locate the maximum wavelength.But the band A appeared to be too low in energy to be π?π*transitions and too intense (ε ≥ 103dm3·mol?1·cm?1) to be d?d transitions, which it is most likely to be the metal to ligand charge-transfer (CT) transitions analogous to those identified in the spectra of Pt(II) bipyridine complexes47. We tentatively assign it to the metal-to-ligand charge-transfer (MLCT)transition Pt(5d) → terpy(π*). These bands of complex 1 generally shift to lower energy using methanol solvent (Table S2, Fig.S6, Supporting Information), which was consistent with a charge transfer character47,48.

    Fig.2 UV/Vis spectra of compounds 1(black) and 2(red) in methyl alcohol solvent at 298 K (color online).

    3.4 Solid-State photoluminescence properties

    Fig.3 Emission spectra of compounds 1 (black), 2 (red), and 3 (blue) in solid state at 298 K (color online).

    The entire solid samples were deoxygenated by vacuum-argon cycling during testing. Che and Gray49?51have reported the phosphorescence of the Pt(terpy)Cl+complexes at room temperature as well as 77 K in the solid. The[Pt(terpy)Cl]+complexes showed no detectable emission in its solution state at room temperature, which was due to the quenching of the3MLCT state by the thermally accessible3d?d exited state via non-radiative decay52. It was reported that the[Pt(terpy)Cl]+complexes would exhibit very strong luminescence, which was derived from Pt―Pt and/or π?π interaction, both in the solid state and in low temperature glass37. The emission spectrum of 1 ([Pt(terpy)Cl]+complex in our study, Fig.3) upon excitation at λ ≥ 400 nm displayed a strong emission in solid state at λmax630 nm at room temperature. This midrange luminescence (550?650 nm) in solid-state is more difficult to assign, although the low temperature solid-state luminescence of [Pt(terpy)Cl]X (X=PF6?, ClO4?, Cl?, CF3SO3?), ranging from 565 to 695 nm, is assigned to a singlet-singlet MMLCT (π*→ dσ*, metal-metalto ligand charge transfer, MMLCT) transition37. As the Fig.3 shows, the emission of complex 1 is a broad band, which is much too broad for an MMLCT transition in some cases18,19,and it is debatable for such a long ground-state Pt―Pt distance to assign the luminescence of complex 1 to a MMLCT transition, but excimeric ππ*MMLCT emission has been invoked to explain the very broad room-temperature emission of solid [Pt(terpy)Cl]+complexes more reasonable37. The similarly broad emission of solid [Pt(bpy)2]2+and [Pt(phen)2]2+(phen = 1,10-phenanthroline) salts also have ππ excimer character53. The excitation spectrum (Fig.S7, Supporting Information) of compound 1 was, however, complicated with unstructured, broad band (275?525 nm). Also, the complex 1 proves to be a very promising platform with an emission quantum yield of 0.17 and an excited-state lifetime of 0.94 μs(Figs.S8, S9, Supporting Information) in room-temperature solid-state. When TEMPO was pinched on the terpyridine of[Pt(terpy)Cl]+complex, the strong luminescence was quenched sharply (> 90%, Fig.3). So the complex 1 displays an intense orange emission at λmax630 nm, whereas the complex 2 displays very weak luminescence at λmax630 nm in solid state with little redshift in the emission of complex 2. Furthermore,the dramatically quenching also appeared in the excitation spectrum of complex 2, in contrast to complex 1 (Fig.S7,Supporting Information), which indicated TEMPO radical can extinguish excimeric π→π*excitation. The possible mechanisms could be interpreted as follows: The Pt(II) salts series in close proximity to each other are likely to form dimeric structure and yield efficiently the excimer emission in solid states54,55. In the case if photoexcitation of the complex 1 in solid states at room temperature with 406 nm light (hvex),complex 1 is mainly excited to form a singlet exciton1(complex 1)*(Eq.(1), which is smoothly transferred to the ground state of another1(complex 1) yield an singlet excimer1(complex 1. complex 1)*(Eq.(2)), then is transferred to the triplet3(complex 1. complex 1)*via ISC (Eq.(3)). Finally, the excimer emission (hvexcimer) is generated (Eq.(4)).

    In the case of the complex 2, which modified by TEMPO,although the Pt1―Pt2 distance (0.35235(4) nm) distinguished the absence of Pt―Pt interactions, π?π interactions cannot be ignored in dimers of complex 2, and the similar process is possible when excitation occurs upon 2 to generate singlet complex 21(complex 2)*(Eq.(5). In the practical case, the phosphorescence spectra are similar between complexes 1 and 3, and therefore, the strong intermolecular interactions exist not only in complex 1, but also in complexes 2 and 3 in the solid state.1(complex 2)*contribute readily to the singlet excimer formation of complex 2 [1(complex 2. complex 2)*, Eq.(6)], and then relaxed to triplet excimer3(complex 2. complex 2)*(Eq.(7)). But the quenching due to TEMPO selectively provide the excited triplet state, so the triplet excimer [3(complex 2.complex 2)*] back to the ground state via the form of thermal radiation (Eq.(8)), thus the excimer emission cannot be engender.

    In comparison with the emission spectra peaks of complexes 1 and 2, manganic effect of TEMPO on the emission wavelength was not obvious. The maximum emission wavelength of complex 2 slightly moved to ~640 nm compared with complex 1 (λem630 nm). Moreover, the luminescence lifetimes of complexes 1 and 2 were almost the same, 945 and 957 ns, respectively. Interestingly, for solid sample of complex 2, the emission lifetimes under the temperatures from 33 to 290 K were virtually the same (Figs.S10, S11; Table S3, Supporting Information). While the emission peaks of compound 2 were shifted slightly to longer wavelengths with the rising of temperature. We postulate this significant temperature independent for emission lifetimes and emission λmaxof complex 2 is consistent with excimeric ππ*excited state, which was responsible for the radiative decay of the emission.Consequently, the nitroxide radical provided efficient luminescence quenching and this radical could preferably react with ascorbic acid (Scheme 1), thus, as a result of the reaction with ascorbic acid, complex 2 became the luminous-reduced form without radical spins (complex 3, Fig.3).

    Fig.4 Diagrams of singlet states molecular orbitals,energy band gap (eV), HOMO and LUMO under TD-DFT caculations for compelxes 1, 2, 3.

