楊 謙,蘇會嵐,羅 歡,王 琴,岑耀穎
(成都醫(yī)學院公共衛(wèi)生系,四川成都610500)
電化學分析法應(yīng)用于黃曲霉毒素檢測的進展研究
楊 謙,蘇會嵐*,羅 歡,王 琴,岑耀穎
(成都醫(yī)學院公共衛(wèi)生系,四川成都610500)
黃曲霉毒素是一類化學結(jié)構(gòu)相似的化合物,是黃曲霉和寄生曲霉的次級代謝產(chǎn)物,具有劇毒性和嚴重的致癌性、致畸性和致突變性。攝入被黃曲霉毒素污染的農(nóng)作物和食品會對人類和動物的健康造成嚴重危害,快速準確的檢測黃曲霉毒素具有重要的現(xiàn)實意義。近年來電化學分析方法用于黃曲霉毒素的研究表明,構(gòu)建電化學傳感器檢測黃曲霉的方法相比于傳統(tǒng)的黃曲霉毒素檢測方法,具有檢測時間短、操作簡便、成本低、便于微型化等諸多優(yōu)勢,有望在快速、在線、高靈敏準確檢測食品中的黃曲霉毒素方法上獲得突破。
黃曲霉毒素;電化學;免疫傳感器;適體傳感器
Abstract:Aflatoxins are a series of compounds with similar chemical structure.Aflatoxins exist widely in nature,which is secondary metabolite of Aspergillus flavus and Aspergillus parasiticus,with highly toxic and serious carcinogenic,teratogenic and mutagenic.When ingested crops and food contaminated aflatoxin,it is serious harm to human and animal health.Therefore,the rapid and accurate detection of aflatoxin has important practical significance.Nearly research report shows that electrochemical analytical methods have been widely utilized to detect aflatoxin for its high efficiency,high sensitivity,simple operation,low cost,easy miniaturization.It is predictable that the obviously breakthrough in this research field could be expected in the future.
Key words:aflatoxin; electrochemical; immunosensor; aptasensor
黃曲霉毒素是由黃曲霉菌和寄生曲霉產(chǎn)生的一類結(jié)構(gòu)與性質(zhì)相似的真菌次生代謝物,具有強毒性、高穩(wěn)定性、致畸性、致癌性、并且能抑制機體的免疫過程。在已發(fā)現(xiàn)的400多種黃曲霉毒素中,常見的黃曲霉毒素主要有B1.B2.M1.M2.G1.G2等幾種亞型,其中AFB1是最危險的致癌物(毒性相當于砒霜的68倍)[1]。黃曲霉毒素廣泛存在于糧食作物中,特別是對高溫高濕地區(qū)的玉米、花生、大米、堅果的污染尤其嚴重。1993年,世界衛(wèi)生組織癌癥研究機構(gòu)將AFB1確定為I類致癌物[2]。建立快速檢測食品中的黃曲霉毒素含量的方法對于食品安全和保障人民健康具有重要意義。目前,黃曲霉毒素的檢測方法主要有薄層色譜法 (TLC)、膠體金試紙條法、酶聯(lián)免疫法(ELISA)、熒光光度法 、高效液相色譜法(HPLC)等[3-11]。近年來,隨著現(xiàn)代科學技術(shù)的不斷發(fā)展,使用電化學分析法檢測黃曲霉毒素越來越受關(guān)注。電化學分析方法具有檢測快速、成本低、不受樣品顏色與濁度的影響、儀器設(shè)備相對簡單、體積小、快速、靈敏、選擇性高、操作簡便等特點,在黃曲霉毒素檢測快速方法的發(fā)展中具有非常重要的意義。
