• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Multi-Objective Evolutionary Approach to Selecting Security Solutions

    2017-10-11 10:54:07YungheeLeeTaeJongChoiandChangWookAhn

    Yunghee Lee, Tae Jong Choi, and Chang Wook Ahn

    AMulti-ObjectiveEvolutionaryApproachtoSelectingSecuritySolutions

    Yunghee Lee, Tae Jong Choi, and Chang Wook Ahn*

    In many companies or organizations, owners want to deploy the most efficient security solutions at a low cost. In this paper, we propose a method of choosing the best security solution from various security solutions using multi-objective genetic algorithm considering cost and weakness-decrease. The proposed system can support the best security solutions in various aspects of security issues. We use the NSGA-II algorithm, which has been verified in a variety of fields, to provide a comparison with existing genetic algorithms. Our scheme has increased the dominant area by more than 30% compared with the previous scheme and can provide a more diverse solution set.

    security; evolutionary algorithm; multi-objective genetic algorithm; artificial intelligence

    1 Introduction

    As the information technology systems and the Internet grew, so did the number of malicious threats to information[1]. To prevent information threats like this, organizations and enterprises study security solutions to secure information separately from their usual work. Security solutions are generally physical and logical countermeasures to prevent the failure and destruction of the information systems[2]. But in most cases, companies do not want to spend a lot of money on improving security. Because investing in security solutions does not seem to be effiective in a short time. Moreover, in order to invest in security solutions, companies have to choose how much to invest in what measures, but it is very difficult to make such a choice without knowing the exact threats and the effiectiveness of countermeasures. In this paper, we describe the selection of a security solution using NSGA-II, a kind of multi-objective genetic algorithm. This will help any business or organization easily choose the best security solution. This paper is organized as follows. In Section 2, we talk about genetic algorithms (GA) and Pareto-optimization. In Section 3, we explain a multi-objective genetic algorithm. We design a creating security solution and Weakness Decrease Point (WDP) for experiment and explain the program code in Section 4. The system we propose is presented in Section 5. Section 6 concludes the paper.

    2 Related works

    In this section, we talk about Pareto-optimality after the simple description of genetic algorithm and knapsack problem.

    2.1GeneticalgorithmandKnapsackProblem

    Genetic algorithm is a kind of heuristic search based on the phenomenon of nature. It was firstly designed by John Holland in 1975. This is one of the techniques to solve the optimization problem by calculation based on the natural evolutionary process. In general, if it is impossible to obtain an optimized solution of a problem through a formal formula, or if it is too complicated, it may be efficient to solve the problem through a genetic algorithm. However,the genetic algorithm does not always find a global optimal solution. This only helps to find solutions that are close to the optimal solution in a short time. Therefore, genetic algorithms are generally useful for problems classified as non- deterministic polynomial (NP) time problems[3].

    The knapsack problem is one of the most suitable problems to solve with genetic algorithm. The knapsack problem is a matter of finding out what items we need to fill the bag to make it the most valuable. The size of the items that can be stored in the bag is fixed, and each item has a predetermined value and size. Therefore, if the item can be split, we can easily find the global optimal solution to this problem with the greedy algorithm. But if they can not break apart, this problem can not be solved with a formal formula. Thus, in this case, this problem becomes an NP-completeness problem[4,5]. If we use a genetic algorithm to solve the knapsack problem, we can find an efficient solution for a short time. Recently, various studies related to the research we are trying to do have been preceded[6].

    2.2 Pareto-optimality

    If you use a simple genetic algorithm to solve the knapsack problem, the sum of the sizes will naturally approach the maximum size. If you have a budget and do not have any problems with using your whole budget, you can solve this problem using the simple genetic algorithm. But companies and organizations want to find low-cost, high-efficiency solutions and deploy it. Therefore unlike a simple genetic algorithm that considers only one objective, in the real world, it is necessary to find the optimal solution considering both the cost and the WDP. Sometimes, a problem may have more than just two objectives. If that happens, the problem will be much more complicated than when considering only one objective. In this paper, we propose a method to solve the problem by considering two objectives: cost and WDP.

    In general, we use the concept of “Pareto-optimality” when there are multiple objectives to find the global optimal solution of the problem. For example, the cost and WDP of security solutions to address security flaws are shown in Table 1. As shown in Fig.1, the data in Table1 can be charted. In the Fig.1, the X axis represents (100-cost) and the y axis means WDP: Decrease of dangerous.

    In the Fig.1 the solution in the upper right is observed to be more effiective and better.The optimal solution is the top-most, right-most solution in the chart. However, in general, higher WDPs result in higher costs, making it difficult to find the ideal solution like that. Instead, we can find a Pareto- optimal that is superior to other solutions[7]. The squares on the chart show Pareto-dominance easily. For example, R2 has a very high WDP, which is very helpful in solving security problems, but solution R2 is not an optimal solution because there is a solution R5 with a lower cost and higher WDP. At this point, Solution R2 is said to be a Pareto-dominated entity. When we create a chart like the one shown in the Fig.1, we call the unconstrained solution Pareto-optimal for any other solution, and call the set a Pareto-optimal set. The line that the pareto-optimal set forms is called the Pareto-frontier. Ultimately, what we are looking for is a Pareto-optimal set.

