• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Multi-Objective Evolutionary Approach to Selecting Security Solutions

    2017-10-11 10:54:07YungheeLeeTaeJongChoiandChangWookAhn

    Yunghee Lee, Tae Jong Choi, and Chang Wook Ahn

    AMulti-ObjectiveEvolutionaryApproachtoSelectingSecuritySolutions

    Yunghee Lee, Tae Jong Choi, and Chang Wook Ahn*

    In many companies or organizations, owners want to deploy the most efficient security solutions at a low cost. In this paper, we propose a method of choosing the best security solution from various security solutions using multi-objective genetic algorithm considering cost and weakness-decrease. The proposed system can support the best security solutions in various aspects of security issues. We use the NSGA-II algorithm, which has been verified in a variety of fields, to provide a comparison with existing genetic algorithms. Our scheme has increased the dominant area by more than 30% compared with the previous scheme and can provide a more diverse solution set.

    security; evolutionary algorithm; multi-objective genetic algorithm; artificial intelligence

    1 Introduction

    As the information technology systems and the Internet grew, so did the number of malicious threats to information[1]. To prevent information threats like this, organizations and enterprises study security solutions to secure information separately from their usual work. Security solutions are generally physical and logical countermeasures to prevent the failure and destruction of the information systems[2]. But in most cases, companies do not want to spend a lot of money on improving security. Because investing in security solutions does not seem to be effiective in a short time. Moreover, in order to invest in security solutions, companies have to choose how much to invest in what measures, but it is very difficult to make such a choice without knowing the exact threats and the effiectiveness of countermeasures. In this paper, we describe the selection of a security solution using NSGA-II, a kind of multi-objective genetic algorithm. This will help any business or organization easily choose the best security solution. This paper is organized as follows. In Section 2, we talk about genetic algorithms (GA) and Pareto-optimization. In Section 3, we explain a multi-objective genetic algorithm. We design a creating security solution and Weakness Decrease Point (WDP) for experiment and explain the program code in Section 4. The system we propose is presented in Section 5. Section 6 concludes the paper.

    2 Related works

    In this section, we talk about Pareto-optimality after the simple description of genetic algorithm and knapsack problem.

    2.1GeneticalgorithmandKnapsackProblem

    Genetic algorithm is a kind of heuristic search based on the phenomenon of nature. It was firstly designed by John Holland in 1975. This is one of the techniques to solve the optimization problem by calculation based on the natural evolutionary process. In general, if it is impossible to obtain an optimized solution of a problem through a formal formula, or if it is too complicated, it may be efficient to solve the problem through a genetic algorithm. However,the genetic algorithm does not always find a global optimal solution. This only helps to find solutions that are close to the optimal solution in a short time. Therefore, genetic algorithms are generally useful for problems classified as non- deterministic polynomial (NP) time problems[3].

    The knapsack problem is one of the most suitable problems to solve with genetic algorithm. The knapsack problem is a matter of finding out what items we need to fill the bag to make it the most valuable. The size of the items that can be stored in the bag is fixed, and each item has a predetermined value and size. Therefore, if the item can be split, we can easily find the global optimal solution to this problem with the greedy algorithm. But if they can not break apart, this problem can not be solved with a formal formula. Thus, in this case, this problem becomes an NP-completeness problem[4,5]. If we use a genetic algorithm to solve the knapsack problem, we can find an efficient solution for a short time. Recently, various studies related to the research we are trying to do have been preceded[6].

    2.2 Pareto-optimality

    If you use a simple genetic algorithm to solve the knapsack problem, the sum of the sizes will naturally approach the maximum size. If you have a budget and do not have any problems with using your whole budget, you can solve this problem using the simple genetic algorithm. But companies and organizations want to find low-cost, high-efficiency solutions and deploy it. Therefore unlike a simple genetic algorithm that considers only one objective, in the real world, it is necessary to find the optimal solution considering both the cost and the WDP. Sometimes, a problem may have more than just two objectives. If that happens, the problem will be much more complicated than when considering only one objective. In this paper, we propose a method to solve the problem by considering two objectives: cost and WDP.