    The frontier molecular orbitals (FMOs) were essential to describe of the electronic and spectroscopic properties of complexes. In view of obtaining the convincible energy band gap and the energy level diagram, the HOMO and LUMO orbital of complexes 1?3 were calculated within Gaussian-09 program at hybrid B3LYP-DFT level. Full geometric optimizations were carried out using basis set 6-31+G(d,p),followed by frequency analysis to insure all local minima with real frequencies. The corresponding FMOs and energy gap (eV)were shown in Fig.4. The calculated compositions of FMOs were very different with the substituent groups (R) changed (R = H,TEMPO, TEMPOH) for Pt(II) terpyridine. The LUMO of complexes 1, 3 were almost at the same level except complex 2 gradually increased slightly, but the differences of level and distribution between three kinds of HOMO were more obvious.In Fig.4, the band gap changes in the order of 2 (2.08 eV) < 1(2.65 eV) ≈ 3 (2.66 eV), in which complex 2 possessed minimal band gap because of the nitroxide radical of terpridine.The partial frontier orbitals compositions of 1?3 were listed in Fig.4. When there was no substituent, e.g., complex 1, the HOMO orbital was mainly contributed by Cl, Pt, and pyridine.With respect to complexes 2 and 3, HOMO orbitals were localized mainly on the TEMPO or TEMPOH. And most impressively, we have noticed that the energy levels of HOMO for complex 2 raised much compared to complexes 1, 3.Obviously, the nitroxide radical (TEMPO) on the terpyridyl ligand effectively raised the energy level of HOMO and slightly lowered LUMO, thus, the energy gap between the HOMO-LUMO became the lowest among the three complexes.Accordingly, the FMOs were the intrinsic reason for the absorption and emission properties of complexes 1?3,especially the emissive performance. As it was showed in Fig.3,the luminescence of complex 1 was strong, and complex 2 decreased slightly, while the complex 3 was almost nonluminous. Hence the evidence strongly suggests that the energy levels of HOMO and LUMO were sensitive to the substituent of nitroxide radical (TEMPO), which should be responsible for the emission of complexes.

    The emission intensity of complex 3 was less than that of complex 2 from the Fig.3, reasons for the difference maybe as follow: solid fluorescence intensity is related to many factors,such as the temperature, the nature of the sample itself, the amount (thickness), the integration time, the surface roughness,the degree of focus, the sample location or something else.Especially for two different samples, this difference is more significant. Therefore, we speculated this difference of fluorescence intensity in Fig.3 is caused by a combination of many factor, such as the sample roughness, the degree of micro-focus, the location and so on.

    The thickness of those samples was about 10?100 μm. In addition, the luminescence property of complex 3 was similar with complex 1, which exhibit strong luminescence in the solid state and in low-temperature glass49?51, while no detectable emission was observed in their solution state at room temperature52. The potential biological applications of complex 3 is very attractive, however, those experiments need harsh experimental conditions (low temperature, no water and no oxygen). So the unstable and non-emission in solution properties of complex 3 is restrictive to its application, and our follow-up work will modify these complexes in order to apply in broader fields.

    3.5 Properties of electron paramagnetic resonance spectroscopy

    Fig.5 EPR spectra of T (black), L (red), and compound 2(green) in DMF at 298 K, 1 × 10?3 mol·L?1 (color online).

    As the luminescence was quenched in [Pt(terpy-TEMPO)]+system, the EPR signal started to be activated. Steady-state EPR spectrum of 4-OH-TEMPO, L, and complex 2 were observed at 298 K in DMF solvent. The spectra demonstrated that fluorophores would drastically influence the rotational correlation coefficients (τR), which can be obtained via analysis of the EPR line widths and relative intensities (As detailed in literature56.57). The τR(Eq.(1), Fig.S12, Table S4, Supporting Information) of 4-OH-TEMPO, L, and complex 2 followed the order: 2.9 × 10?11s < 1.3 × 10?10s < 2.0 × 10?10s, which were all located in fast-motion region58.

    As an evident difference in the Fig.5, the larger substituent group of TEMPO was introduced, the greater asymmetry of the EPR spectra of TEMPO derivatives came out. We supposed that the increasing steric hindrance of the 4-substituent groups,rotation of the TEMPO molecule becomes increasing restricted,thereby prolonging the rotational correlation time, as well as the anisotropies in the hyperfine coupling constant (A value)and g value are less effectively averaged out. Approximate calculation of rotational correlation coefficients (τR) could be obtained via analysis of the EPR line widths and relative intensities. As detailed in Ref.59, within this regime the relation between τRand the spectral parameters are given to a good approximation by the expressions in supporting information(Eq.(1), Fig.S12, Supporting Information).

    4 Conclusions

    In summary, we reported the synthesis and structural characterization of a novel square-planar Pt(II) complex with a terpyridine ligand decorated with TEMPO radical derivative.The complex 2 is sensitive to ascorbic acid, thus it could develop to be a luminescence and EPR bi-functional probe in detecting ascorbic acid for clarifying the biological roles.Moreover, more information about cytotoxic mechanism would be got once terpyridine Pt(II) complexes is used due to its DNA-intercalating activity60.

    By the incorporation of TEMPO moiety, the3MMLCT emissive excited states of [Pt(terpy)Cl]+unit was significantly affected, leading to a new type of highly efficient quenching luminescence [Pt(terpy-TEMPO)Cl]+complex, in turn triggering the EPR signal. Last but not least, this novel[Pt(terpy-TEMPO)Cl]+complex shows promising prospect for metal-TEMPO communication and could possibly be employed as structural elements in new solid state lighting, sensing applications, or organometallic catalyst system. Simultaneously,the development of these chromophore-nitroxide sensors opened the possibilities of obtaining new “off-on”photoluminescence chemosensors, which would be designed as a kind of logic gate switch, or to monitor the process in oxidation reaction. On the analysis of the conversion of EPR signal and luminescence, more information about single electron behavior would be achieved in the process of coordination between substrates and transition metal, which could explain the TEMPO-catalyzed oxidation or cytotoxic mechanism more clearly.

    The new synthetic route of [Pt(terpy-TEMPO)Cl]+could further be used to concatenate terpy-TEMPO ligand to different transient metals, generating a diverse array of transition metal-TEMPO complexes.

    Acknowledgment: The authors sincerely acknowledge Dr.QIN Haiyan (Department of Chemistry, Zhejiang University,Hangzhou 310027, P. R. China) and Dr. WANG Bingjie(Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China) for helpful discussions.