    Table 1 The list of solution sets that generated randomly.

    Fig.1Charttoselectbestsolutionfromvariouscandidates.

    3 Multi-objective genetic algorithm:NSGA-II

    There are many kinds of multi-objective genetic algorithms (MOGA) to solve many types of problems: NPGA, NSGA, SPEA, etc. All of them are very popular MOGA solutions and in this paper, we use the NSGA-II algorithm for solving the problem. Because NSGA-II is the lightest and fastest method of MOGA known so far. NSGA-II is a new advanced technique compared with NSGA, a conventional multi-objective genetic algorithm. It can finish the cal- culation in less time than NSGA and introduces the concept of non-dominant ranking. In addition, NSGA-II introduced a concept called Crowding Distance.Therefore, this scheme can distribute resources more efficiently than existing algorithms. Another thing that NSGA-II is diffierent from NSGA is Elitism. Elitism is the scheme of keeping the superior population among the population to the next generation. Therefore, solutions with a high fitness are not easily lost through generations[8]. The NSGA-II algorithm is easy to use and can quickly find solutions with a high fitness. And it has very high performance so that this algorithm is very popular[9].

    Fig.2 Flowchart for NSGA-II algorithm.

    The NSGA-II algorithm is shown in Fig.2[10]. Non-dominated rand means the rank that how many other solutions are dominating the solution. In other words, a lower non-dominated rank is a better solution. For example, there is a solution named A. If any solution is a dominating solution A, the non- dominated rank of solution A is zero. Thus, in the same generation, the Pareto optimal solution has the highest priority, and the solution farther from it has an increasingly lower priority. Like this, the non-dominated rank alignment process allows solutions to converge on the Pareto-optimal set. And Crowding Distance is a solution to see how many solutions are gathered in a small area when the charts are shown like Fig.1. This is a value that is calculated to help the solutions with the same non-dominated rank have diversity. Each solution has a high Crowding Distance value if it is less similar to the neighboring solution. This is an element for selecting an object with a diffierent property from the set of genetic entities belonging to the same non-dominated rank[8].

    3.1 Performance improvement

    We used diffierent mutations and crossover types to improve performance. Mutation and crossover are very important components in the genetic algo rithm. There are many types of mutation and crossover: Uniform Mutation, Parent-Centric Crossover, Bit Flip Mutation, Half-Uniform Crossover and etc. In this paper, we use the Simulated Binary Crossover (SBX) for crossover process and Polynomical Mutation (PM) for mutation process in NSGA-II. SBX is the operator that has the search ability similar to that of a single-point binary-coded crossover operator[11]. And the PM is the operator that is widely used in evolutionary optimization algorithms as a variation operator[12]. It attempts to simulate the offispring distribution of binary-encoded bit-flip mutation on real-valued decision variables. In this paper, the type of the value to be calculated was binary, but we used PM because the PM showed better performance than the bit flip mutation. PM is similar to SBX, it favors offispring nearer to the parent[13].

    And we set the population size for the genetic algorithm to 500 and the number of generations to 15000.

    4 Creating security solution and WDP

    We need to create a variety of virtual security solutions for the experiment, each with an introduction cost and a WDP. However, WDP is a value that can not be easily quantified. Therefore, in this paper, we use a reasonable random number as a WDP to create a sample virtual security solution.

    First, we need to create 500 random numbers to be used as the cost of introducing a virtual security solution. The total sum of 500 random numbers is 1000000. After doing that, we sort 100 random random numbers and put them into the array arr [ ]. Then we use the source code below to create a WDP corresponding to each cost, and place it in the array arr2 [ ].

    for (i=0;i<500; i++)

    {

    arr2[i]=gaussianRand(arr[i], STD);

    // STD is the standard deviation of gaussian random function

    // We setted STD to 50

    if (arr2[i] <=0)

    arr2[i] = rand()% arr[i] +1;

    }

    double gaussianRand(double mean, double stddev)

    { // gaussian random number generater function static double n2= 0.0;

    static int n2_cached = 0;

    if (!n2_cached)

    {

    doublex,y,r;

    do

    {

    x=2.0*rand()/RAND_MAX-1;

    y=2.0*rand()/RAND_MAX-1;

    r=x*x+y*y;

    } while (r==0.0 ||r> 1.0);

    {

    double d=sqrt(-2.0*log(r)/r);

    double n1=x*d;

    n2=y*d;

    double result = n1*stddev + mean;

    n2_cached = 1;

    return result;

    }

    {

    else

    {

    n2_cached= 0;

    return n2*stddev+ mean;

    }

    }

    So we can make the meaningful random WDP. Weakness decrease point will almost be proportional to security solutions cost. But there can be rarely too high Weakness Decrease Pointcsecurity solutions cost or the opposite case.