    In general, we use the concept of “Pareto-optimality” when there are multiple objectives to find the global optimal solution of the problem. For example, the cost and WDP of security solutions to address security flaws are shown in Table 1. As shown in Fig.1, the data in Table1 can be charted. In the Fig.1, the X axis represents (100-cost) and the y axis means WDP: Decrease of dangerous.

    In the Fig.1 the solution in the upper right is observed to be more effiective and better.The optimal solution is the top-most, right-most solution in the chart. However, in general, higher WDPs result in higher costs, making it difficult to find the ideal solution like that. Instead, we can find a Pareto- optimal that is superior to other solutions[7]. The squares on the chart show Pareto-dominance easily. For example, R2 has a very high WDP, which is very helpful in solving security problems, but solution R2 is not an optimal solution because there is a solution R5 with a lower cost and higher WDP. At this point, Solution R2 is said to be a Pareto-dominated entity. When we create a chart like the one shown in the Fig.1, we call the unconstrained solution Pareto-optimal for any other solution, and call the set a Pareto-optimal set. The line that the pareto-optimal set forms is called the Pareto-frontier. Ultimately, what we are looking for is a Pareto-optimal set.

    Table 1 The list of solution sets that generated randomly.

    Fig.1Charttoselectbestsolutionfromvariouscandidates.

    3 Multi-objective genetic algorithm:NSGA-II

    There are many kinds of multi-objective genetic algorithms (MOGA) to solve many types of problems: NPGA, NSGA, SPEA, etc. All of them are very popular MOGA solutions and in this paper, we use the NSGA-II algorithm for solving the problem. Because NSGA-II is the lightest and fastest method of MOGA known so far. NSGA-II is a new advanced technique compared with NSGA, a conventional multi-objective genetic algorithm. It can finish the cal- culation in less time than NSGA and introduces the concept of non-dominant ranking. In addition, NSGA-II introduced a concept called Crowding Distance.Therefore, this scheme can distribute resources more efficiently than existing algorithms. Another thing that NSGA-II is diffierent from NSGA is Elitism. Elitism is the scheme of keeping the superior population among the population to the next generation. Therefore, solutions with a high fitness are not easily lost through generations[8]. The NSGA-II algorithm is easy to use and can quickly find solutions with a high fitness. And it has very high performance so that this algorithm is very popular[9].

    Fig.2 Flowchart for NSGA-II algorithm.

    The NSGA-II algorithm is shown in Fig.2[10]. Non-dominated rand means the rank that how many other solutions are dominating the solution. In other words, a lower non-dominated rank is a better solution. For example, there is a solution named A. If any solution is a dominating solution A, the non- dominated rank of solution A is zero. Thus, in the same generation, the Pareto optimal solution has the highest priority, and the solution farther from it has an increasingly lower priority. Like this, the non-dominated rank alignment process allows solutions to converge on the Pareto-optimal set. And Crowding Distance is a solution to see how many solutions are gathered in a small area when the charts are shown like Fig.1. This is a value that is calculated to help the solutions with the same non-dominated rank have diversity. Each solution has a high Crowding Distance value if it is less similar to the neighboring solution. This is an element for selecting an object with a diffierent property from the set of genetic entities belonging to the same non-dominated rank[8].

    3.1 Performance improvement

    We used diffierent mutations and crossover types to improve performance. Mutation and crossover are very important components in the genetic algo rithm. There are many types of mutation and crossover: Uniform Mutation, Parent-Centric Crossover, Bit Flip Mutation, Half-Uniform Crossover and etc. In this paper, we use the Simulated Binary Crossover (SBX) for crossover process and Polynomical Mutation (PM) for mutation process in NSGA-II. SBX is the operator that has the search ability similar to that of a single-point binary-coded crossover operator[11]. And the PM is the operator that is widely used in evolutionary optimization algorithms as a variation operator[12]. It attempts to simulate the offispring distribution of binary-encoded bit-flip mutation on real-valued decision variables. In this paper, the type of the value to be calculated was binary, but we used PM because the PM showed better performance than the bit flip mutation. PM is similar to SBX, it favors offispring nearer to the parent[13].

