• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fine-grained Image Categorization Based on Fisher Vector

    2017-10-11 10:54:02XiaolinTianXinDingLichengJiaoandMaoguoGong

    Xiaolin Tian, Xin Ding, Licheng Jiao, and Maoguo Gong

    Fine-grainedImageCategorizationBasedonFisherVector

    Xiaolin Tian*, Xin Ding, Licheng Jiao, and Maoguo Gong

    Fine-grained image categorization is a categorization task, where classifying objects should be the same basic-level class and have similar shape or visual appearances. In general, the bag-of-words (BoW) model is widely used for image classification. However, it has a process of damage for the feature quantization in image representation, and also severely limits the descriptive power of the image representation. Fisher vectors employ soft assignments and reduce information loss due to quantization by calculating the gradient for each parameter separately, which have been shown to outperform other global representations on most benchmark datasets. In this paper, the acquired template is represented by Fisher Vector (FV). Using the improved spatial pyramid matching (SPM) to combine FV separately, we use a method, i.e., FV+SPM, to obtain a feature representation. The experimental results show that our method is superior to the most advanced classification method in the Caltech-UCSD Birds dataset.

    image categorization; fisher vector; template matching

    1 Introduction

    Classifying objects have a similar shape or visual appearances, and they are belonging to the same basic-level class. Fine-grained image categorization is designed to achieve this categorization task[1-3]. Fine-grained categorization needs more local information than the basic-level categorization, and the obtained feature should be more discriminative and characteristic. Fine-grained categorization will be widely used in many different applications.

    Fine-grained categorization requires an algorithm to discriminate delicate differences among highly similar object classes. Traditional bag-of-words (BoW) approach does not meet the requirements of fine-grained categorization. BoW model is constructed for fine-grained categorization, which can produce more redundant words than the general image categorization. However, that will increase computation complexity. Moreover, BoW model doesn’t describe direction information. Fisher vector (FV)[4]avoids this default and can fit image data. FV is a coding method derived from the Fisher core. Standardized FV is used as a critical step in achieving good performance. A template matching approach is proposed, and it can effectively preserve image detail information. Recently, the performance of template matching has been greatly increased by FV which codes higher order statistics of local features. In this paper, fine-grained image categorization with FV based on template matching is implemented. For training samples, feature points are extracted and the distribution model of these feature points is constructed by Gaussian mixture model (GMM). Accordingly, we can obtain the FV feature by the derivation of the GMM.

    The scale and orientation of object in an image need not be specifically processed, because the FV represents the entire distribution feature of image. That is to say, FV feature has the invariant attribution of scale and orientation. Due to the better discriminative and characteristic of FV feature, the proposed method performs well even with simple linear classifiers. Since template represented by FV feature lacks position information of feature points. In this paper, we introduce spatial information based on improved spatial pyramid matching (SPM)[5]. Spatial pyramid is gathered on different spatial resolution in partially disordered images. SPM achieves the statistics on different levels, and it mainly reflects the statistical feature of information distribution.

    The remaining part of this paper is organized as follows: Section 2 discusses related work. Section 3 describes the FV and GMM. Section 4 describes templates and feature representation. Section 5 describes image coding based on SPM. Experiment results are described in Section 6, and Section 7 concludes this paper.

    2 Related Work

    Image categorization has been studied for many years. Perhaps BoW model is the most common method for describing local features in an image[6]. Recently, the BoW model has been greatly enhanced by FV[7]. However, the BoW model discards the spatial order of local descriptors. A codebook-free and annotation-free approach is proposed for fine-grained image categorization in [8]. SPM for modeling the spatial layout of the local features has been developed.

    In this paper, we achieve fine-grained image categorization with FV based on template matching. For training samples, feature points are extracted and these feature points are modeled based on Gaussian mixture model (GMM). And then, the FV feature by derivation of the GMM can be obtained. We introduce image coding based on improved SPM. Spatial pyramid is gathered on different spatial resolution in partially disordered images. Due to statistics on different levels, SPM model is able to influence on statistical feature of information distribution.

    3 The FV and GMM

    In this section, we introduce the Fisher Vector (FV) and establishment of GMM. We first describe the principle of the Fisher kernel (FK)[9], and then describe the GMM model.

    3.1 The Fisher Kernel

    In this section, we introduce the Fisher Vector (FV) and GMM model. We first describe the principle of the Fisher Kernel (FK)[9]. LetX={xt,t=1,2,…,T} be a sample set of local feature descriptors,Tis the number of the samples.Xcan be described as the following gradient vector[9]:

    (1)

    (2)

    Fλ=Ex~u λ[▽?duì)薼oguλ(x)▽?duì)薼oguλ(x)′]

    (3)

    Assuming that the above feature distribution is independent and governed by the mixture Gaussian distribution, we can useKGaussian distributions to express these independent distributions. Let the parameterλ={wi,μi,∑i,i=1,2,…,K}, we can obtain the value of logarithm:

    (4)

    (5)

    (6)

    (7)

    (8)

    (9)

    3.2 FV normalization

    We now describe two normalization steps after the FV is obtained[10-11].