    5 Proposed scheme

    In this section, we suggest techniques for selecting the best security solution using NSGA-II, the MOGA mentioned in the previous section. As we mentioned in Section 1, businesses and organizations want security solutions that can get the most out of their business with minimal cost. Park et al. have released a solution for this problem[14]. They tried to solve this problem using the simple genetic algorithm and used a list of 10 virtual security solutions in the experiment. In order to compare the two schemes, we have coded programs that perform as well as the simple genetic algorithms used in Park et al.’s paper[14], and have created more new virtual security solution lists and experimented. We compared the results obtained using our scheme with those obtained using Park et al.’s scheme[14]. As a result of using the scheme of Park et al.[14], we could find three optimal solutions.

    And also important in the genetic algorithm is the fitness evaluation function. It is called as the fitness function. In the simple genetic algorithm used by Park et al.[14], the fitness function considers only one objective: WDP. In MOGA, however, we can use multiple objectives for fitness functions.

    (1)

    (2)

    In this paper, we used two fitness functions as shown in Equations 1 and 2.Equation 1 uses (100000-the total cost of the solution) values for fitness calculations, and Equation 2 uses the entire WDP of the solution for fitness calculations.nis the number of the whole chromosomes, in other words,nmeans the number of solutions.vcmeans each chromosome structure.vc.dincludes the decrease point of security weakness, andvc.cincludes the cost for selecting that solution.vc.sincludes the binary number for checking whether each solution was selected or not selected. So ifvc.s’s value is 0, that means the solution was not selected.

    Fig.3ThegraphaboutselectingsecuritysolutionusingNSGA-II.

    Fig.3 compares the best virtual security solutions selected using the NSGA-II algorithm to the best virtual security solutions selected using the simple genetic algorithm. The horizontal axis indicates the value off1, and the vertical axis indicates the value off2. The results of using the existing Park et al.’s scheme[14]have reversed the cost value for easy comparison. Therefore, the cost of the original research is actually 100000 times the original cost. For the sake of clarity, we plotted the results of original research as red squares and the results of our research as black dots. Using the NSGA-II-based security solution selection scheme we have studied, we can confirm that the selected security solution set forms the Pareto-frontier and completely dominates the results of existing papers. The results of this paper provide a variety of choices, from low cost solution selection to high cost solution selection.

    6 Conclusion

    In this paper, we propose a scheme to efficiently select the security solutions required by corporations and organizations using NSGA-II in terms of various objectives: cost and value. The proposed method was able to find optimal solutions considering various objectives and showed superiority in the process and performance of fitness evaluation compared to existing papers using simple genetic algorithm. More detailed study on how to quantify the Weakness Decrease Point (WDP) should be conducted and the stability and performance of NSGA-III developed by NSGA-II should be verified.

    Acknowledgment

    This research was supported by X-Project funded by the Ministry of Science, ICT & Future Planning (NRF-2016R1E1A2A02946533) and also supported by Institute for Information & communications Technology Promotion (IITP) grant funded by the Korea government (MSIP) (No.B0717-17-0070).

    [1]S.W.Chai, Economic effiects of personal information protection, Korea Consumer Agency,vol.33, pp.43-64,2008.

    [2]Y.O.Kwon and B.D.Kim, The effiect of information security breach and security investment announcement on the market value of korean firms,InformationSystemReview, vol.9,no.1, pp.105-120, 2007.

    [3]M.Mitchell,Anintroductiontogeneticalgorithms,USA: MIT press,1996.

    [4]Kellerer and Hans,Knapsackproblems, Berlin, Germany: Springling Press,2004.

    [5]S.Martello and P.Toth, Knapsack problems: Algorithms and computer implementations,JournaloftheOperationalResearchSociety, 42(6), 513-513.

    [6]P.C.Chu and J.E.Beasley, A genetic algorithm for the multidimensional knapsack problem,Journalofheuristics,vol.4, no.1, pp.63-86, 1998.

    [7]J.Horn, N.Nafpliotis, and D.Goldberg, A niched pareto genetic algorithm for multiobjective optimization, inProceedingsof1stIEEEConferenceonEvolutionaryComputation, Florida,USA,1994, pp.82-87.

    [8]J.Yoon, J.Lee, and D.Kim, Feature selection in multi-label classification using nsga-ii algorithm,JournalofKIISE:SoftwareandApplications,vol.40,no.3, pp.133-140, 2013.

    [9]K.Deb, A.Pratap, S.Agarwal, and T.Meyarivan, A fast and elitist multi objective genetic algorithm: Nsga-ii,IEEETransactionsonEvolutionaryCompution,vol.6,no.2,pp.182-197,2002.