電化學免疫傳感器是利用抗原抗體的特異性親和作用,通過檢測特異性識別作用前后的電流、電位、電阻等電信號的變化來實現(xiàn)對目標分子檢測。近年來的主要研究熱點集中在抗原抗體的固定和電信號放大技術(shù)的研究上[12-17]。
黃曲霉毒素(AF)作為半抗原,通常需要和牛血清蛋白 (BSA)結(jié)合形成BSA-AF復合物才能與相應(yīng)的抗體有效結(jié)合。電化學免疫傳感器是通過anti-AF對BSA-AF的特異性識別作用實現(xiàn)對AF的檢測。在生物分子固載方面,Owino等[18]用聚苯胺和聚苯乙烯磺酸修飾的鉑電極固定AFB1抗體,用牛血清白蛋白(BSA)封閉,識別AFB1后的免疫復合物可阻礙電子傳輸,阻抗分析表明,該傳感器的檢測限為0.1 mg/L。Raquel等[19]利用G蛋白定向固載作用,將G蛋白和IgG功能化的碳納米管用于檢測污染大米中的黃曲霉,檢測限為10 μg/g。王瑞鑫等[20]用殼聚糖-金溶膠復合膜修飾玻碳電極,AFB1抗體通過靜電作用吸附在電極表面制備出一種電化學免疫傳感器用于AFB1的檢測,具有更低的檢測限,其檢測限為0.05 ng/g,線性范圍為 0.1~1.1 ng/g。
為了增強檢測靈敏度,研究者將納米材料和新型導電材料等應(yīng)用到黃曲霉毒素免疫傳感器的構(gòu)建中,增大電極比表面積,增強電極表面的導電性能,提高檢測的靈敏度。碳納米材料因碳納米管和石墨烯的發(fā)展而廣泛應(yīng)用于科學研究。Chandan等[21]將anti-AFB1抗體固載到羧基化多壁碳納米管上,并進一步修飾到銦錫氧化物(ITO)玻片上,采用電化學循環(huán)伏安法檢測AFB1。周琳婷等[22]首先將氧化石墨烯、2,5二(2-噻吩)卜對苯甲酸吡咯和氯金酸依次電沉積到金電極表面形成導電高分子膜,再將AFB1抗體與之共價結(jié)合,采用循環(huán)伏安法和交流阻抗法檢測AFB1。結(jié)果顯示,該導電高分子膜可有效增強檢測靈敏度,檢出限為11×10-15mol/L,線性范圍2×10-15~3.2×10-13mol/L。 隨著各種導電性能良好的新材料(如離子液體、導電聚合膜等)的出現(xiàn),給電化學傳感器敏感界面的構(gòu)建提供了新思路。Li等[23]制備出一種硅膠-離子液體生物相容性膜固定anti-AFB1抗體,通過阻抗分析,與不含離子液的比對電極相比,結(jié)果表明離子液體能夠增大玻碳電極表面的導電性,減小電子轉(zhuǎn)移阻抗。同時,納米技術(shù)的更新使功能化的納米材料的協(xié)同效應(yīng)備受關(guān)注,Zhou等[24]將納米技術(shù)結(jié)合離子液體的優(yōu)良性能用于黃曲霉毒素的檢測(圖1)。首先在電極上固定一層石墨烯/導電聚合物/金納米粒子/離子液體復合膜,然后將anti-AFB1抗體共價固定在膜上。石墨烯和金納米粒子可加快電子轉(zhuǎn)移,且離子液體能為抗體提供優(yōu)良的微環(huán)境,使該傳感器呈現(xiàn)出靈敏度較高的特點,顯示出優(yōu)良的響應(yīng)性能。
圖1 基于石墨烯/導電聚合物/金納米粒子/離子液體復合膜的黃曲霉毒素電化學傳感器示意圖Fig.1 Procedure for fabrication of the sensor based on GN/DPB/Au/IL membrane[24]
為進一步放大響應(yīng)信號,酶催化技術(shù)、納米技術(shù)和生物放大技術(shù)常被聯(lián)合用于黃曲霉毒素電化學免疫傳感器中[25-30]。有研究者提出加入堿性磷酸酯酶(ALP)、辣根過氧化物酶(HRP)等用于標記抗體或抗原。Ammida等[31]在絲網(wǎng)印刷電極表面固定BSA-AFB1,與待測液中的游離AFB1競爭結(jié)合anti-AFB1抗體,ALP標記二抗放大響應(yīng)信號,通過ALP催化底液中1-萘基磷酸鹽產(chǎn)生的增強的電流,用差分脈沖伏安法檢測電流改變以實現(xiàn)對目標物的檢測。Tan等[32]構(gòu)建電流型免疫傳感器,利用酶催化銀沉淀的信號放大方法檢測大米中的AFB1,游離的AFB1與固定在巰基乙胺修飾的金電極表面的BSA-AFB1競爭性結(jié)合固定數(shù)量的anti-AFB1抗體,二抗標記物堿性磷酸酶(ALP)催化底液中的抗壞血酸2-磷酸酯生成抗壞血酸,銀離子被還原成金屬銀沉積在電極表面,通過電流信號的改變檢測AFB1。