    And we set the population size for the genetic algorithm to 500 and the number of generations to 15000.

    4 Creating security solution and WDP

    We need to create a variety of virtual security solutions for the experiment, each with an introduction cost and a WDP. However, WDP is a value that can not be easily quantified. Therefore, in this paper, we use a reasonable random number as a WDP to create a sample virtual security solution.

    First, we need to create 500 random numbers to be used as the cost of introducing a virtual security solution. The total sum of 500 random numbers is 1000000. After doing that, we sort 100 random random numbers and put them into the array arr [ ]. Then we use the source code below to create a WDP corresponding to each cost, and place it in the array arr2 [ ].

    for (i=0;i<500; i++)

    {

    arr2[i]=gaussianRand(arr[i], STD);

    // STD is the standard deviation of gaussian random function

    // We setted STD to 50

    if (arr2[i] <=0)

    arr2[i] = rand()% arr[i] +1;

    }

    double gaussianRand(double mean, double stddev)

    { // gaussian random number generater function static double n2= 0.0;

    static int n2_cached = 0;

    if (!n2_cached)

    {

    doublex,y,r;

    do

    {

    x=2.0*rand()/RAND_MAX-1;

    y=2.0*rand()/RAND_MAX-1;

    r=x*x+y*y;

    } while (r==0.0 ||r> 1.0);

    {

    double d=sqrt(-2.0*log(r)/r);

    double n1=x*d;

    n2=y*d;

    double result = n1*stddev + mean;

    n2_cached = 1;

    return result;

    }

    {

    else

    {

    n2_cached= 0;

    return n2*stddev+ mean;

    }

    }

    So we can make the meaningful random WDP. Weakness decrease point will almost be proportional to security solutions cost. But there can be rarely too high Weakness Decrease Pointcsecurity solutions cost or the opposite case.

    5 Proposed scheme

    In this section, we suggest techniques for selecting the best security solution using NSGA-II, the MOGA mentioned in the previous section. As we mentioned in Section 1, businesses and organizations want security solutions that can get the most out of their business with minimal cost. Park et al. have released a solution for this problem[14]. They tried to solve this problem using the simple genetic algorithm and used a list of 10 virtual security solutions in the experiment. In order to compare the two schemes, we have coded programs that perform as well as the simple genetic algorithms used in Park et al.’s paper[14], and have created more new virtual security solution lists and experimented. We compared the results obtained using our scheme with those obtained using Park et al.’s scheme[14]. As a result of using the scheme of Park et al.[14], we could find three optimal solutions.

    And also important in the genetic algorithm is the fitness evaluation function. It is called as the fitness function. In the simple genetic algorithm used by Park et al.[14], the fitness function considers only one objective: WDP. In MOGA, however, we can use multiple objectives for fitness functions.

    (1)

    (2)

    In this paper, we used two fitness functions as shown in Equations 1 and 2.Equation 1 uses (100000-the total cost of the solution) values for fitness calculations, and Equation 2 uses the entire WDP of the solution for fitness calculations.nis the number of the whole chromosomes, in other words,nmeans the number of solutions.vcmeans each chromosome structure.vc.dincludes the decrease point of security weakness, andvc.cincludes the cost for selecting that solution.vc.sincludes the binary number for checking whether each solution was selected or not selected. So ifvc.s’s value is 0, that means the solution was not selected.

    Fig.3ThegraphaboutselectingsecuritysolutionusingNSGA-II.