    [10] S.T.Khu and H.Madsen, Multi-objective calibration with pareto preference ordering: An application to rainfall-runoffi model calibration,WaterRe-wourcesResearch,vol.41,no.3,pp.1-14,2005.

    [11] D.Kalyanmoy and K.Amarendra, Real-coded genetic algorithms with simulated binary crossover: studies on multimodel and multiobjective problems,ComplexSystems, vol.9,no.6,pp.431-454, 1995.

    [12] M.Hamdan, A dynamic polynomial mutation for evolutionary multi-objective optimization algorithms,InternationalJounalonArtificialIntelligenceTools,vol.20,no.1,pp.209-219, 2011.

    [13] K.Deb and D.Deb, Analysing mutation schemes for real-parameter genetic algorithms,InternationalJournalofArtificialIntelligenceandSoftComputting, vol.4,no.1,pp.1-28, 2014.

    [14] J.Park, Y.Bang, G.Lee, and K.Nam, Generation of security measure by using simple genetic algorithm, inProceedingsofKIISEConference30, 2003,vol.21,pp.769-771.

    TaeJongChoiis working as a postdoctoral researcherin at Sungkyunkwan University (SKKU), Republic of Korea. He received Ph.D. degree from the Department of Electrical and Computer Engineering at SKKU in 2017. His research interests include evolutionary algorithms, machine learning, deep learning, and the applications of artificial intelligence.ChangWookAhnis working as a Professor in the School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea. From 2008 to 2016, he was an Assistant/Associate Professor at the Department of Computer Engineering, Sungkyunkwan University (SKKU), Suwon, Republic of Korea. He received his PH.D. degree from the Department of Information and Communications, GIST. His research interests include genetic algorithms, multi-objective optimization, neural networks, and the applications of evolutionary machine learning techniques.

    2016-12-20; accepted:2017-01-20

    B.S. degree from the Department of Cyber Security at Kyung-Il University, Kyungsan, Republic of Korea, in 2012. He is currently a M.S. candidate in the Department of Computer Engineering at Sungkyunkwan University, Suwon, Republic of Korea. Also, he is currently working as a researcher at Gwangju Institute of Science and Technology (GIST). His research interests include genetic algorithms, Artificial Intelligence, multi-objective optimization and the cyber security.

    ?Tae Jong Choi is with Department of Computer Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, Republic of Korea.

    ?Yunghee Lee and Chang Wook Ahn are with School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST).E-mail: cwan@gist.ac.kr(Chang Wook Ahn).