    L2-normalization. When two images contain the same object and have different amount of background information (e.g. the same object at different scales), we will obtain different signatures. Especially, small objects with a small specific information value will be difficult to be detected. To remove the dependence on specific information, we can use L2-normalization[12]to replace Kernel:

    (10)

    PowerNormalization. The great number of similar Gaussian function is yielded with the increase of the number of Gaussian, which results in redundant FV feature. We intend to use the following function to achieve power normalization in each dimension:

    (11)

    where 0≤α≤1 is a normalized parameter, and the parameter value will change with the number of Gaussian. In practice, combining L2-normalization with power normalization, we firstly execute power normalization, and then use L2-normalization, which can eliminate the influence of two types of normalization. The categorization performance will be better than non-normalization.

    4 Templates and Feature Representation

    Fig.1 Acquisition of the templates.

    5 Image Coding based on SPM

    SPM procedure divides an image into three different levels, i.e., layer 0, layer 1, and layer 2, and then we can deal with statistical image information for each level. The process is shown in Fig.2. The first layer is divided 4 blocks, the second layer is divided 16, and the layeriis divided blocks 2i×2i. The final image is consist of concatenated and normalized statistical information at different levels in different blocks.

    Fig.2 Construction of SPM

    Generally, two layers of Pyramid are used to deal with statistical information, which is beneficial for reducing computational complexity[20]. From each block, the three biggest similarity of response diagram is taken at the layer 0. The layer 1 and layer 2 are the same processing step in each block. The three locations with biggest similarity values should have a certain distance, which is beneficial for whole statistics of a block. After obtaining statistical distribution of whole and local similarity, we are able to represent response vector of a template on the image[21]. So that response vectors of all the templates are jointed. Finally, the statistic feature of each image is obtained by matching the same template sets.

    Based on above description, the step of proposed algorithm is described as follows:

    1) Extract features;

    2) Establish GMM based on all the feature points;

    3) Obtain templates in the specified training samples;

    4) All of the templates are represented by FV;

    5) Code feature representation based on SPM;

    6) Match each template and image and obtain response diagram of similarity;

    7) The spatial hierarchical statistics representation is jointed as image coding;

    8) Carry out image categorization using SVM;

    9) According to confusion matrix, output the categorization accuracy.

    6 Experiments

    The proposed method is implemented in MATLAB (Version R2010a) on a machine with an Intel core i5-5200 CPU, 8 GB memory and Microsoft Windows 7 operating system.

    Caltech-UCSD Birds dataset (CUB-200)[22]is widely used in the fine-grained image categorization. It contains 15 training images and 10 to 25 test images for each category, which is in total of 200 bird images. For verifying our categorization performance, a part of the image library are used from the Black Capped Vireo to the Downy Woodpecker[23], which contains 13 categories of birds.

    CUB-200 dataset has handled a coarse segmentation well, which can be used in our training samples. Take out the target from images as a new training sample set, and get a template in the selected target image. We select templates with five sizes, i.e.,WH=[20 20; 50 50; 100 100; 50 80; 80 50 ], whereWHis width and height of a template in the experiment.

    Since images have been segmented roughly in this dataset, we use a method called super-pixel segmentation(SLIC) to deal with the segmented target regions of images in the training samples. The number of super-pixel blocks is initialized 150 blocks, and RGB features of each image are extracted. Using these RGB feature points to establish GMM. Fig.3 shows that the number of GMM affects algorithm performance.

    In experiments, we firstly determine how many GMM is the best to implement classification. We randomly select six different locations in each training samples, so that we get 13×15×5×6=5850 templates, which is expressed by FV coding with power normalization and L2-normalization. Finally, we use 1×13 vectors in SPM model that represents the matching result of each template. When the number of GMM is larger and the number of feature point is fewer, the average accuracy rate will decline; when the number of GMM is fewer, it is more difficult to obtain the accurate feature distribution. As a result, five GMM are selected in our experiments.

    Fig.3TherelationbetweenalgorithmperformanceandnumberofGMM.

    Fig.4(a) shows response diagram of a template in an image, where we consider the three maximum similarity values with a certain distance. The distance among the three points with maximum similarity values should larger than 0.1 times the width (height). In Fig.4(b), the image is divided into 2×2 blocks, and we only consider the maximum similarity value of each block; In Fig.4(c), the image is divided into top, middle and bottom part. We only consider the maximum similarity value of each block. The processing procedure of Fig.4(d) is similar to Fig.4(c). Finally, we can get a vector with thirteen dimensions, which represent the coding of a template in an image. In experiments, we extract only the RGB feature and use coding method based on the SPM model. The number of templates, randomly selected from each training image, has great influence on image coding. Fig.5 shows how the number of templates affects algorithm performance.

    Fig.4 Formation of 1×13 vector

    We selected 50 templates from each training image in our experiments. CUB-200 dataset has 13 categories, and each category has 15 training images, from which we select 10 images. And then, we get 13×50×10=6500 templates. Each template corresponds to a 1×13-dimensional image representation. The final dimension of an image is 6500×13=84500. We reduce the dimension of the image representation by principal component analyses (PCA), and implement classification with support vector machine (SVM).