Paniel等[33]將磁性納米顆粒結(jié)合酶標記技術(shù)用于AFM1的檢測中,將anti-AFM1抗體包被在磁性納米顆粒表面,通過外加磁場將anti-AFM1抗體固定在絲網(wǎng)印刷電極表面,用辣根過氧化物酶(HRP)作為競爭性免疫標記物,用計時電流法和循環(huán)伏安法檢測電流信號,實現(xiàn)信號放大,檢測限為0.01 μg/L,線性范圍為 0.01~0.1 μg/L。 Tang 等[34]也利用磁CoFe2O4納米粒子為核和普魯士藍納米粒子摻雜的二氧化硅為殼制備一種多功能磁性微珠(MMB),該磁性微珠用于固定AFB1–BSA,HRP標記的anti-AFB1抗體和金納米顆粒結(jié)合,免疫反應(yīng)后在外加磁場的作用下,納米生物復合物附著在銦錫氧化物(ITO)電極表面,實現(xiàn)對該體系電信號的檢測,檢測限為6.0 pg/mL,線性范圍為0.05~12 ng/mL。磁性納米材料具有修飾靈活性強、易收集、靈敏度高等優(yōu)點,在黃曲霉毒素的快速檢測方法的構(gòu)建中具有廣泛的應(yīng)用前景。
圖2 基于磁性納米粒子的信號增強性適體傳感器用于黃曲霉毒素檢測示意圖Fig.2 Principle of label-free detection of AFM1with magneto-electrochemical Fe3O4/PANi based aptasensor[40]
電化學適體傳感器是以核酸為分子識別元件,根據(jù)適體與配體結(jié)合前后電化學信號的改變而建立的一種分析方法。核酸適體作為一種新型的分子識別原件,相比抗體有高親和性、高特異性、無免疫原性、靶分子種類多、易于合成與修飾等優(yōu)點,被廣泛的應(yīng)用于生物傳感、臨床診斷等領(lǐng)域[35-38]。目前,電化學適體傳感器用于黃曲霉毒素的檢測方法研究也逐漸成為熱點[39-43]。Dinqkaya等[39]制備出一種基于DNA探針的阻抗型適體傳感器。該傳感器用硫醇修飾的單鏈DNA(SS-HSDNA)探針,通過與金納米顆粒共價交聯(lián)而固定在金電極上,AFM1分子能夠被ss-HSDNA特異性識別,從而增大電子轉(zhuǎn)移阻抗, 通過識別前后的電阻變化實現(xiàn)對AFM1的檢測。Nguyen等[40]制備一種適體傳感器檢測AFM1(圖2)。將Fe3O4/PANI固定在鉑微電極表面,APT探針固定在電極表面識別AFM1,磁性納米粒子作為信號放大元件,通過循環(huán)方波伏安法檢測電化學信號變化,線性范圍為6~60 ng/L,檢出限為1.98 ng/L。適體傳感器用于檢測黃曲霉毒素時,不要求BSA與待測物先結(jié)合,簡化了操作步驟。同時適體的黃曲霉毒素見的親和力高,其檢測的靈敏度和特異性都有明顯優(yōu)勢。
目前,絕大多數(shù)電化學方法都是基于黃曲霉毒素和生物分子之間的親和作用力而實現(xiàn)分析的,然而有研究者發(fā)現(xiàn),黃曲霉毒素可以吸附在懸汞電極表面并進行不可逆還原反應(yīng),Hajian等[44]使用懸汞電極作為工作電極,吸附溶出伏安法測定AFB1和AFB2,采用伏安掃描,使AFB1和AFB2從陰極溶出,根據(jù)溶出電流峰測定其含量。 此外,Rejeb[45]利用黃曲霉毒素抑制乙酰膽堿酯酶的活性的特點,將膽堿氧化酶交聯(lián)在用普魯士藍修飾的絲網(wǎng)印刷電極表面。(圖3)乙酰膽堿酯酶(AChE)催化乙酰膽堿水解為乙酸和膽堿,再由膽堿氧化酶(ChOx)氧化膽堿為H2O2,普魯士藍還原H2O2,以此來檢測黃曲霉毒素。這些方法是建立在黃曲霉毒素自身的生化性質(zhì)上實現(xiàn)檢測的,為豐富黃曲霉毒素的檢測手段提供了新思路,但這類方法受待測物質(zhì)自身的生化性質(zhì)限制,較難推廣到其它分子的檢測中。
圖3 酶催化增強的黃曲霉毒素檢測方法示意圖Fig.3 Schematic representation of enzyme labeled system for AFB1determination[45]