    *To whom correspondence should be addressed. Manuscript

    精品一品国产午夜福利视频| 日韩中文字幕欧美一区二区| 欧美日韩中文字幕国产精品一区二区三区 | 高潮久久久久久久久久久不卡| 亚洲成人免费av在线播放| 午夜福利在线观看吧| 精品国产国语对白av| 久久中文看片网| 一本—道久久a久久精品蜜桃钙片| 久久久久久免费高清国产稀缺| 日本a在线网址| 久久国产亚洲av麻豆专区| 日韩欧美一区二区三区在线观看 | 国产日韩欧美视频二区| 免费观看人在逋| 麻豆成人av在线观看| 手机成人av网站| 欧美国产精品va在线观看不卡| 怎么达到女性高潮| 精品人妻在线不人妻| 国产区一区二久久| 国产成人欧美| 一边摸一边抽搐一进一小说 | 精品久久久久久电影网| 国产精品1区2区在线观看. | 人人澡人人妻人| 日韩 欧美 亚洲 中文字幕| 国产麻豆69| 国产精品99久久99久久久不卡| 日韩一卡2卡3卡4卡2021年| 欧美日韩av久久| 免费女性裸体啪啪无遮挡网站| 免费一级毛片在线播放高清视频 | av国产精品久久久久影院| 久久精品国产亚洲av香蕉五月 | 90打野战视频偷拍视频| 50天的宝宝边吃奶边哭怎么回事| 成年动漫av网址| 成人国语在线视频| 欧美+亚洲+日韩+国产| 中文欧美无线码| 少妇 在线观看| 亚洲一码二码三码区别大吗| 日韩精品免费视频一区二区三区| av欧美777| 精品国产超薄肉色丝袜足j| 50天的宝宝边吃奶边哭怎么回事| 欧美精品一区二区免费开放| 十八禁网站免费在线| 精品国内亚洲2022精品成人 | 色尼玛亚洲综合影院| 久久精品aⅴ一区二区三区四区| 日韩中文字幕视频在线看片| 亚洲国产毛片av蜜桃av| 一区在线观看完整版| 一级毛片精品| 中文字幕制服av| bbb黄色大片| 超色免费av| 大香蕉久久成人网| 大香蕉久久成人网| 久久性视频一级片| 深夜精品福利| 老熟妇仑乱视频hdxx| 色播在线永久视频| 成年女人毛片免费观看观看9 | 操出白浆在线播放| 亚洲少妇的诱惑av| 国产成人欧美在线观看 | 欧美乱码精品一区二区三区| 国产男女超爽视频在线观看| 国产成人免费无遮挡视频| 日本黄色日本黄色录像| 亚洲精品av麻豆狂野| 人人妻人人澡人人爽人人夜夜| 91精品国产国语对白视频| 成人亚洲精品一区在线观看| 国产成人精品久久二区二区免费| 黄色视频,在线免费观看| 一本久久精品| 在线看a的网站| 欧美日韩av久久| 又大又爽又粗| 国产一区二区三区视频了| 国产精品美女特级片免费视频播放器 | 久久久久精品国产欧美久久久| 十八禁人妻一区二区| a在线观看视频网站| 一夜夜www| 亚洲精品中文字幕一二三四区 | 一级,二级,三级黄色视频| 精品国产一区二区三区久久久樱花| 久久久久国内视频| 91精品国产国语对白视频| 在线观看舔阴道视频| 在线十欧美十亚洲十日本专区| 久久久久久久久免费视频了| 日本一区二区免费在线视频| 动漫黄色视频在线观看| 欧美人与性动交α欧美软件| 国精品久久久久久国模美| 757午夜福利合集在线观看| 夜夜骑夜夜射夜夜干| 国产精品久久久久久精品电影小说| 中文字幕高清在线视频| 纵有疾风起免费观看全集完整版| 中文字幕精品免费在线观看视频| 亚洲av片天天在线观看| 欧美成人免费av一区二区三区 | 亚洲精品成人av观看孕妇| 亚洲欧美精品综合一区二区三区| 天天躁日日躁夜夜躁夜夜| 亚洲色图综合在线观看| 久久久精品免费免费高清| 日韩精品免费视频一区二区三区| 国产精品久久久av美女十八| 丁香欧美五月| 自线自在国产av| 亚洲国产成人一精品久久久| 99久久99久久久精品蜜桃| 好男人电影高清在线观看| www.自偷自拍.com| 国产精品久久久av美女十八| 精品一区二区三卡| 宅男免费午夜| 性高湖久久久久久久久免费观看| 精品福利永久在线观看| 亚洲精华国产精华精| 俄罗斯特黄特色一大片| 国产欧美亚洲国产| 久久久国产精品麻豆| 国产一区二区三区综合在线观看| 在线永久观看黄色视频| 国产成人系列免费观看| 精品国产乱码久久久久久小说| 女警被强在线播放| 十分钟在线观看高清视频www| 国产单亲对白刺激| 国产一区二区在线观看av| 母亲3免费完整高清在线观看| 人人妻人人澡人人看| 日韩 欧美 亚洲 中文字幕| 成人18禁在线播放| 成在线人永久免费视频| 水蜜桃什么品种好| 国产麻豆69| 亚洲男人天堂网一区| av不卡在线播放| 