    Supporting Information: Details of X-ray structural analysis, experimental procedures, temperature dependence of emission spectra, UV/Vis spectra, and ESI-MS data of complexes were given. This information is available free of charge via the internet at http://www.whxb.pku.edu.cn.

    (1) Ames, B. N.; Shigenaga, M. K.; Hagen, T. M. Proc. Natl. Acad. Sci.1993, 90 (17), 7915. doi: 10.1073/pnas.90.17.7915

    (2) Stamler, J. S.; Singel, D. J.; Loscalzo, J. Science 1992, 258 (5090),1898. doi: 10.1126/science.128192

    (3) Church, D. F. Anal. Chem. 1994, 66 (7), A418.

    (4) Di, L.; Hua, Z. Adv. Synth. Catal. 2011, 353 (8), 1253.doi: 10.1002/adsc.201000876

    (5) Rozantse, E.; Sholle, V. D. Synthesis. 1971, (4), 190.

    (6) Dijksman, A.; Marino-Gonzalez, A.; Payeras, A. M. I. J. Am. Chem.Soc. 2001, 123 (28), 6826. doi: 10.1021/Ja0103804

    (7) Karimi, B.; Biglari, A.; Clark, J. H.; Budarin, V. Angew. Chem. Int.Ed. 2007, 46 (38), 7210. doi: 10.1002/anie.200701918

    (8) Ishii, K.; Takayanagi, A.; Shimizu, S.; Abe, H.; Sogawa, K.;Kobayashi, N. Free Radical Bio. Med. 2005, 38 (7), 920.doi: 10.1016/j.freeradbiomed.2004.12.017

    (9) Ishii, K.; Takeuchi, S.; Shimizu, S.; Kobayashi, N. J. Am. Chem. Soc.2004, 126 (7), 2082. doi: 10.1021/Ja035352v

    (10) Blough, N. V.; Simpson, D. J. J. Am. Chem. Soc. 1988, 110 (6), 1915.doi: 10.1021/Ja00214a041

    (11) Ishii, K.; Hirose, Y.; Kobayashi, N. J. Phys. Chem. A 1999, 103 (13),1986. doi: 10.1021/Jp983624o

    (12) Green, S. A.; Simpson, D. J.; Zhou, G.; Ho, P. S.; Blough, N. V. J.Am. Chem. Soc. 1990, 112 (20), 7337. doi: 10.1021/Ja00176a038

    (13) Camerel, F.; Ziessel, R.; Donnio, B.; Bourgogne, C.; Guillon, D.;Schmutz, M.; Iacovita, C.; Bucher, J. P. Angew. Chem. Int. Ed. 2007,46 (15), 2659. doi: 10.1002/anie.200604012

    (14) Tam, A. Y. Y.; Wong, K. M. C.; Wang, G. X.; Yam, V. W. W. Chem.Commun. 2007, No. 20, 2028. doi: 10.1039/B705062c

    (15) Lu, W.; Law, Y. C.; Han, J.; Chui, S. S. Y.; Ma, D. L.; Zhu, N. Y.;Che, C. M. Chem. Asian J. 2008, 3 (1), 59. doi:10.1002/asia.200700265

    (16) Ou, Z. Z.; Ju, B. L.; Gao, Y. Y.; Wang, Z. C.; Huang, G.; Qian, Y. M.Acta Phys. -Chim. Sin. 2015, 31 (12), 2386. [歐植澤, 句寶龍, 高云燕, 王子超, 黃 干, 錢一夢. 物理化學(xué)學(xué)報, 2015, 31 (12): 2386.]doi: 10.3866/PKU.WHXB201510137

    (17) Liu, X. Y.; Han, X.; Zhang, L. P.; Tung, C. H.; Wu, L. Z. Phys. Chem.Chem. Phys. 2010, 12 (40), 13026. doi: 10.1039/c0cp00100g

    (18) Bailey, J. A.; Miskowski, V. M.; Gray, H. B. Inorg. Chem. 1993, 32(4), 369. doi: 10.1021/Ic00056a001

    (19) Aldridge, T. K.; Stacy, E. M. Inorg. Chem. 1994, 33 (4), 722.doi: 10.1021/Ic00082a017

    (20) Lai, S. W.; Chan, M. C. W.; Cheung, K. K.; Che, C. M. Inorg. Chem.1999, 38 (19), 4262. doi: 10.1021/Ic990446k

    (21) Chung, C. Y. S.; Yam, V. W. W. J. Am. Chem. Soc. 2011, 133 (46),18775. doi: 10.1021/Ja205996e

    (22) Xu, P.; Wu, H. T.; Jia, H. X.; Ye, S. F.; Du, P. W. Organometallics.2014, 33 (11), 2738. doi: 10.1021/Om500115s

    (23) Yam, V. W. W.; Chan, K. H. Y.; Wong, K. M. C.; Chu, B. W. K.Angew. Chem. Int. Ed. 2006, 45 (37), 6169. doi:10.1002/anie.200600962

    (24) Wu, D.; Deng, K.; He, M.; Zeng, Q.; Wang, C. Chem. Phys. Chem.2007, 8 (10), 1519. doi: 10.1002/cphc.200700096

    (25) Siebert, R.; Akimov, D.; Schmitt, M.; Winter, A.; Schubert, U. S.;Dietzek, B.; Popp, J. ChemPhysChem 2009, 10 (6), 910.doi: 10.1002/cphc.200800847

    (26) Park, J.; Lee, J. H.; Jaworski, J.; Shinkai, S.; Jung, J. H. Inorg. Chem.2014, 53 (14), 7181. doi: 10.1021/Ic500266f

    (27) Yam, V. W. W.; Tang, R. P. L.; Wong, K. M. C.; Ko, C. C.; Cheung,K. K. Inorg. Chem. 2001, 40 (3), 571. doi: 10.1021/Ic000586q

    (28) Kunkely, H.; Vogler, A. J. Am. Chem. Soc. 1990, 112 (14), 5625.doi: 10.1021/Ja00170a029

    (29) Connick, W. B.; Geiger, D.; Eisenberg, R. Inorg. Chem. 1999, 38(14), 3264. doi: 10.1021/Ic981387y

    (30) Chan, C. W.; Cheng, L. K.; Che, C. M. Coordin. Chem. Rev. 1994,132, 87. doi: 10.1016/0010-8545(94)80027-8