    In experiments, it takes 2 minutes 10 seconds for extracting features and FV representation based on SPM needs 44 minutes 20 seconds. It is in total of 46 minutes 30 seconds. For accurately describing image information, FV representation based on SPM is implemented by two traverses in our experiments, which takes most of the time. In addition, we achieve two other models: FV+VQ (Vector Quantization) and FV+LLC (locality-constrained linear coding). The compared methods include: cSIFT+SPM[24], MKL[25], Birdlet[26], and CF+AF[19]. Confusion matrix and mean average precision (MAP) is used as evaluation criteria, and the classification results are shown in Table 1. Compared with other methods from Table 1, we know that our method improves classification performance.

    Fig.5Therelationbetweennumberoftemplateandalgorithmperformance.

    Table 1 Comparison of classification results.

    7 Conclusion

    In this paper, we use a FV coding method to implement fine-grained image categorization. After extracting feature points and creating GMM model, the statistic feature of FV coding of each image is obtained. Furthermore, FV coding of an image based on SPM is achieved, and the spatial hierarchical statistics is obtained for coding image. Finally, SVM classifier is carried out to finish the image categorization. Generally, our method improves the accuracy rate of fine-grained image categorization compared with other methods.

    Acknowledgment

    This work was supported by the National Natural Science Foundation of China under Grant 61571342, 61573267, 61473215; by the National Basic Research Program of China under Grant 2013CB329402; by Natural Science Basic Research Plan in Shaanxi Province of China under Grant 2017JM6032.

    [1]I. Biederman, S. Subramaniam, M. Bar, P. Kalocsai, and J. Fiser, Subordinate-level object classification reexamined,Psychol.Res., 62(2-3): 131-153, 1999.

    [2]S.Branson, C.Wah, F.Schroff, B.Babenko, P.Welinder, P.Perona, and S.Belongie. Visual recognition with humans in the loop, inProceedingsofEuropeanConferenceonComputerVision, Crete, Greece, 2010, pp.438- 451.

    [3]A. Hillel and D. Weinshall,Subordinate class recognition using relational object models, inNeuralInformationProcessingSystems2006(NIPS),Canada,2006,pp.73-80.

    [4]J. Yang, K. Yu, Y. Gong, and T Huang, Linear spatial pyramid matching using sparse coding for image classification, inProceedingsof2009IEEEConferenceonComputerVisionandPatternRecognition(CVPR), Miami, USA,2009, pp.1794-1801.

    [5]S. Lazebnik, C. Schmid, and J. Ponce,Beyond bags of features: spatial pyramid matching for recognizing natural scene categories, inProceedingsof2006IEEEConferenceonComputerVision and Pattern Recognition (CVPR), New York, USA, 2006, pp.2169-2178.

    [6]J. Sivic and A. Zisserman,Video google: a text retrieval approach to object matching in videos, inProceedingsof2003IEEEConferenceonComputerVisionandPatternRecognition(CVPR), Madison, USA, 2003, pp.1470-1478.

    [7]W. Zheng, S. Gong, and T. Xiang, Associating groups of people, inProceedingsofBritishMachineVisionConference(BMVC), London, 2009, 23.1-23.11

    [8]B. B. Yao, G. Bradski and F. F. Li, A codebook-free and annotation-free approach for fine-grained image categorization, inProceedingsof2012IEEEConferenceonComputerVisionandPatternRecognition(CVPR), Rhode Island, USA, 2012, pp.3466-3473.

    [9]J. Sanchez, F. Perronnin, and T. Mensink, Image classification with the Fisher Vector: theory and practice,Int.J.Comput.Vis., vol.105,no.3,pp.222-245, 2013.

    [10] F. Perronnin, J. Sanchez, and T. Mensink, Improving the Fisher kernel for large-scale image classification, inProceedingsof11thEuropeanConferenceonComputerVision(ECCV), Heraklion, Greece,2010, pp.119-133.

    [11] F. Perronnin and C. Dance, Fisher kernels on visual vocabularies for image categorization, inProceedingsof2007IEEEConferenceonComputerVisionandPatternRecognition(CVPR), Minnesota, USA,2007, pp.1-8.

    [12] J. Zhang, M. Marszalek, S. Lazebnik, and C. Schmid, Local features and kernels for classification of texture and object categories: a comprehensive study,Int.J.Comput.Vis., vol.73,no.2,pp.213-238,2005.

    [13] H. Liu and Z. Su, Template-based multiple codebooks generation for fine-grained shopping classification and retrieval, inProceedingsofinternationalconferenceondigitalhome(ICDH), Guangzhou,China,2014, pp.293-298.

    [14] S.Branson, C.Wah, F.Schroff, B.Babenko, and S.Belongie, Visual recognition with humans in the loop, inProceedingsofEuropeanConferenceonComputerVision, Crete, Greece, 2010, pp.438- 451.

    [15] D. G. Lowe,Distinctive image features from scale-invariant keypoints,Int.J.Comput.Vis., vol.60,no.2,pp.91-110, 2004.

    [16] K. VandeSande, T. Gevers, and C. Snoek, Evaluating color descriptors for object and scene recognition,IEEETrans.PatternAnal.Mach.Intell.,vol. 32,no.9,pp.1582-1596, 2010.