国产熟女午夜一区二区三区| 精品一区二区三卡| 中文字幕av电影在线播放| 欧美精品人与动牲交sv欧美| 自线自在国产av| 亚洲欧洲精品一区二区精品久久久| 成人亚洲精品一区在线观看| 国产精品1区2区在线观看. | 国精品久久久久久国模美| 亚洲七黄色美女视频| 午夜精品国产一区二区电影| 国产精品 欧美亚洲| 视频区欧美日本亚洲| 国产亚洲av高清不卡| 狂野欧美激情性xxxx| 捣出白浆h1v1| 国产精品99久久99久久久不卡| 国产麻豆69| 亚洲成av片中文字幕在线观看| 在线十欧美十亚洲十日本专区| 99热国产这里只有精品6| kizo精华| 免费日韩欧美在线观看| 老汉色av国产亚洲站长工具| 亚洲一区中文字幕在线| 菩萨蛮人人尽说江南好唐韦庄| 久热这里只有精品99| 王馨瑶露胸无遮挡在线观看| 国产精品偷伦视频观看了| av在线播放免费不卡| 亚洲欧美一区二区三区久久| 麻豆国产av国片精品| 久久久欧美国产精品| 在线十欧美十亚洲十日本专区| 亚洲人成伊人成综合网2020| 99re6热这里在线精品视频| 下体分泌物呈黄色| 成人国语在线视频| 久久久国产精品麻豆| 悠悠久久av| 成人18禁高潮啪啪吃奶动态图| 天天操日日干夜夜撸| 久久久国产欧美日韩av| 免费一级毛片在线播放高清视频 | 亚洲全国av大片| 啦啦啦中文免费视频观看日本| 汤姆久久久久久久影院中文字幕| 日韩 欧美 亚洲 中文字幕| 亚洲自偷自拍图片 自拍| 久久这里只有精品19| 美女高潮到喷水免费观看| 欧美亚洲日本最大视频资源| 天堂8中文在线网| 欧美日韩一级在线毛片| 欧美黄色淫秽网站| 中文字幕高清在线视频| 中文字幕制服av| 午夜视频精品福利| 丰满饥渴人妻一区二区三| 久热爱精品视频在线9| 曰老女人黄片| 老司机在亚洲福利影院| 男男h啪啪无遮挡| 首页视频小说图片口味搜索| 日韩欧美免费精品| 国产日韩欧美亚洲二区| 久久精品国产综合久久久| 99热网站在线观看| 香蕉丝袜av| 午夜精品久久久久久毛片777| 搡老乐熟女国产| 黑人操中国人逼视频| 青草久久国产| 亚洲专区国产一区二区| 欧美精品啪啪一区二区三区| 国产精品 国内视频| 午夜精品久久久久久毛片777| 成人国产av品久久久| 热re99久久国产66热| 大陆偷拍与自拍| 国产真人三级小视频在线观看| 国产成人免费观看mmmm| 无人区码免费观看不卡 | 欧美黑人欧美精品刺激| 深夜精品福利| 电影成人av| 国产淫语在线视频| 久久国产精品影院| 久久热在线av| 精品国产乱码久久久久久小说| www.熟女人妻精品国产| 下体分泌物呈黄色| 极品少妇高潮喷水抽搐| 国产精品九九99| 久久精品aⅴ一区二区三区四区| 精品国产国语对白av| 欧美另类亚洲清纯唯美| 亚洲人成伊人成综合网2020| 亚洲av成人一区二区三| 久久久久久人人人人人| 亚洲精品国产精品久久久不卡| 欧美人与性动交α欧美精品济南到| √禁漫天堂资源中文www| 成年版毛片免费区| 热99久久久久精品小说推荐| 嫁个100分男人电影在线观看| 丰满迷人的少妇在线观看| 国产精品久久久久久精品古装| 美女高潮到喷水免费观看| 一级,二级,三级黄色视频| 午夜激情久久久久久久| 日韩免费高清中文字幕av| 欧美精品高潮呻吟av久久| 男女下面插进去视频免费观看| 日韩中文字幕视频在线看片| 99国产精品一区二区三区| 日韩 欧美 亚洲 中文字幕| 亚洲av欧美aⅴ国产| 夫妻午夜视频| 一二三四在线观看免费中文在| 亚洲精品一二三| 制服诱惑二区| 精品高清国产在线一区| 免费看a级黄色片| 精品人妻熟女毛片av久久网站| 欧美日韩福利视频一区二区| 久久精品国产综合久久久| 日韩免费av在线播放| 日韩三级视频一区二区三区| 国产精品偷伦视频观看了| 正在播放国产对白刺激| 国产成人欧美| 深夜精品福利| 国产欧美日韩一区二区精品| 真人做人爱边吃奶动态| 男女午夜视频在线观看| 亚洲av日韩在线播放| 国产精品欧美亚洲77777| 一级a爱视频在线免费观看| 在线 av 中文字幕| 他把我摸到了高潮在线观看 | 欧美黄色淫秽网站| 在线 av 中文字幕| 午夜福利一区二区在线看| 中文欧美无线码| 男男h啪啪无遮挡| 国产真人三级小视频在线观看| 交换朋友夫妻互换小说| 欧美精品av麻豆av| 狠狠精品人妻久久久久久综合| 狠狠婷婷综合久久久久久88av| 欧美国产精品一级二级三级| 999久久久精品免费观看国产| 性高湖久久久久久久久免费观看| 无人区码免费观看不卡 | 