黃曲霉毒素廣泛存在于土壤、動植物中,很容易對花生、玉米、小麥、大豆等糧油產(chǎn)品造成污染,是霉菌毒素中毒性最大、對人類健康危害非常大的一類霉菌毒素。目前,隨著傳感技術(shù)、材料科學、生物技術(shù)等現(xiàn)代科學技術(shù)的發(fā)展,構(gòu)建電化學傳感器檢測黃曲霉毒素也逐漸成為研究的熱點。與其他較傳統(tǒng)的分析方法相比,電化學分析法具有操作簡單、成本低、設(shè)備便于微型化、易于實現(xiàn)移動檢測等諸多優(yōu)勢。在黃曲霉毒素的檢測過程中,納米技術(shù)、生物放大技術(shù)、催化放大技術(shù)的使用對提高檢測的靈敏度和準確性有著重要意義。構(gòu)建更快速、更簡便、更靈敏的電化學檢測方法以適應(yīng)實際衛(wèi)生檢測的需要,還有著極大的發(fā)展進步空間。
[1]馬海華,張元,甄彤,等.電化學生物傳感器在黃曲霉毒素檢測中的研究進展[J].中國糧油學報,2016,31(2):132-140.
[2]張藝兵,鮑蕾,褚慶華.農(nóng)產(chǎn)品中真菌毒素的檢測分析[M].北京:化學工業(yè)出版社,2006.5-7.
[3]Fallah A A.Aflatoxin M-1 contamination in dairy products marketed in Iran during winter and summer[J].Food Control,2010,21(11):1478-1481.
[4]Zhang D, Li P,Yang Y,et al.A high selective immunochromatographic assay for rapid detection of aflatoxin B-1[J].Talanta,201l,85(1):736-742.
[5]Zheng N,Sun P,Wang J Q,et al.Occurrence of aflatoxin M1 in UHT milk and pasteurized milk in China market[J].Food Control,2013,29(1):198-201.
[6]Hussain I,Anwar J.A study on contamination of aflatoxin M-1 in raw milk in the Punjab province of Pakistan[J].Food Control,2008,19(4):393-395.
[7]Wang Y T,Liu X B,Xiao C X,et al.HPLC determination of aflatoxin M-1 in liquid milk and milk powder using solid phase extraction on OASIS HLB[J].Food Control,2012,28(1):131-134.
[8]Xiong J L,Wang S P,Ma M R,et al.Seasonal variation of aflatoxin M-1 in raw milk from the Yangtze River Delta region of China[J].Food Control,2013,34(2):703-706.
[9]Campone L,Piccinelli A L,Celano R,et al.Application of dispersive liquid-liquid microextraction for the determination of allatoxins B1,B2,G1 and G2 in cereal products[J].Journal of Chromatography A,2011,1218(42):48-54.
[10]Khan M R,Alothman Z A,Ghfar A A,et al.Analysis of aflatoxins in nonalcoholic beer using liquid-liquid extraction and ultraperformance LC-MS/MS[J].Journal of Separation Science,2013, 36(3):572-577.