    [17] P. S. Hiremath and J. Pujari,Content based image retrieval using color, texture and shape features, inProceedingsof15thInternationalConferenceonAdvancedComputing&Communication(ADCOM), Guwahati,India,2007, pp.780-784.

    [18] J. Yu, Z. Qin, T. Wan, and X .Zhang, Feature integration analysis of bag-of-features model for image retrieval,Neurocomputing,vol.120, pp.355-364, 2013.

    [19] Li L J, Su H, Xing E, Li.F F, Object bank: A high-level image representation for scene classification and semantic feature sparsification, inNeuralInformationProcessingSystems(NIPS), Whistler, Canada, 2010, pp.719-729.

    [20] S. Maji, L. Bourdev, and J. Malik, Action recognition from a distributed representation of pose and appearance, inProceedingsof2011IEEEConferenceonComputerVisionandPatternRecognition(CVPR), Colorado Springs,USA, 2011, pp.3177-3184.

    [21] A. Coates and H. Lee, An analysis of single-layer networks in unsupervised feature learning, inProceedingsofinternationalconferenceonArtificialIntelligenceandStatistics(AISTATS), FL, USA, 2011,pp. 215-233.

    [22] P.Welinder, S.Branson, T.Mita, C.Wah, F.Schroff, S.Belongie, and P.Perona, Caltech-UCSD Birds 200,California Institute of Technology,CNS-TR-2010-001,2010.

    [23] R. Farrell, O. Oza, N. Zhang, and VI Morariu,Birdlets: Subordinate categorization using volumetric primitives and pose-normalized appearance,inProceedingsofIEEEInternationalConferenceonComputerVision(ICCV), Barcelona,Spain,2011,pp.809-818.

    [24] S. Lazebnik, C.Schmid, and J. Ponce, Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories, inProceedingsof2006IEEEComputerSocietyConferenceonComputerVisionandPatternRecognition(CVPR2006), NY, USA,2006,pp. 2169-2178.

    [25] S. Branson, C.Wah, F.Schroff, B.Babenko, P.Welinder, P.Perona, and S.Belongie.Visual recognition with humans in the loop, inProceedingsof11thEuropeanConferenceonComputerVision(ECCV), Crete, Greece,2010, pp.438- 451.

    [26] B. B. Yao, A. Khosla, and F. F. Li,Combining randomization and discrimination for fine-grained image categorization, inProceedingsofIEEEConferenceonComputerVisionandPatternRecognition(CVPR), Colorado Springs,USA, 2011, pp.1577-1584.

    XiaolinTianis currently an Associate Professor in the Electronic Engineering School, Xidian University, Xi’an, China. He received PhD degree from Xidian University in 2008. During 2011 and 2012, he was a visiting scholar at Vision Lab, University of California, Los Angeles, USA. His current research interests are in the areas of image and video processing.

    LichengJiaoreceived the B.S. degree from Shanghai Jiaotong University, Shanghai, China, in 1982, the M.S. and PhD degrees from Xi’an Jiaotong University, Xi’an, China, in 1984 and 1990, respectively.Since 1992, he has been a Professor with the School of Electronic Engineering, Xidian University, Xi’an, China. He was in charge of about 40 important scientific research projects, and published more than 20 monographs and 100 papers in international journals and conferences. His research interests include image processing, natural computation, machine learning, and intelligent information processing.MaoguoGongreceived the B. Eng degree and Ph.D. degree from Xidian University. Since 2006, he has been a teacher of Xidian University. He was promoted to associate professor and full professor in 2008 and 2010, respectively, both with exceptive admission.Gong’s research interests are broadly in the area of computational intelligence, with applications to optimization, learning, data mining and image understanding. He has published over one hundred papers in journals and conferences, and holds over twenty granted patents as the first inventor. He is leading or has completed over ten projects as the PI, funded by the National Natural Science Foundation of China, the National High Technology Research and Development Program (863 Program) of China and others. He was the recipient of the prestigious National Program for Support of Top-notch Young Professionals (selected by the Central Organization Department of China), the Excellent Young Scientist Foundation (selected by the National Natural Science Foundation of China), the New Century Excellent Talent in University (selected by the Ministry of Education of China), the Young Teacher Award by the Fok Ying Tung Education Foundation, and the National Natural Science Award of China.

    2016-12-20; accepted:2017-1-20

    the B.S. degree in electronic engineering from the Zhengzhou University, Zhengzhou, China, in 2015. He is currently pursuing the M. S. degree in Xidian University, Xi’an, China.

    ?Xiaolin Tian, Xin Ding, Licheng Jiao and Maoguo Gong are with Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, International Research Center of Intelligent Perception and Computation, International Collaboration Joint Lab in Intelligent Perception and Computation, Xidian University, Xi’an 710071, China.E-mail:xltian@mail.xidian.edu.cn