国产精品久久久人人做人人爽| 汤姆久久久久久久影院中文字幕| 欧美久久黑人一区二区| 丝袜在线中文字幕| 亚洲av日韩精品久久久久久密| 99热国产这里只有精品6| 一级毛片女人18水好多| 国产无遮挡羞羞视频在线观看| 精品人妻熟女毛片av久久网站| 大香蕉久久成人网| 精品少妇久久久久久888优播| 午夜精品国产一区二区电影| 露出奶头的视频| 精品国产一区二区久久| 久久99热这里只频精品6学生| 日韩一区二区三区影片| 新久久久久国产一级毛片| 亚洲av日韩精品久久久久久密| 操美女的视频在线观看| 欧美 亚洲 国产 日韩一| 国产精品麻豆人妻色哟哟久久| 国产在线免费精品| 国产一区二区在线观看av| 欧美日韩国产mv在线观看视频| 久久婷婷成人综合色麻豆| 国产亚洲欧美在线一区二区| 91国产中文字幕| 黄色毛片三级朝国网站| 极品少妇高潮喷水抽搐| 少妇裸体淫交视频免费看高清 | 国产高清视频在线播放一区| 国产一区二区三区综合在线观看| 最新的欧美精品一区二区| 成人18禁高潮啪啪吃奶动态图| 美女国产高潮福利片在线看| av在线播放免费不卡| 高清黄色对白视频在线免费看| 可以免费在线观看a视频的电影网站| 国产精品熟女久久久久浪| 他把我摸到了高潮在线观看 | 国产成+人综合+亚洲专区| 精品视频人人做人人爽| 这个男人来自地球电影免费观看| 国产aⅴ精品一区二区三区波| 丰满饥渴人妻一区二区三| 国产在线免费精品| 中文字幕色久视频| 大香蕉久久成人网| 国产一区二区 视频在线| 日韩成人在线观看一区二区三区| 精品国产一区二区久久| 免费少妇av软件| 1024香蕉在线观看| 一本一本久久a久久精品综合妖精| 国产精品1区2区在线观看. | 岛国毛片在线播放| 天堂中文最新版在线下载| 久久久久国内视频| 亚洲综合色网址| 国产精品久久久久成人av| 涩涩av久久男人的天堂| 99在线人妻在线中文字幕 | tube8黄色片| 老鸭窝网址在线观看| 黄色a级毛片大全视频| 热re99久久精品国产66热6| 在线观看www视频免费| 嫩草影视91久久| 女人久久www免费人成看片| 日韩有码中文字幕| 黄片播放在线免费| 757午夜福利合集在线观看| 91成人精品电影| 大陆偷拍与自拍| 久久久久久亚洲精品国产蜜桃av| 成人永久免费在线观看视频 | 在线看a的网站| av福利片在线| 99国产精品一区二区三区| 欧美av亚洲av综合av国产av| 在线看a的网站| 伦理电影免费视频| 9热在线视频观看99| 丁香欧美五月| 香蕉丝袜av| 成人黄色视频免费在线看| 精品久久久久久电影网| 自拍欧美九色日韩亚洲蝌蚪91| 久久国产精品人妻蜜桃| www.熟女人妻精品国产| 九色亚洲精品在线播放| 日韩 欧美 亚洲 中文字幕| 国产精品av久久久久免费| 中国美女看黄片| 欧美国产精品一级二级三级| 午夜福利影视在线免费观看| 久久久久久免费高清国产稀缺| 十八禁网站免费在线| av福利片在线| 亚洲午夜理论影院| 亚洲中文字幕日韩| 久久中文看片网| 极品教师在线免费播放| 人人妻人人澡人人看| 亚洲情色 制服丝袜| 啦啦啦在线免费观看视频4| 狠狠精品人妻久久久久久综合| 久久毛片免费看一区二区三区| 夜夜爽天天搞| 久久国产精品人妻蜜桃| 老司机靠b影院| 亚洲国产看品久久| 一夜夜www| 国产国语露脸激情在线看| 国产精品秋霞免费鲁丝片| 99精品在免费线老司机午夜| 国产亚洲av高清不卡| 国产av一区二区精品久久| 久久精品国产亚洲av高清一级| 美女主播在线视频| 亚洲黑人精品在线| 女警被强在线播放| 欧美久久黑人一区二区| 亚洲精品成人av观看孕妇| 亚洲,欧美精品.| 丁香六月天网| 一夜夜www| 国产精品欧美亚洲77777| 亚洲五月色婷婷综合| 欧美激情 高清一区二区三区| 国产熟女午夜一区二区三区| 精品卡一卡二卡四卡免费| 亚洲国产成人一精品久久久| 国产主播在线观看一区二区| 久久精品91无色码中文字幕| 中文字幕高清在线视频| 在线观看免费视频网站a站| 国产免费福利视频在线观看| 亚洲免费av在线视频| 一级黄色大片毛片| 在线观看人妻少妇| 高清黄色对白视频在线免费看| 国产成人啪精品午夜网站| 动漫黄色视频在线观看| 精品久久久久久久毛片微露脸| 可以免费在线观看a视频的电影网站| 精品少妇内射三级| 午夜精品国产一区二区电影| 男女床上黄色一级片免费看| 麻豆av在线久日| 欧美另类亚洲清纯唯美| 麻豆乱淫一区二区| 女人久久www免费人成看片| 一级片'在线观看视频| 