    (31) Tears, D. K. C.; McMillin, D. R. Coordin. Chem. Rev. 2001, 211, 195

    (32) Olia, M. B. A.; Schiesser, C. H.; Taylor, M. K. Org. Biomol. Chem.2014, 12 (35), 6757. doi: 10.1039/c4ob01172d

    (33) Mcdermott, J. X.; White, J. F.; Whitesides, G. M. J. Am. Chem. Soc.1976, 98 (21), 6521. doi: 10.1021/Ja00437a018

    (34) Morgan, G. T.; Burstall, F. H. J. Chem. Soc. 1934, 1498.doi: 10.1039/Jr9340001498

    (35) Halcrow, M. A.; Brechin, E. K.; McInnes, E. J. L.; Mabbs, F. E.;Davies, J. E. J. Chem. Soc. Dalton Trans. 1998, (15), 2477.doi: 10.1039/A803793k

    (36) Price, J. H.; Schramm, R. F.; Wayland, B. B.; Williams, A. Inorg.Chem. 1972, 11 (6), 1280. doi: 10.1021/Ic50112a025

    (37) Bailey, J. A.; Hill, M. G.; Marsh, R. E.; Miskowski, V. M.; Schaefer,W. P.; Gray, H. B. Inorg. Chem. 1995, 34 (18), 4591.doi: 10.1021/Ic00122a015

    (38) Tang, W. S.; Lu, X. X.; Wong, K. M. C.; Yam, V. W. W. J. Mater.Chem. 2005, 15 (27?28), 2714. doi: 10.1039/B501644d

    (39) Wong, K. M. C.; Tang, W. S.; Lu, X. X.; Zhu, N. Y.; Yam, V. W. W.Inorg. Chem. 2005, 44 (5), 1492. doi: 10.1021/Ic049079p

    (40) McMillin, D. R.; Moore, J. J. Coordin. Chem. Rev. 2002, 229 (1?2),113. doi: 10.1016/S0010-8545(02)00041-3

    (41) Yam, V. W. W.; Wong, K. M. C.; Zhu, N. Y. Angew. Chem. Int. Ed.2003, 42 (12), 1400. doi: 10.1002/anie.200390360

    (42) Yam, V. W. W.; Chan, K. H. Y.; Wong, K. M. C.; Zhu, N. Y. Chem.-Eur. J. 2005, 11 (15), 4535. doi: 10.1002/chem.200500106

    (43) Yu, C.; Wong, K. M. C.; Chan, K. H. Y.; Yam, V. W. W. Angew.Chem. Int. Ed. 2005, 44 (5), 791. doi: 10.1002/anie.200461261

    (44) Che, C. M.; Butler, L. G.; Gray, H. B. J. Am. Chem. Soc. 1981, 103(26), 7796. doi: 10.1021/Ja00416a021

    (45) Rice, S. F.; Gray, H. B. J. Am. Chem. Soc. 1983, 105 (14), 4571.doi: 10.1021/Ja00352a011

    (46) Lu, W.; Chan, M. C. W.; Cheung, K. K.; Che, C. M. Organometallics 2001, 20 (12), 2477. doi: 10.1021/Om0009839

    (47) Gidney, P. M.; Gillard, R. D.; Heaton, B. T. J. Chem. Soc. Dalton Trans. 1973, (2), 132. doi: 10.1039/Dt9730000132

    (48) Benedix, R.; Vogler, A. Inorg. Chim. Acta 1993, 204 (2), 189.doi: 10.1016/S0020-1693(00)82924-2

    (49) Yip, H. K.; Cheng, L. K.; Cheung, K. K.; Che, C. M. J. Chem. Soc.Dalton Trans. 1993, (19), 2933. doi: 10.1039/Dt9930002933

    (50) Lai, S. W.; Chan, M. C. W.; Cheung, K. K.; Che, C. M.Organometallics 1999, 18 (17), 3327. doi: 10.1021/Om990256h

    (51) Connick, W. B.; Henling, L. M.; Marsh, R. E.; Gray, H. B. Inorg.Chem. 1996, 35 (21), 6261. doi: 10.1021/Ic960511f

    (52) Houlding, V. H.; Miskowski, V. M. Coordin. Chem. Rev. 1991, 111,145. doi: 10.1016/0010-8545(91)84019-2

    (53) Miskowski, V. M.; Houlding, V. H. Inorg. Chem. 1989, 28 (8), 1529.doi: 10.1021/Ic00307a021

    (54) Xu, H.; Lv, Y. F.; Zhu, W. Q.; Xu, F.; Long, L.; Yu, F. F.; Wang, Z.X.; Wei, B. J. Phys. D: Appl. Phys. 2011, 44 (41), 1.doi: 10.1088/0022-3727/44/41/415102

    (55) Shigehiro, T.; Yagi, S.; Maeda, T.; Nakazumi, H.; Fujiwara, H.;Sakurai, Y. J. Phys. Chem. C 2013, 117 (1), 532.doi: 10.1021/jp307853t

    (56) Robinson, B. H.; Schurr, J. M.; Kwiram, A. L.; Thomann, H.; Kim,H.; Morrobelsosa, A.; Bryson, P.; Dalton, L. R. J. Phys. Chem. 1985,89 (23), 4994. doi: 10.1021/J100269a022

    (57) Thomann, H.; Cline, J. F.; Hoffman, B. M.; Kim, H.; Morrobelsosa,A.; Robinson, B. H.; Dalton, L. R. J. Phys. Chem. 1985, 89 (10),1994. doi: 10.1021/J100256a037

    (58) Evans, R. G.; Wain, A. J.; Hardacre, C.; Compton, R. G. Chem. Phys.Chem. 2005, 6 (6), 1035. doi: 10.1002/cphc.200500157

    (59) Arewgoda, C. M.; Bond, A. M.; Dickson, R. S.; Mann, T. F.; Moir, J.E.; Rieger, P. H.; Robinson, B. H.; Simpson, J. Organometallics.1985, 4 (6), 1077. doi: 10.1021/Om00125a022

    (60) Wang, B. L.; Wang, Z. G.; Ai, F. J.; Tang, W. K.; Zhu, G. Y. J. Inorg.Biochem. 2015, 142, 118. doi: 10.1016/j.jinorgbio.2014.10.003

    Synthesis, Characterization, Spectroscopic Properties, and Luminescence Quenching Mechanism of a Pt(II) Complex Decorated with a π-Conjugated TEMPO-Terpyridine Ligand System