[11]Zaldivar J,Nielsen J,Olsson L.Fuel ethanol production fromlignocellulose:a challenge for metabolic engineering and processintegration[J].Appl Microb Biotech,2001,56:21-31.
[12]Faridah S,lbtisam E T.Detection of Salmonella typhimurium using an Electrochemical lmmunosensor[J].Biosensors and Bioelectmnics,2009,24(8):2630-2636.
[13]Bond L, Juan C V, Duato P,et al.Ochzatuxin A nanostructured electrochemical immunosensors based on polyclonal antibodies and gold nanoparticles coupled to the antigen[J].Analyticel Methods,2010,2:335-341.
[14]Kamal M,Kadir A,Ibtizam E,et al.Development of an electrochemical immunosensor for fumonisins detection in foods[J].Toxins,2010,2:382-398.
[15]劉繼超,姜鐵民,陳歷俊,等.電化學免疫傳感器在食品安全檢測中的研究進展[J].中國食品添加劑,2011,1:216-222.
[16]Sharma A,Matharu Z,Sumana G,et al.Antibody immobilized cysteamine functionalized-gold nanoparticles for ariatoxin detection[J].Thin Solid Films,2010,3:1213-1218.
[17]Bacher G,Pal S,Kanungo L,et al.A label-free silver wire based impedimetric immunosensor for detection of aflatoxin Ml in milk[J].Sensors and Actuators B:Chemical,2012,168(1):223-230.
[18]Owino J H 0,Ignaszak A, Ahmed A,et al.Modelling of the impedimetric responses of an aflatoxin Bl immunosensor prepared on an electrosynthetic polyaniline platform[J].Analytical and Bioanalytical Chemistry,2007, 388(5):1069-1074.
[19]Raquel A,Villamizar Alicia,Maroto F,et al.Rapid detection of Aspergillus flavus in rice using biofunctionalized carbon nanotube field effect transistors[J].Anal Bioanal che,2011,399(1):119-126.
[20]王瑞鑫,李書國.基于納米材料構(gòu)建免疫傳感器快速測定糧油食品中的黃曲霉毒素B1[J].中國糧油學報,2016, 29(1): 62-66.
[21]Chandan S,Saurabh S.Carboxylated multiwalled carbon nanotubes based biosensor for aflatoxin detection[J].Sensors and Actuators B:Chemical,2013,185:258-264.
[22]周琳婷,李在均,方銀軍.石墨烯/導電高分子/離子液體修飾的黃曲霉毒素B1免疫傳感器的制備與應(yīng)用[J].分析化學,2012,11:1635-1641.
[23]Li Z J,Wang Z Y,Sun X L,et al.A sensitive and highly stable electrochemical impedance immunosensor based on theformation of silica gel—ionic liquid biocompatible film onthe glassy carbon electrode for the determination of aflatoxin B1 in bee pollen[J].Talanta,2010,80(5):1632-1637.
[24]Zhou L T,Li R Y,Li Z J, et al.An immunosensor for ultra-graphene/conducting polymer/gold nanoparticles/the ionic liquid composite film on modified gold electrod with electrodeposition[J].Sensors and Actuators B:Chemical,2012,174(1):359-365.
[25]馮甜,張弦,楊弦弦,等.電化學免疫傳感器檢測樣品中黃曲霉毒素B1的誤差分析[J].國際檢驗醫(yī)學雜志,2014,8:947-951.
[26]Vig A,Radoi A,Mufioz-Berbel X,et al.Impedimetric aflatoxin M1 immunosensor based on colloidal gold and silver electrodeposition[J].Sensors and Actuators B:Chemical,2009,138(1):214-220.
[27]Rameil S,Schubert P,Grundmann P,et a1.Use of 3-(4-hydroxyphenyl)propionic acid as electron donating compound in a potentiometric aflatoxin Ml immunosensor[J].Analytica Chimica Acta,2010,661(2):122-127.
[28]Ah c S,Park C W,Yang J H,et a1.Detection of uncharged or feebly charged small molecules by field—effect transistor biosensors[J].Biosensom and Bioelectronics, 2012, 33(1):233-240.