    *To whom correspondence should be addressed. Manuscript

    日本猛色少妇xxxxx猛交久久| 国产欧美另类精品又又久久亚洲欧美| 亚洲精品成人久久久久久| 麻豆久久精品国产亚洲av| 免费看a级黄色片| 精品人妻视频免费看| 黄片无遮挡物在线观看| 少妇被粗大猛烈的视频| 97超视频在线观看视频| 亚洲18禁久久av| 久久人人爽人人爽人人片va| www.色视频.com| 国产精品福利在线免费观看| 日本色播在线视频| 国产一区亚洲一区在线观看| 免费电影在线观看免费观看| 亚洲国产欧美人成| 嫩草影院入口| 精品人妻熟女av久视频| 午夜精品国产一区二区电影| tube8黄色片| 18+在线观看网站| 少妇的逼水好多| 午夜福利视频在线观看免费| 精品一区在线观看国产| 中文字幕色久视频| 中国三级夫妇交换| 又粗又硬又长又爽又黄的视频| 视频区图区小说| 性少妇av在线| 美女国产视频在线观看| 国产亚洲欧美精品永久| 九色亚洲精品在线播放| 日韩精品免费视频一区二区三区| 国产有黄有色有爽视频| 精品久久蜜臀av无| 在线 av 中文字幕| h视频一区二区三区| 黄频高清免费视频| www.精华液| 超碰成人久久| tube8黄色片| av.在线天堂| 日日撸夜夜添| 丰满少妇做爰视频| 国产又爽黄色视频| 国产又色又爽无遮挡免| 午夜福利在线观看免费完整高清在| 欧美精品一区二区大全| 精品午夜福利在线看| 日韩欧美精品免费久久| 国产精品麻豆人妻色哟哟久久| 99精国产麻豆久久婷婷| 日韩中文字幕视频在线看片| 2021少妇久久久久久久久久久| 男女午夜视频在线观看| av.在线天堂| 最近最新中文字幕免费大全7| 久久韩国三级中文字幕| videos熟女内射| 亚洲成人av在线免费| 精品一区二区三区四区五区乱码 | 亚洲欧美精品自产自拍| 97在线视频观看| 亚洲国产色片| 宅男免费午夜| 久久99精品国语久久久| 日本av手机在线免费观看| 热re99久久精品国产66热6| 日韩在线高清观看一区二区三区| 哪个播放器可以免费观看大片| 综合色丁香网| 另类精品久久| videosex国产| 桃花免费在线播放| 99久久精品国产国产毛片| 在线观看人妻少妇| 男的添女的下面高潮视频| 熟女少妇亚洲综合色aaa.| 免费在线观看视频国产中文字幕亚洲 | 欧美在线黄色| 婷婷色麻豆天堂久久| √禁漫天堂资源中文www| 久久久久网色| 免费在线观看完整版高清| 91国产中文字幕| 国产成人av激情在线播放| 国产亚洲一区二区精品| 成人免费观看视频高清| 亚洲国产av影院在线观看| 亚洲婷婷狠狠爱综合网| 精品国产一区二区三区四区第35| 1024视频免费在线观看| 国产片内射在线| 免费黄色在线免费观看| 中文字幕人妻丝袜一区二区 | 亚洲色图综合在线观看| 国产亚洲精品第一综合不卡| 国产福利在线免费观看视频| 丰满乱子伦码专区| 在线观看www视频免费| 18禁国产床啪视频网站| 成人手机av| 青青草视频在线视频观看| 久久久久久免费高清国产稀缺| 捣出白浆h1v1| 99久久中文字幕三级久久日本| 99久久精品国产国产毛片| 天天影视国产精品| 91午夜精品亚洲一区二区三区| 丰满乱子伦码专区| 国产成人欧美| 在线天堂最新版资源| 中文字幕色久视频| 欧美成人午夜精品| 大香蕉久久网| 各种免费的搞黄视频| 老司机亚洲免费影院| 男女无遮挡免费网站观看| 最新的欧美精品一区二区| 久久午夜综合久久蜜桃| 国产欧美日韩一区二区三区在线| 久久久久久久久久人人人人人人| 免费久久久久久久精品成人欧美视频| 秋霞在线观看毛片| 人人妻人人澡人人爽人人夜夜| 国产精品亚洲av一区麻豆 | 男女无遮挡免费网站观看| 一级,二级,三级黄色视频| 青春草亚洲视频在线观看| 超碰97精品在线观看| 久久久国产精品麻豆| 久久精品aⅴ一区二区三区四区 | 少妇熟女欧美另类| 久久久国产精品麻豆| 国产97色在线日韩免费| 国产精品国产三级国产专区5o| 久久鲁丝午夜福利片| 亚洲欧美成人综合另类久久久| 欧美日韩国产mv在线观看视频| 国产亚洲av片在线观看秒播厂| 在线看a的网站| 国产亚洲最大av| 久久久久久免费高清国产稀缺| 国产精品.