    YIN Lu1LIANG Cheng2CHEN Ke-Xian3ZHAO Chen-Xuan1YAO Jia1LI Hao-Ran1,*
    (1ZJU-NHU United R&D Center, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China;2College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China;3School of Food Science and Biotechnology, Zhejiang Gongshang University Hangzhou, Hangzhou 310018, P. R. China)

    A novel Pt(II)-based metallointercalator terpyridine complex linked with a 2,2,6,6-tetramethyl-1-piperidinyl N-oxide (TEMPO) derivative was prepared by a reaction between 4?-TEMPO-terpyridine (L) and a Pt(II) salt. This complex presented unusual luminescence quenching owing to the effect of the stable nitroxide radical. The crystal structure of [Pt(terpy-TEMPO)Cl]Cl·H2O·CH3OH (terpy =2,2?:6?,2?-terpyridine) was elucidated by X-ray crystallography. Additionally, the effect of TEMPO on the photophysical properties of [Pt(terpy-TEMPO)Cl] Cl·H2O·CH3OH was investigated by UV-Vis, fluorescence emission, and electron paramagnetic resonance (EPR) spectroscopy. Data from the absorption and luminescence properties (298 K) of the [Pt(terpy-TEMPO)Cl]+complex indicated the presence of two groups of typical bands: an intense band B with distinct vibronic structures (270?350 nm, ε > 104dm3·mol?1·cm?1) and a less intense band A (370?450 nm, ε ~103dm3·mol?1·cm?1). These two bands are generally assigned to ligand-to-ligand charge transfer (LLCT) and metal-to-ligand charge transfer (MLCT)excited states, respectively. Furthermore, efficient photoluminescent quenching behavior was observed in the emission spectra of this complex system. Quantum calculations of the molecular energy gaps and bands were performed by Gaussian 09 software. The calculated results verified that TEMPO greatly affects the energy gaps between the highest occupied molecular orbital and the lowest unoccupied molecular orbital. Thus, the relationship between efficient photoquenching and molecular structure was theoretically interpreted. EPR results indicated that when TEMPO is attached to a macrocyclic terpyridine platinum complex, e.g., [Pt(terpy)Cl]+, the terpyridine platinum complex does not affect the hyperfine coupling constant (A value) and g factor (g values) but the rotation and relaxation times of the TEMPO radical.

    Terpyridine Pt(II) complex; Nitroxide radical; Synthesis; Photoluminescence;Electron paramagnetic resonance

    January 11, 2017; Revised: March 17, 2017; Published online: April 11, 2017.

    O641

    10.3866/PKU.WHXB201704111 www.whxb.pku.edu.cn

    *Corresponding author. Email: lihr@zju.edu.cn; Tel: +86-571-87952424.

    The project was supported by the National Natural Science Foundation of China (21573196, J1210042), Program for Zhejiang Leading Team of S&T

    Innovation (2011R50007), National High Technology Research and Development Program of China (863) (SS2015AA020601), and Fundamental Research

    Funds of the Central Universities, China.

    國家自然科學(xué)基金(21573196, J1210042),浙江科技創(chuàng)新團(tuán)隊項目(2011R50007),國家高技術(shù)研究發(fā)展計劃項目(863) (SS2015AA020601)和中央高?;究蒲袠I(yè)務(wù)費專項資金資助