    Fig.3 compares the best virtual security solutions selected using the NSGA-II algorithm to the best virtual security solutions selected using the simple genetic algorithm. The horizontal axis indicates the value off1, and the vertical axis indicates the value off2. The results of using the existing Park et al.’s scheme[14]have reversed the cost value for easy comparison. Therefore, the cost of the original research is actually 100000 times the original cost. For the sake of clarity, we plotted the results of original research as red squares and the results of our research as black dots. Using the NSGA-II-based security solution selection scheme we have studied, we can confirm that the selected security solution set forms the Pareto-frontier and completely dominates the results of existing papers. The results of this paper provide a variety of choices, from low cost solution selection to high cost solution selection.

    6 Conclusion

    In this paper, we propose a scheme to efficiently select the security solutions required by corporations and organizations using NSGA-II in terms of various objectives: cost and value. The proposed method was able to find optimal solutions considering various objectives and showed superiority in the process and performance of fitness evaluation compared to existing papers using simple genetic algorithm. More detailed study on how to quantify the Weakness Decrease Point (WDP) should be conducted and the stability and performance of NSGA-III developed by NSGA-II should be verified.

    Acknowledgment

    This research was supported by X-Project funded by the Ministry of Science, ICT & Future Planning (NRF-2016R1E1A2A02946533) and also supported by Institute for Information & communications Technology Promotion (IITP) grant funded by the Korea government (MSIP) (No.B0717-17-0070).

    [1]S.W.Chai, Economic effiects of personal information protection, Korea Consumer Agency,vol.33, pp.43-64,2008.

    [2]Y.O.Kwon and B.D.Kim, The effiect of information security breach and security investment announcement on the market value of korean firms,InformationSystemReview, vol.9,no.1, pp.105-120, 2007.

    [3]M.Mitchell,Anintroductiontogeneticalgorithms,USA: MIT press,1996.

    [4]Kellerer and Hans,Knapsackproblems, Berlin, Germany: Springling Press,2004.

    [5]S.Martello and P.Toth, Knapsack problems: Algorithms and computer implementations,JournaloftheOperationalResearchSociety, 42(6), 513-513.

    [6]P.C.Chu and J.E.Beasley, A genetic algorithm for the multidimensional knapsack problem,Journalofheuristics,vol.4, no.1, pp.63-86, 1998.

    [7]J.Horn, N.Nafpliotis, and D.Goldberg, A niched pareto genetic algorithm for multiobjective optimization, inProceedingsof1stIEEEConferenceonEvolutionaryComputation, Florida,USA,1994, pp.82-87.

    [8]J.Yoon, J.Lee, and D.Kim, Feature selection in multi-label classification using nsga-ii algorithm,JournalofKIISE:SoftwareandApplications,vol.40,no.3, pp.133-140, 2013.

    [9]K.Deb, A.Pratap, S.Agarwal, and T.Meyarivan, A fast and elitist multi objective genetic algorithm: Nsga-ii,IEEETransactionsonEvolutionaryCompution,vol.6,no.2,pp.182-197,2002.

    [10] S.T.Khu and H.Madsen, Multi-objective calibration with pareto preference ordering: An application to rainfall-runoffi model calibration,WaterRe-wourcesResearch,vol.41,no.3,pp.1-14,2005.

    [11] D.Kalyanmoy and K.Amarendra, Real-coded genetic algorithms with simulated binary crossover: studies on multimodel and multiobjective problems,ComplexSystems, vol.9,no.6,pp.431-454, 1995.

    [12] M.Hamdan, A dynamic polynomial mutation for evolutionary multi-objective optimization algorithms,InternationalJounalonArtificialIntelligenceTools,vol.20,no.1,pp.209-219, 2011.

    [13] K.Deb and D.Deb, Analysing mutation schemes for real-parameter genetic algorithms,InternationalJournalofArtificialIntelligenceandSoftComputting, vol.4,no.1,pp.1-28, 2014.

    [14] J.Park, Y.Bang, G.Lee, and K.Nam, Generation of security measure by using simple genetic algorithm, inProceedingsofKIISEConference30, 2003,vol.21,pp.769-771.