国产精品1区2区在线观看. | 女人爽到高潮嗷嗷叫在线视频| 免费少妇av软件| 嫁个100分男人电影在线观看| 中文字幕最新亚洲高清| 久热爱精品视频在线9| 两个人免费观看高清视频| a在线观看视频网站| 亚洲国产欧美网| 国产一卡二卡三卡精品| 国产麻豆69| 久久精品亚洲精品国产色婷小说| 在线观看免费视频网站a站| 午夜福利在线观看吧| 色视频在线一区二区三区| 亚洲色图av天堂| 天天影视国产精品| 国产av精品麻豆| 桃花免费在线播放| 另类精品久久| 新久久久久国产一级毛片| 欧美日韩中文字幕国产精品一区二区三区 | 交换朋友夫妻互换小说| 9色porny在线观看| 欧美成人午夜精品| 中文字幕另类日韩欧美亚洲嫩草| 国产av国产精品国产| 国产精品98久久久久久宅男小说| 免费看a级黄色片| 亚洲熟妇熟女久久| 高清视频免费观看一区二区| 久久久久久久精品吃奶| 亚洲精华国产精华精| 日韩中文字幕视频在线看片| 老司机亚洲免费影院| av有码第一页| 人人澡人人妻人| 在线观看一区二区三区激情| 99香蕉大伊视频| 蜜桃国产av成人99| 超色免费av| 精品福利观看| 成在线人永久免费视频| 国产高清国产精品国产三级| 男女午夜视频在线观看| 超色免费av| 久久精品亚洲熟妇少妇任你| 99re6热这里在线精品视频| 免费不卡黄色视频| 亚洲午夜理论影院| 国产高清激情床上av| 欧美日韩成人在线一区二区| 亚洲 欧美一区二区三区| 亚洲精品在线观看二区| 亚洲性夜色夜夜综合| 一级毛片电影观看| 国产日韩欧美亚洲二区| a级毛片在线看网站| tube8黄色片| 国产黄色免费在线视频| 狂野欧美激情性xxxx| 国产男女内射视频| 亚洲精品国产区一区二| 成在线人永久免费视频| 午夜成年电影在线免费观看| 超碰97精品在线观看| 国产免费福利视频在线观看| 久久99热这里只频精品6学生| 国产高清激情床上av| 亚洲色图 男人天堂 中文字幕| 精品少妇内射三级| 午夜福利一区二区在线看| 国产成人av教育| 国产精品99久久99久久久不卡| 午夜福利在线免费观看网站| 午夜成年电影在线免费观看| videos熟女内射| 欧美人与性动交α欧美精品济南到| 国产老妇伦熟女老妇高清| 免费观看人在逋| 亚洲国产欧美网| 精品少妇黑人巨大在线播放| 777米奇影视久久| 97在线人人人人妻| 最黄视频免费看| 亚洲精品成人av观看孕妇| 精品国产一区二区三区久久久樱花| 国产精品一区二区免费欧美| 精品亚洲成国产av| 美女主播在线视频| 又紧又爽又黄一区二区| 国产精品自产拍在线观看55亚洲 | 欧美日韩福利视频一区二区| 欧美精品啪啪一区二区三区| 国产在线免费精品| 黄片播放在线免费| av在线播放免费不卡| aaaaa片日本免费| 日韩中文字幕欧美一区二区| 日本a在线网址| 99九九在线精品视频| 国产欧美日韩精品亚洲av| 国产亚洲午夜精品一区二区久久| 日韩制服丝袜自拍偷拍| 亚洲人成电影观看| 欧美国产精品va在线观看不卡| 免费高清在线观看日韩| 91老司机精品| 久久久欧美国产精品| 人妻久久中文字幕网| 免费黄频网站在线观看国产| 国产成人av教育| 老司机靠b影院| 日韩大码丰满熟妇| 亚洲成人免费电影在线观看| 这个男人来自地球电影免费观看| www日本在线高清视频| 中文字幕另类日韩欧美亚洲嫩草| 精品少妇久久久久久888优播| 日韩欧美一区视频在线观看| 十分钟在线观看高清视频www| 国产日韩欧美视频二区| 久久中文字幕一级| 少妇猛男粗大的猛烈进出视频| 91麻豆精品激情在线观看国产 | 在线十欧美十亚洲十日本专区| 天堂动漫精品| 中文字幕最新亚洲高清| 日韩 欧美 亚洲 中文字幕| 性少妇av在线| 999久久久国产精品视频| 久久午夜亚洲精品久久| 黑人巨大精品欧美一区二区mp4| 精品免费久久久久久久清纯 | 国产高清国产精品国产三级| 免费少妇av软件| 一本—道久久a久久精品蜜桃钙片| 91字幕亚洲| 美女主播在线视频| 丝袜在线中文字幕| 超色免费av| 激情在线观看视频在线高清 | 午夜福利,免费看| 免费av中文字幕在线| 国产不卡一卡二| 精品久久蜜臀av无| 国产不卡一卡二| 亚洲第一欧美日韩一区二区三区 | 99国产精品免费福利视频| 人人妻人人添人人爽欧美一区卜| 一进一出好大好爽视频| 色尼玛亚洲综合影院| 另类亚洲欧美激情| 伦理电影免费视频| 亚洲精品久久成人aⅴ小说| 18禁裸乳无遮挡动漫免费视频| 亚洲美女黄片视频| 久久久久久亚洲精品国产蜜桃av|