久久久| 国产成人91sexporn| 免费日韩欧美在线观看| 亚洲,欧美,日韩| 久久这里只有精品19| 日韩免费高清中文字幕av| 女人高潮潮喷娇喘18禁视频| 男女啪啪激烈高潮av片| 美女福利国产在线| 日韩欧美一区视频在线观看| 婷婷色综合大香蕉| 曰老女人黄片| 亚洲中文av在线| 久久久久视频综合| 亚洲精品在线美女| 中文字幕另类日韩欧美亚洲嫩草| 久久久久久久久免费视频了| 国产又爽黄色视频| 少妇被粗大猛烈的视频| 97人妻天天添夜夜摸| 99国产精品免费福利视频| 久久久精品国产亚洲av高清涩受| 97人妻天天添夜夜摸| 亚洲,欧美,日韩| 亚洲国产av新网站| 韩国av在线不卡| 性高湖久久久久久久久免费观看| 亚洲精品国产一区二区精华液| 久久久精品区二区三区| 99国产综合亚洲精品| 亚洲欧洲日产国产| 自线自在国产av| 亚洲av日韩在线播放| 国产日韩一区二区三区精品不卡| 少妇精品久久久久久久| 黄片无遮挡物在线观看| 亚洲精品国产av成人精品| 午夜免费观看性视频| 两性夫妻黄色片| 99久久综合免费| 美女中出高潮动态图| 国产精品偷伦视频观看了| 国产成人a∨麻豆精品| 久久国产精品男人的天堂亚洲| 2022亚洲国产成人精品| 国产精品久久久久成人av| 少妇被粗大的猛进出69影院| 一级毛片 在线播放| 国语对白做爰xxxⅹ性视频网站| 亚洲国产欧美日韩在线播放| 国产成人精品无人区| 五月伊人婷婷丁香| 一本大道久久a久久精品| 久久毛片免费看一区二区三区| 久久精品久久久久久噜噜老黄| 亚洲av免费高清在线观看| 亚洲第一青青草原| 大片电影免费在线观看免费| 99久久人妻综合| 天天躁夜夜躁狠狠久久av| 亚洲,一卡二卡三卡| 国产日韩欧美在线精品| 少妇被粗大猛烈的视频| 狂野欧美激情性bbbbbb| 中文字幕人妻丝袜制服| 一二三四中文在线观看免费高清| 日韩视频在线欧美| 五月伊人婷婷丁香| 在线免费观看不下载黄p国产| 女性生殖器流出的白浆| 有码 亚洲区| 欧美日韩亚洲高清精品| 母亲3免费完整高清在线观看 | 久久久欧美国产精品| 少妇人妻 视频| 男人爽女人下面视频在线观看| 欧美黄色片欧美黄色片| 大片电影免费在线观看免费| 亚洲精品一区蜜桃| 视频在线观看一区二区三区| 夜夜骑夜夜射夜夜干| 亚洲视频免费观看视频| 爱豆传媒免费全集在线观看| 久久久精品区二区三区| 国产女主播在线喷水免费视频网站| 我的亚洲天堂| 午夜影院在线不卡| 少妇人妻久久综合中文| 在线观看www视频免费| 亚洲欧美精品自产自拍| 精品卡一卡二卡四卡免费| 男人添女人高潮全过程视频| 久久精品国产自在天天线| 国产 精品1| 波野结衣二区三区在线| 观看美女的网站| 免费少妇av软件| 日韩中字成人| 亚洲精品在线美女| 1024视频免费在线观看| 国产老妇伦熟女老妇高清| 国产一区二区三区综合在线观看| 成人18禁高潮啪啪吃奶动态图| 久久久国产欧美日韩av| 搡女人真爽免费视频火全软件| 水蜜桃什么品种好| 国产免费福利视频在线观看| 午夜91福利影院| 欧美老熟妇乱子伦牲交| 欧美另类一区| 久久久久久久亚洲中文字幕| 极品人妻少妇av视频| 另类精品久久| 亚洲精品久久久久久婷婷小说| 久久精品国产综合久久久| 久久av网站| 国产一区亚洲一区在线观看| 亚洲国产成人一精品久久久| 国产精品一国产av| a 毛片基地| 成人亚洲欧美一区二区av| 色视频在线一区二区三区| 日韩电影二区| 国产一区二区在线观看av| 久久精品久久久久久久性| 成人毛片60女人毛片免费| 91精品伊人久久大香线蕉| 18+在线观看网站| 成人国语在线视频| 久久精品国产鲁丝片午夜精品| 青草久久国产| 日韩 亚洲 欧美在线| 国产av精品麻豆| 国产成人av激情在线播放| 精品一品国产午夜福利视频| 各种免费的搞黄视频| 18禁观看日本| 欧美日韩视频精品一区| 曰老女人黄片| 亚洲一码二码三码区别大吗| 我要看黄色一级片免费的| 亚洲精品美女久久av网站| 91久久精品国产一区二区三区| 久久久国产欧美日韩av| 女人精品久久久久毛片| 久久精品国产a三级三级三级| 两性夫妻黄色片| 欧美精品亚洲一区二区| 边亲边吃奶的免费视频| 中文字幕另类日韩欧美亚洲嫩草| 亚洲成人手机| www.av在线官网国产| 黑人欧美特级aaaaaa片| 日韩精品免费视频一区二区三区| 亚洲av福利一区| 国产爽快片一区二区三区| 大香蕉久久成人网| 国产亚洲一区二区精品| 免费高清在线观看视频在线观看| 狂野欧美激情性bbbbbb| 久久免费观看电影| 人妻少妇偷人精品九色| 亚洲精品aⅴ在线观看| 好男人视频免费观看在线| 看免费成人av毛片| 黄色怎么调成土黄色| 国产又色又爽无遮挡免| www.