[29]Piermarini S,Micheli L,Ammida N H S,et al.Electrochemical immunosensor array using a 96-well screenprinted microplate for aflatoxin B1 detection[J].Biosensors and Bioelectronics,2007,22:1434-1440.
[30]張松柏,胡霞,沈廣宇,等.電化學適體傳感器研究進展[J].化學傳感器,2014,34(3):13-21.
[31]Ammida N H S, Micheli L, Piermarini S, et al.Detection of allatoxin Bl in barley:comparative study of immunosensor and HPLC[J].Analytical Letters, 2006, 39(8):1559-1572.
[32]Tan Y, Chu X, Shen G L, et al.A signal-amplified electrochemical mmunosensor for aflatoxin BI determination in rice[J].Analytical Biochemistry, 2009,1:82-86.
[33]Paniel N,Radoi A,Marty J L.Development of an electrochemical biosensor for the detection of aflatoxin M1 in milk[J].Sensors,2010,10(10):9439-9448.
[34]Tang D P, Zhong Z Y,Niessner R.et al.Muhffunctional magnetic bead—based electrochemical immunoassay for the detection of aflatoxin Bl in food[J].Analyst,2009,1349(8):1554-1560.
[35]Song S,Wang L,Li J,et al.Aptamer-based biosensors[J].TrAC Trends in Analytical Chemistry,2008,2:108-117.
[36]Iliuk A B,Hu L H,Tao W A.Aptamer in bioanalytical applications[J].Anal.Chem.,2011,83:4440-4452.
[37]Du Y,Li B L,Wei H,et al.Multifuntional label-free electrochemical biosensors based on an integrated aptamer[J].Anal.Chem.,2008,80:5110-5117.
[38]Lu Y,Li X C,Zhang L M,et al.Aptamer-based electrochemical sensors with aptamer-complementary DNAoligonucleotides as probe[J].Anal.Chem.,2008,80:1883-1890.
[39]Dinekaya E,Kmlk 0,Sezgintiirk M K,et al.Development of an impedimetric aflatoxin Ml biosensor based on a DNA probe and gold nanoparticles[J].Biosensom and Bioelec-tmnics, 2011, 26(9):3806-381l.
[40]Nguyen B H,Yran L D, Do Q P,et al.Label-free detection of aflatoxin M1 with electrochemical Fe3O4/polyaniline-based aptasensor[J].Materials Science and Engineering C,2013.33(4):2229-2234.
[41]Shim W B, Mun H,Joung H A,et al.Chemiluminescence competitive aptamer assay for the detection of aflatoxin B1 in corn samples[J].Food Control,2014,36(1):30-35.
[42]Guo X D,Wen F,Zheng N,et al.Development of an ultrasensitive aptasensor for the detection of aflatoxin Bl[J].Biosensors and Bioelectronics,2014.56:340-344.
[43]Noelia S,Covadonga V,Jéssica G,et al.Specific detection and quantification of Aspergillus flavus and Aspergillus parasiticus inwheat flour by SYBR?Green quantitative PCR[J].International Journal of Food Microbiology,2011,145:121-125.
[44]Hajian R,Ensall A A.Determination of aflatoxins B1 and B2 by adsorptive cathodic stripping vohammetry in groundnut[J].Food Chemistry,2009,115(3): 1034-1037.
[45]Rejeb I B,Arduini F,Arvinte A,et al.Development of a bio-electrochemical assay for AFBl detection in olive oil[J].Biosensors and Bioelectronies, 2009, 24(7): 1962-1968.
The application of electrochemical analytical methods in detection of aflatoxin
Yang Qian,Su Hui-lan*,Luo Huan,Wang Qin,Cen Yao-ying
(The department of public health,ChengDu Medical College,Chengdu 610500,China)
國家自然科學基金(81401757),發(fā)育與再生四川省重點實驗室項目(SYS16-004),成都醫(yī)學院科研創(chuàng)新團隊(CYTD16-03)
* 通信聯(lián)系人,共同第一作者,Tel:028-62739576, E-mail:suhuilan1986@163.com