    TaeJongChoiis working as a postdoctoral researcherin at Sungkyunkwan University (SKKU), Republic of Korea. He received Ph.D. degree from the Department of Electrical and Computer Engineering at SKKU in 2017. His research interests include evolutionary algorithms, machine learning, deep learning, and the applications of artificial intelligence.ChangWookAhnis working as a Professor in the School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea. From 2008 to 2016, he was an Assistant/Associate Professor at the Department of Computer Engineering, Sungkyunkwan University (SKKU), Suwon, Republic of Korea. He received his PH.D. degree from the Department of Information and Communications, GIST. His research interests include genetic algorithms, multi-objective optimization, neural networks, and the applications of evolutionary machine learning techniques.

    2016-12-20; accepted:2017-01-20

    B.S. degree from the Department of Cyber Security at Kyung-Il University, Kyungsan, Republic of Korea, in 2012. He is currently a M.S. candidate in the Department of Computer Engineering at Sungkyunkwan University, Suwon, Republic of Korea. Also, he is currently working as a researcher at Gwangju Institute of Science and Technology (GIST). His research interests include genetic algorithms, Artificial Intelligence, multi-objective optimization and the cyber security.

    ?Tae Jong Choi is with Department of Computer Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, Republic of Korea.

    ?Yunghee Lee and Chang Wook Ahn are with School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST).E-mail: cwan@gist.ac.kr(Chang Wook Ahn).