    ? Editorial office of Acta Physico-Chimica Sinica

    猜你喜歡
    聯(lián)吡啶浙江大學(xué)工程學(xué)院
    福建工程學(xué)院
    福建工程學(xué)院
    福建工程學(xué)院
    浙江大學(xué)農(nóng)業(yè)試驗站簡介
    浙江大學(xué)作物科學(xué)研究所簡介
    福建工程學(xué)院
    歡迎訂閱《浙江大學(xué)學(xué)報(農(nóng)業(yè)與生命科學(xué)版)》
    La jeunesse chinoise d'aujourd'hui
    純手性的三聯(lián)吡啶氨基酸—汞(II)配合物的合成與表征
    功能化三聯(lián)吡啶衍生物的合成及其對Fe2+識別研究
    日本欧美视频一区| 久久久久久久午夜电影| 亚洲全国av大片| 久久久国产成人精品二区| 亚洲无线在线观看| 国产精品久久久久久亚洲av鲁大| 成年女人毛片免费观看观看9| 精品乱码久久久久久99久播| 此物有八面人人有两片| www.精华液| 久久久久国产一级毛片高清牌| bbb黄色大片| 午夜免费激情av| 亚洲激情在线av| 人人妻,人人澡人人爽秒播| 国产免费男女视频| 久久久精品国产亚洲av高清涩受| 日日干狠狠操夜夜爽| 日本 av在线| 久久香蕉精品热| 夜夜躁狠狠躁天天躁| 亚洲五月婷婷丁香| 美女高潮喷水抽搐中文字幕| 亚洲 欧美 日韩 在线 免费| 色综合婷婷激情| 桃色一区二区三区在线观看| 最近最新免费中文字幕在线| 欧美成人一区二区免费高清观看 | 成人国产一区最新在线观看| 亚洲人成网站在线播放欧美日韩| 韩国av一区二区三区四区| 欧美久久黑人一区二区| 国产成人精品无人区| 精品国产美女av久久久久小说| 亚洲自偷自拍图片 自拍| 午夜福利成人在线免费观看| 免费观看人在逋| 一a级毛片在线观看| 亚洲三区欧美一区| 日日爽夜夜爽网站| 欧美人与性动交α欧美精品济南到| 级片在线观看| 色哟哟哟哟哟哟| 女人精品久久久久毛片| 啪啪无遮挡十八禁网站| 久久久国产欧美日韩av| 国产99久久九九免费精品| 青草久久国产| 久久精品人人爽人人爽视色| 日韩 欧美 亚洲 中文字幕| 欧美成人午夜精品| 色综合婷婷激情| 三级毛片av免费| 久久天躁狠狠躁夜夜2o2o| 精品乱码久久久久久99久播| 熟妇人妻久久中文字幕3abv| 国产熟女午夜一区二区三区| 亚洲精品粉嫩美女一区| 精品国产超薄肉色丝袜足j| 啦啦啦观看免费观看视频高清 | 国产亚洲精品久久久久久毛片| 色播亚洲综合网| 亚洲人成电影观看| 国产精品自产拍在线观看55亚洲| 免费在线观看完整版高清| 欧美在线黄色| 黄色女人牲交| 欧美不卡视频在线免费观看 | av免费在线观看网站| 91九色精品人成在线观看| 曰老女人黄片| 国产乱人伦免费视频| 熟妇人妻久久中文字幕3abv| 99在线视频只有这里精品首页| 国产精品久久视频播放| 黑丝袜美女国产一区| 欧美激情高清一区二区三区| 久久久久久人人人人人| 老司机在亚洲福利影院| 亚洲 欧美一区二区三区| 亚洲精品国产色婷婷电影| 黄片大片在线免费观看| 色老头精品视频在线观看| 老司机福利观看| 最近最新中文字幕大全电影3 | 在线观看一区二区三区| 久久欧美精品欧美久久欧美| 久久久国产欧美日韩av| 亚洲精品久久成人aⅴ小说| 久久婷婷人人爽人人干人人爱 | 可以免费在线观看a视频的电影网站| 午夜久久久在线观看| 亚洲精品国产一区二区精华液| av片东京热男人的天堂| 97超级碰碰碰精品色视频在线观看| 久久草成人影院| 91老司机精品| 美女国产高潮福利片在线看| 老司机深夜福利视频在线观看| 国产精品亚洲美女久久久| 色婷婷久久久亚洲欧美| 亚洲一区中文字幕在线| 成人av一区二区三区在线看| www.自偷自拍.com| 国产av一区二区精品久久| 极品教师在线免费播放| 亚洲黑人精品在线| 一级,二级,三级黄色视频| 久久午夜亚洲精品久久| 在线观看免费日韩欧美大片| 青草久久国产| 制服诱惑二区| 欧美乱妇无乱码| 国产成人影院久久av| 久久午夜亚洲精品久久| 国产一区二区在线av高清观看| 久久婷婷人人爽人人干人人爱 | 黑丝袜美女国产一区| 国产精品香港三级国产av潘金莲| 日本黄色视频三级网站网址| 亚洲精品一卡2卡三卡4卡5卡| 手机成人av网站| 国产精品秋霞免费鲁丝片| 国产精华一区二区三区| 欧美日韩乱码在线| 成人三级黄色视频| 搡老熟女国产l中国老女人| 如日韩欧美国产精品一区二区三区| 亚洲九九香蕉| 一个人观看的视频www高清免费观看 | 国产亚洲欧美在线一区二区| 久久久久久久午夜电影| 日韩大码丰满熟妇| 国产极品粉嫩免费观看在线| 法律面前人人平等表现在哪些方面| 免费一级毛片在线播放高清视频 | 欧美黑人精品巨大| 国产真人三级小视频在线观看| 丰满的人妻完整版| 免费高清在线观看日韩| 一个人免费在线观看的高清视频| 亚洲五月天丁香| 久久性视频一级片| 99国产精品一区二区蜜桃av| 国产精品一区二区三区四区久久 | 久久影院123| 免费不卡黄色视频| 日本撒尿小便嘘嘘汇集6| 亚洲国产欧美一区二区综合| 欧美不卡视频在线免费观看 | 亚洲黑人精品在线| 十八禁人妻一区二区| 女警被强在线播放| 亚洲国产精品久久男人天堂| 国产精品电影一区二区三区| 免费观看精品视频网站| 女人爽到高潮嗷嗷叫在线视频| 成人特级黄色片久久久久久久| 99久久久亚洲精品蜜臀av| 最好的美女福利视频网| 最好的美女福利视频网| 91成人精品电影| 日本 av在线| 国内毛片毛片毛片毛片毛片| 欧美成人性av电影在线观看| www.www免费av| 久99久视频精品免费| 精品久久蜜臀av无| 成人18禁高潮啪啪吃奶动态图| 真人做人爱边吃奶动态| 色老头精品视频在线观看| 亚洲精品在线美女| 波多野结衣av一区二区av| 欧美黄色片欧美黄色片| 欧美日韩乱码在线| 成年人黄色毛片网站| 一本久久中文字幕| 中亚洲国语对白在线视频| cao死你这个sao货| 一本久久中文字幕| 男人的好看免费观看在线视频 | 午夜免费成人在线视频| 亚洲成人国产一区在线观看| 欧美日韩乱码在线| 热99re8久久精品国产| 淫妇啪啪啪对白视频| 亚洲 欧美 日韩 在线 免费| 国产精品久久久人人做人人爽| 中文字幕另类日韩欧美亚洲嫩草| 一进一出抽搐动态| av天堂久久9| 男男h啪啪无遮挡| 丝袜美足系列| 日日摸夜夜添夜夜添小说| 又黄又粗又硬又大视频| 欧美乱码精品一区二区三区| 国产免费男女视频| 黄色a级毛片大全视频| 国产1区2区3区精品| 亚洲va日本ⅴa欧美va伊人久久| 日韩精品青青久久久久久| 久久精品国产亚洲av香蕉五月| www.