熟女人妻精品国产| 赤兔流量卡办理| 国产亚洲欧美精品永久| 日日啪夜夜爽| 国产成人91sexporn| 久久久久久久大尺度免费视频| 一级,二级,三级黄色视频| 国产精品嫩草影院av在线观看| 成人亚洲精品一区在线观看| 久久国产亚洲av麻豆专区| 免费在线观看完整版高清| 男女国产视频网站| 欧美日韩亚洲高清精品| 午夜福利网站1000一区二区三区| 国产精品女同一区二区软件| 熟妇人妻不卡中文字幕| 狠狠婷婷综合久久久久久88av| 亚洲欧洲日产国产| 亚洲av综合色区一区| 中文字幕人妻丝袜一区二区 | 亚洲成国产人片在线观看| 老司机影院成人| 国产日韩欧美在线精品| 丝袜美腿诱惑在线| av又黄又爽大尺度在线免费看| 一区二区三区乱码不卡18| 韩国精品一区二区三区| 成人毛片60女人毛片免费| av网站在线播放免费| 国产日韩欧美视频二区| 亚洲精华国产精华液的使用体验| 日本色播在线视频| 男男h啪啪无遮挡| 免费黄网站久久成人精品| 亚洲欧美一区二区三区黑人 | 赤兔流量卡办理| 日产精品乱码卡一卡2卡三| 久久97久久精品| 少妇精品久久久久久久| 黄片无遮挡物在线观看| 色婷婷久久久亚洲欧美| 在线精品无人区一区二区三| 十分钟在线观看高清视频www| 自拍欧美九色日韩亚洲蝌蚪91| 校园人妻丝袜中文字幕| 日日啪夜夜爽| 视频在线观看一区二区三区| 中国三级夫妇交换| 2018国产大陆天天弄谢| 18禁观看日本| 欧美日韩综合久久久久久| 久久午夜综合久久蜜桃| 中文字幕制服av| 国产成人精品久久二区二区91 | 又大又黄又爽视频免费| 欧美日韩精品网址| 大陆偷拍与自拍| 亚洲av电影在线观看一区二区三区| 精品亚洲成a人片在线观看| 婷婷色麻豆天堂久久| 王馨瑶露胸无遮挡在线观看| 蜜桃在线观看..| 精品午夜福利在线看| 亚洲五月色婷婷综合| 看十八女毛片水多多多| 十分钟在线观看高清视频www| 人妻系列 视频| 免费大片黄手机在线观看| 精品午夜福利在线看| 久热久热在线精品观看| 国产成人精品久久久久久| 久久久久久久久免费视频了| 免费黄频网站在线观看国产| 青草久久国产| 不卡av一区二区三区| 99re6热这里在线精品视频| 一本—道久久a久久精品蜜桃钙片| 少妇熟女欧美另类| 在线天堂最新版资源| 黑人欧美特级aaaaaa片| 波多野结衣av一区二区av| 国产精品成人在线| 热99国产精品久久久久久7| 欧美激情极品国产一区二区三区| 日韩av免费高清视频| 国产无遮挡羞羞视频在线观看| 成年美女黄网站色视频大全免费| 免费av中文字幕在线| av在线app专区| 黄片无遮挡物在线观看| 亚洲欧美清纯卡通| 亚洲国产精品999| 少妇人妻久久综合中文| 建设人人有责人人尽责人人享有的| 精品国产一区二区三区久久久樱花| 国产人伦9x9x在线观看 | 美女主播在线视频| 亚洲四区av| 成人免费观看视频高清| 搡老乐熟女国产| 午夜影院在线不卡| 搡女人真爽免费视频火全软件| 欧美日韩精品网址| 免费女性裸体啪啪无遮挡网站| 免费观看性生交大片5| 成人午夜精彩视频在线观看| 精品国产一区二区久久| 一级毛片我不卡| 深夜精品福利| 亚洲av.av天堂| 欧美日韩亚洲高清精品| 美女主播在线视频| 女人高潮潮喷娇喘18禁视频| 午夜激情久久久久久久| a级片在线免费高清观看视频| 久久久久久久久免费视频了| 国产白丝娇喘喷水9色精品| 亚洲国产最新在线播放| 成人毛片60女人毛片免费| 亚洲精品久久成人aⅴ小说| 大码成人一级视频| 一区二区日韩欧美中文字幕| 中国国产av一级| 在线精品无人区一区二区三| 热re99久久国产66热| 老司机影院毛片| 欧美 亚洲 国产 日韩一| 免费观看av网站的网址| 97精品久久久久久久久久精品| 在线观看免费日韩欧美大片| 国产深夜福利视频在线观看| 99久久中文字幕三级久久日本| 国产成人av激情在线播放| 少妇被粗大的猛进出69影院| 精品少妇久久久久久888优播| 女性生殖器流出的白浆| 免费日韩欧美在线观看| 亚洲人成电影观看| 国产欧美日韩一区二区三区在线| 爱豆传媒免费全集在线观看| 国产精品国产av在线观看| 欧美人与性动交α欧美软件| 男女啪啪激烈高潮av片| 如何舔出高潮| 一级毛片 在线播放| 青春草视频在线免费观看| 黄片播放在线免费| 