自偷自拍.com| 国产男靠女视频免费网站| 久久久久久人人人人人| 波多野结衣av一区二区av| 男人舔女人下体高潮全视频| 每晚都被弄得嗷嗷叫到高潮| 又紧又爽又黄一区二区| 亚洲一区二区三区不卡视频| 啦啦啦观看免费观看视频高清 | 少妇熟女aⅴ在线视频| 亚洲成人久久性| 亚洲 国产 在线| 亚洲 国产 在线| 亚洲熟妇熟女久久| 一级片免费观看大全| 午夜精品在线福利| 十分钟在线观看高清视频www| 色综合欧美亚洲国产小说| 啦啦啦韩国在线观看视频| 欧美不卡视频在线免费观看 | 1024视频免费在线观看| 热99re8久久精品国产| 九色国产91popny在线| 看片在线看免费视频| av免费在线观看网站| 亚洲欧美激情在线| 国产精品影院久久| 国产精品二区激情视频| 丝袜美腿诱惑在线| 日本一区二区免费在线视频| 精品日产1卡2卡| 亚洲精品国产色婷婷电影| 高潮久久久久久久久久久不卡| 日日摸夜夜添夜夜添小说| 亚洲中文日韩欧美视频| 国产亚洲av高清不卡| 久久婷婷成人综合色麻豆| 亚洲国产精品sss在线观看| 欧美午夜高清在线| 午夜福利在线观看吧| 午夜福利视频1000在线观看 | 男男h啪啪无遮挡| 欧美久久黑人一区二区| www国产在线视频色| 老司机福利观看| 人妻久久中文字幕网| 国产av一区在线观看免费| 色综合婷婷激情| 一本综合久久免费| 久久久久久大精品| 亚洲成av人片免费观看| xxx96com| 少妇粗大呻吟视频| 国产精品一区二区三区四区久久 | 99久久综合精品五月天人人| 国产极品粉嫩免费观看在线| 欧美人与性动交α欧美精品济南到| 一本久久中文字幕| 欧美成狂野欧美在线观看| 国产成人影院久久av| 免费搜索国产男女视频| 麻豆av在线久日| 久久香蕉激情| 香蕉丝袜av| 给我免费播放毛片高清在线观看| 亚洲人成伊人成综合网2020| 免费在线观看日本一区| 黄色 视频免费看| 人人妻人人爽人人添夜夜欢视频| 日本 欧美在线| 亚洲免费av在线视频| 欧美国产日韩亚洲一区| 咕卡用的链子| 日韩免费av在线播放| 免费少妇av软件| 午夜福利在线观看吧| 50天的宝宝边吃奶边哭怎么回事| 999久久久国产精品视频| 岛国视频午夜一区免费看| 久久精品人人爽人人爽视色| 亚洲一码二码三码区别大吗| 成人手机av| 老司机福利观看| 变态另类成人亚洲欧美熟女 | av视频在线观看入口| 欧美一级毛片孕妇| 亚洲一区二区三区不卡视频| 国产野战对白在线观看| 亚洲狠狠婷婷综合久久图片| 99香蕉大伊视频| 成人18禁高潮啪啪吃奶动态图| 亚洲国产欧美网| 欧美乱码精品一区二区三区| 精品福利观看| 亚洲专区中文字幕在线| АⅤ资源中文在线天堂| 大陆偷拍与自拍| 国产一区二区激情短视频| 亚洲无线在线观看| 99国产精品免费福利视频| 叶爱在线成人免费视频播放| 嫁个100分男人电影在线观看| 一边摸一边抽搐一进一小说| 亚洲精品久久国产高清桃花| 欧美色视频一区免费| 欧美另类亚洲清纯唯美| 成年版毛片免费区| 天天躁狠狠躁夜夜躁狠狠躁| 免费人成视频x8x8入口观看| 夜夜夜夜夜久久久久| 在线十欧美十亚洲十日本专区| 久久久久亚洲av毛片大全| 国产黄a三级三级三级人| 啪啪无遮挡十八禁网站| 精品免费久久久久久久清纯| 操出白浆在线播放| 日本三级黄在线观看| 韩国av一区二区三区四区| 国产精品久久久av美女十八| 嫩草影院精品99| e午夜精品久久久久久久| 午夜激情av网站| 精品国产一区二区三区四区第35| 电影成人av| 自拍欧美九色日韩亚洲蝌蚪91| 国产成人精品久久二区二区免费| 在线观看免费视频日本深夜| 午夜福利欧美成人| 在线天堂中文资源库| 免费在线观看黄色视频的| 黄片播放在线免费| 曰老女人黄片| 精品国产一区二区三区四区第35| 日本免费a在线| 日韩欧美在线二视频| 一区二区三区激情视频| 亚洲性夜色夜夜综合| 国产成人欧美在线观看| 老熟妇乱子伦视频在线观看| 在线永久观看黄色视频| 操出白浆在线播放| 国产1区2区3区精品| 国产主播在线观看一区二区| 久99久视频精品免费| 窝窝影院91人妻| 巨乳人妻的诱惑在线观看| 99riav亚洲国产免费| 啦啦啦观看免费观看视频高清 | videosex国产| 99久久精品国产亚洲精品| 又黄又爽又免费观看的视频| av天堂在线播放| 日韩三级视频一区二区三区| 少妇的丰满在线观看| 亚洲 欧美 日韩 在线 免费| or卡值多少钱| 国产精品亚洲av一区麻豆| 欧美精品亚洲一区二区| 天堂√8在线中文| 亚洲成a人片在线一区二区| 国产精品乱码一区二三区的特点 | 97超级碰碰碰精品色视频在线观看| 亚洲专区国产一区二区| 黄色女人牲交| 在线观看免费午夜福利视频| 在线播放国产精品三级| 变态另类成人亚洲欧美熟女 | 国产av一区在线观看免费| 国产伦人伦偷精品视频| 欧美成人免费av一区二区三区| 国产午夜福利久久久久久| 亚洲无线在线观看| 国产欧美日韩一区二区精品| 91精品国产国语对白视频| 国产精品影院久久| 99国产综合亚洲精品| 性欧美人与动物交配| 不卡av一区二区三区| 波多野结衣高清无吗| videosex国产| 色综合欧美亚洲国产小说| 9191精品国产免费久久| 国产高清视频在线播放一区| 免费av毛片视频| 中亚洲国语对白在线视频| 午夜久久久在线观看| 一区二区三区激情视频| videosex国产| 国产亚洲欧美98| 免费无遮挡裸体视频| 黄片小视频在线播放| 国产精品美女特级片免费视频播放器 | 国产精品国产高清国产av| 村上凉子中文字幕在线| 国产亚洲精品久久久久5区| 欧美另类亚洲清纯唯美| 又紧又爽又黄一区二区| 啦啦啦 在线观看视频| 国产单亲对白刺激| 国产视频一区二区在线看| 露出奶头的视频| 午夜成年电影在线免费观看| 身体一侧抽搐| 香蕉丝袜av| 久久久久精品国产欧美久久久| 黄网站色视频无遮挡免费观看| 露出奶头的视频| 99久久国产精品久久久| 不卡av一区二区三区| 免费av毛片视频| 99在线视频只有这里精品首页| 国产伦一二天堂av在线观看| 久久国产精品男人的天堂亚洲| 成人手机av| 精品国内亚洲2022精品成人| 美女大奶头视频| 精品欧美国产一区二区三| 国产精品乱码一区二三区的特点 | 国产亚洲欧美精品永久| 国产精品乱码一区二三区的特点 | 欧美一级a爱片免费观看看 | 多毛熟女@视频| 麻豆久久精品国产亚洲av| 亚洲熟妇熟女久久| 久久久精品国产亚洲av高清涩受| 日日夜夜操网爽| 日本五十路高清| 久久久久九九精品影院| 欧美乱码精品一区二区三区| 午夜福利一区二区在线看| 精品欧美国产一区二区三| 丁香六月欧美| 女人高潮潮喷娇喘18禁视频| 国产成人精品久久二区二区91| 日韩欧美国产在线观看| 一进一出抽搐gif免费好疼| 免费看美女性在线毛片视频| 免费久久久久久久精品成人欧美视频| 欧美成人午夜精品| 国产一区二区在线av高清观看| 欧美色欧美亚洲另类二区 | 黄色视频不卡| 免费在线观看黄色视频的| svipshipincom国产片| 国产成人欧美| 少妇裸体淫交视频免费看高清 | 99精品在免费线老司机午夜| 精品人妻1区二区| 亚洲国产欧美一区二区综合| 老司机午夜十八禁免费视频| 久久久久久大精品| 午夜精品在线福利| 91精品国产国语对白视频| av天堂在线播放| 一个人观看的视频www高清免费观看 | 亚洲成人免费电影在线观看| 成人亚洲精品一区在线观看| 国产激情久久老熟女| 午夜精品国产一区二区电影| 国产高清有码在线观看视频 | 国产亚洲精品一区二区www| 欧美老熟妇乱子伦牲交| 最新在线观看一区二区三区| 国产乱人伦免费视频| 叶爱在线成人免费视频播放| 精品国产乱子伦一区二区三区| 久久狼人影院| 三级毛片av免费| 亚洲精品国产区一区二| 亚洲国产欧美一区二区综合| 怎么达到女性高潮| 国产一区在线观看成人免费| 99riav亚洲国产免费| 亚洲专区字幕在线| 国产精品,欧美在线| 国产精品美女特级片免费视频播放器 | 俄罗斯特黄特色一大片| 婷婷丁香在线五月| 一边摸一边做爽爽视频免费| 欧美日韩中文字幕国产精品一区二区三区 | 香蕉国产在线看| 国产片内射在线| 咕卡用的链子| 神马国产精品三级电影在线观看 | 自拍欧美九色日韩亚洲蝌蚪91| 精品国产亚洲在线| 国产精品av久久久久免费| 多毛熟女@视频| 乱人伦中国视频| 一个人观看的视频www高清免费观看 | 日韩欧美国产一区二区入口| 一个人免费在线观看的高清视频| 多毛熟女@视频| 国产高清视频在线播放一区| 日韩av在线大香蕉| 一级毛片高清免费大全| 亚洲,欧美精品.| 久久草成人影院| 亚洲 国产 在线| 禁无遮挡网站| 欧美日韩瑟瑟在线播放| 一a级毛片在线观看| 男女下面插进去视频免费观看| 亚洲精品国产色婷婷电影| 国产野战对白在线观看| 丝袜人妻中文字幕| 怎么达到女性高潮| 亚洲精品久久成人aⅴ小说| 亚洲aⅴ乱码一区二区在线播放 | 免费看a级黄色片| 1024视频免费在线观看| 国产成人精品久久二区二区免费| 精品国产美女av久久久久小说| 大香蕉久久成人网| 无限看片的www在线观看| 免费高清视频大片| 欧美中文综合在线视频| 日韩欧美国产一区二区入口| 十八禁人妻一区二区| 欧美 亚洲 国产 日韩一| 国产精品日韩av在线免费观看 | 人人妻人人澡欧美一区二区 | 亚洲欧美日韩另类电影网站| 日本a在线网址| 国产亚洲精品综合一区在线观看 | 50天的宝宝边吃奶边哭怎么回事| 亚洲国产毛片av蜜桃av| 极品人妻少妇av视频| 一区二区三区激情视频| 大型av网站在线播放| 中文字幕高清在线视频| 亚洲,欧美精品.| 人妻久久中文字幕网| 波多野结衣高清无吗| 午夜精品久久久久久毛片777| 色老头精品视频在线观看| 久久久久久大精品| 久久人人爽av亚洲精品天堂| 99re在线观看精品视频| 最新在线观看一区二区三区| 国产一级毛片七仙女欲春2 | 亚洲欧美一区二区三区黑人| 熟妇人妻久久中文字幕3abv| 欧美成人性av电影在线观看| 97人妻天天添夜夜摸| 免费看美女性在线毛片视频| 久久青草综合色| 99热只有精品国产| 日韩欧美在线二视频| 美女免费视频网站| 亚洲欧美激情综合另类| 免费在线观看影片大全网站| 男人的好看免费观看在线视频 | 色综合站精品国产| 欧美久久黑人一区二区| 少妇被粗大的猛进出69影院| 欧美黄色淫秽网站| 日本免费一区二区三区高清不卡 | 亚洲自偷自拍图片 自拍| 久久久久久久午夜电影| 窝窝影院91人妻| 男女床上黄色一级片免费看| 成熟少妇高潮喷水视频| 丁香欧美五月| aaaaa片日本免费| 国产视频一区二区在线看| cao死你这个sao货| www日本在线高清视频| 黑丝袜美女国产一区| 成人精品一区二区免费| 国产午夜精品久久久久久| 九色国产91popny在线| 一进一出好大好爽视频| svipshipincom国产片| 国产不卡一卡二| 欧美一级毛片孕妇| 亚洲国产毛片av蜜桃av| 精品一区二区三区四区五区乱码| 一进一出抽搐gif免费好疼| 真人一进一出gif抽搐免费| 色综合欧美亚洲国产小说| 少妇粗大呻吟视频| 亚洲成av人片免费观看| 中文亚洲av片在线观看爽| 久久精品91无色码中文字幕| 一边摸一边抽搐一进一出视频| 亚洲欧美一区二区三区黑人| 成人永久免费在线观看视频| av在线天堂中文字幕| 欧美久久黑人一区二区| 精品一品国产午夜福利视频| 自拍欧美九色日韩亚洲蝌蚪91| ponron亚洲| 精品欧美国产一区二区三| 国产精品99久久99久久久不卡| 两个人视频免费观看高清| 亚洲自偷自拍图片 自拍| 欧美成人性av电影在线观看| 亚洲av五月六月丁香网| 亚洲精华国产精华精| 97人妻天天添夜夜摸| 1024视频免费在线观看| 亚洲人成网站在线播放欧美日韩| 久久精品成人免费网站| 久久国产精品影院| 久久精品成人免费网站| 国产精品亚洲一级av第二区| 中亚洲国语对白在线视频| 一级a爱视频在线免费观看| 日本 欧美在线| 午夜激情av网站| а√天堂www在线а√下载| 色婷婷久久久亚洲欧美|