国产精品不卡视频一区二区| 久久国产亚洲av麻豆专区| 亚洲成人av在线免费| 亚洲国产色片| 日本av免费视频播放| 丝瓜视频免费看黄片| 色吧在线观看| 亚洲少妇的诱惑av| 久久久久精品久久久久真实原创| 我要看黄色一级片免费的| 天堂俺去俺来也www色官网| 国产精品av久久久久免费| av在线播放精品| 亚洲,欧美,日韩| 黑人猛操日本美女一级片| 波多野结衣av一区二区av| 久久久精品国产亚洲av高清涩受| 丝袜在线中文字幕| 91国产中文字幕| 亚洲一区中文字幕在线| 一级毛片黄色毛片免费观看视频| 久久久久久久久免费视频了| h视频一区二区三区| 日韩av免费高清视频| 丁香六月天网| 观看av在线不卡| 香蕉精品网在线| 亚洲天堂av无毛| 亚洲欧美日韩另类电影网站| 人体艺术视频欧美日本| 午夜福利视频精品| 岛国毛片在线播放| 91精品国产国语对白视频| 捣出白浆h1v1| 黑人欧美特级aaaaaa片| 亚洲,欧美,日韩| 啦啦啦中文免费视频观看日本| 国产不卡av网站在线观看| 欧美另类一区| 日韩精品免费视频一区二区三区| 亚洲av.av天堂| 超碰97精品在线观看| 91午夜精品亚洲一区二区三区| 曰老女人黄片| 永久免费av网站大全| 久久久久久久精品精品| 在线观看一区二区三区激情| 少妇人妻 视频| 欧美成人精品欧美一级黄| 99香蕉大伊视频| 国产精品久久久久久久久免| 伊人亚洲综合成人网| 亚洲国产最新在线播放| 夫妻性生交免费视频一级片| 人人妻人人添人人爽欧美一区卜| 91成人精品电影| 久久精品久久久久久噜噜老黄| 香蕉精品网在线| 看非洲黑人一级黄片| 美女视频免费永久观看网站| 成人黄色视频免费在线看| 日韩一区二区三区影片| 亚洲人成电影观看| 国产精品免费视频内射| 黄频高清免费视频| 亚洲综合精品二区| 一区二区日韩欧美中文字幕| 亚洲国产精品一区二区三区在线| 高清欧美精品videossex| 欧美日韩综合久久久久久| 9191精品国产免费久久| 色94色欧美一区二区| 亚洲精品av麻豆狂野| 国产精品二区激情视频| 久久综合国产亚洲精品| 亚洲人成网站在线观看播放| 有码 亚洲区| 日韩欧美一区视频在线观看| 各种免费的搞黄视频| av在线老鸭窝| 亚洲成国产人片在线观看| 午夜影院在线不卡| 又粗又硬又长又爽又黄的视频| 国产又爽黄色视频| www.精华液| 亚洲视频免费观看视频| 9色porny在线观看| 国产精品二区激情视频| av国产精品久久久久影院| 国产一区二区激情短视频 | 咕卡用的链子| 欧美日韩综合久久久久久| 午夜福利影视在线免费观看| 中文字幕人妻丝袜制服| 老司机影院成人| 老鸭窝网址在线观看| 少妇 在线观看| 久久久久久免费高清国产稀缺| 少妇人妻 视频| 国产午夜精品一二区理论片| 国产一区二区在线观看av| 少妇被粗大的猛进出69影院| av国产久精品久网站免费入址| 2022亚洲国产成人精品| videos熟女内射| 国产精品女同一区二区软件| 午夜福利在线观看免费完整高清在| 美女视频免费永久观看网站| 熟女少妇亚洲综合色aaa.| 美女高潮到喷水免费观看| 曰老女人黄片| 精品一区二区免费观看| 黄片小视频在线播放| 国语对白做爰xxxⅹ性视频网站| 91国产中文字幕| 日韩视频在线欧美| 亚洲 欧美一区二区三区| 中文天堂在线官网| 亚洲图色成人| 国产精品一区二区在线不卡| 国产av精品麻豆| 妹子高潮喷水视频| 久久久久国产一级毛片高清牌| 久久久久国产网址| 欧美精品亚洲一区二区| 亚洲伊人久久精品综合| 亚洲第一青青草原| 老司机亚洲免费影院| 免费在线观看黄色视频的| 少妇的逼水好多| 少妇猛男粗大的猛烈进出视频| 熟女电影av网| 99久国产av精品国产电影| 伊人久久大香线蕉亚洲五| 亚洲国产av新网站| 午夜福利视频在线观看免费| 精品久久蜜臀av无| 少妇被粗大的猛进出69影院| 看免费av毛片| 一级毛片黄色毛片免费观看视频| 狂野欧美激情性bbbbbb| 观看av在线不卡| 国产亚洲精品第一综合不卡| 男女高潮啪啪啪动态图| 免费在线观看完整版高清| 国产1区2区3区精品| 亚洲中文av在线| 日韩不卡一区二区三区视频在线| 天天影视国产精品| 美女xxoo啪啪120秒动态图| 亚洲av电影在线进入| 777久久人妻少妇嫩草av网站| 两性夫妻黄色片| 午夜福利视频在线观看免费| 国产亚洲最大av| 成人亚洲精品一区在线观看| 9热在线视频观看99|