    *To whom correspondence should be addressed. Manuscript

    日本 欧美在线| 男男h啪啪无遮挡| 18禁裸乳无遮挡免费网站照片| 岛国视频午夜一区免费看| 国产精品久久久久久亚洲av鲁大| 国产精品98久久久久久宅男小说| 高潮久久久久久久久久久不卡| 国产精品一区二区三区四区久久| 国产视频一区二区在线看| 成人欧美大片| 午夜精品一区二区三区免费看| 国内精品久久久久精免费| 亚洲中文日韩欧美视频| 精品久久久久久成人av| 国产精品av久久久久免费| 国产av一区二区精品久久| 欧美+亚洲+日韩+国产| 男男h啪啪无遮挡| 久久久精品大字幕| 九色国产91popny在线| 午夜精品久久久久久毛片777| 欧美日韩亚洲综合一区二区三区_| 亚洲九九香蕉| 丰满人妻一区二区三区视频av | 人妻夜夜爽99麻豆av| 激情在线观看视频在线高清| 女人被狂操c到高潮| 女生性感内裤真人,穿戴方法视频| 又粗又爽又猛毛片免费看| 天天躁夜夜躁狠狠躁躁| 亚洲中文字幕一区二区三区有码在线看 | 午夜精品一区二区三区免费看| 国产69精品久久久久777片 | 日韩av在线大香蕉| 五月玫瑰六月丁香| 一进一出抽搐gif免费好疼| 亚洲中文字幕日韩| 精品不卡国产一区二区三区| 美女扒开内裤让男人捅视频| 午夜福利在线观看吧| 九色成人免费人妻av| 国产精品久久久av美女十八| 久久香蕉精品热| 亚洲av电影不卡..在线观看| 久99久视频精品免费| 久久久久国内视频| 国产成年人精品一区二区| 亚洲成人免费电影在线观看| 中文字幕高清在线视频| 日韩欧美在线乱码| 又黄又粗又硬又大视频| 国产精品一区二区三区四区免费观看 | 在线观看午夜福利视频| 一边摸一边抽搐一进一小说| 久久精品国产亚洲av高清一级| 国产精品一及| 免费看a级黄色片| 成人特级黄色片久久久久久久| 黑人欧美特级aaaaaa片| 国产久久久一区二区三区| www国产在线视频色| 欧美成人免费av一区二区三区| 亚洲avbb在线观看| 欧美极品一区二区三区四区| 在线观看午夜福利视频| 亚洲九九香蕉| 一二三四社区在线视频社区8| 啦啦啦免费观看视频1| 亚洲国产精品999在线| 他把我摸到了高潮在线观看| 亚洲av美国av| 久久精品夜夜夜夜夜久久蜜豆 | 国产蜜桃级精品一区二区三区| 美女高潮喷水抽搐中文字幕| 色在线成人网| 一进一出抽搐gif免费好疼| 99国产极品粉嫩在线观看| 欧美在线黄色| 国产免费av片在线观看野外av| 美女免费视频网站| 国产一级毛片七仙女欲春2| 亚洲欧美精品综合一区二区三区| 特级一级黄色大片| 成熟少妇高潮喷水视频| 亚洲avbb在线观看| 国产精品 国内视频| 国内少妇人妻偷人精品xxx网站 | 桃色一区二区三区在线观看| 国产欧美日韩一区二区精品| 久久精品91无色码中文字幕| 嫩草影院精品99| 黄色视频不卡| videosex国产| 人人妻人人澡欧美一区二区| 国产精品1区2区在线观看.| 国产亚洲精品综合一区在线观看 | 一级a爱片免费观看的视频| 亚洲一区二区三区色噜噜| 国产一区二区三区视频了| 动漫黄色视频在线观看| 一区二区三区高清视频在线| 啦啦啦韩国在线观看视频| 一卡2卡三卡四卡精品乱码亚洲| 性欧美人与动物交配| 最新在线观看一区二区三区| 熟女少妇亚洲综合色aaa.| 午夜精品一区二区三区免费看| 可以免费在线观看a视频的电影网站| 在线观看日韩欧美| 少妇的丰满在线观看| 一本精品99久久精品77| 国产1区2区3区精品| 脱女人内裤的视频| 女人被狂操c到高潮| 黄片大片在线免费观看| 精品熟女少妇八av免费久了| 美女扒开内裤让男人捅视频| 高清在线国产一区| 亚洲av片天天在线观看| 午夜激情av网站| 亚洲最大成人中文| 91老司机精品| 亚洲av电影不卡..在线观看| 久99久视频精品免费| e午夜精品久久久久久久| www国产在线视频色| 精品久久久久久久久久久久久| 亚洲av中文字字幕乱码综合| 男男h啪啪无遮挡| 人人妻人人看人人澡| 亚洲色图av天堂| 精品人妻1区二区| 亚洲精品一区av在线观看| 村上凉子中文字幕在线| 国产高清激情床上av| 国产黄a三级三级三级人| 国内毛片毛片毛片毛片毛片| av超薄肉色丝袜交足视频| 欧美日韩亚洲综合一区二区三区_| 色噜噜av男人的天堂激情| 久久欧美精品欧美久久欧美| 中文字幕人成人乱码亚洲影| 国产黄色小视频在线观看| 国产真实乱freesex| 99久久综合精品五月天人人| 久久精品成人免费网站| 亚洲黑人精品在线| 老鸭窝网址在线观看| 国产精品 国内视频| 在线观看午夜福利视频| 99riav亚洲国产免费| 免费观看人在逋| 免费观看人在逋| 日日干狠狠操夜夜爽| 两个人视频免费观看高清| 欧美性猛交黑人性爽| 禁无遮挡网站| 人妻久久中文字幕网| 精品久久蜜臀av无| aaaaa片日本免费| 中文字幕精品亚洲无线码一区| 1024手机看黄色片| 久9热在线精品视频| 亚洲一卡2卡3卡4卡5卡精品中文| 99国产精品一区二区蜜桃av| 日本一二三区视频观看| 亚洲成人久久爱视频| 亚洲精品国产一区二区精华液| 国产激情欧美一区二区| 国产aⅴ精品一区二区三区波| 国产精品久久电影中文字幕| 看黄色毛片网站| 老司机在亚洲福利影院| 两个人的视频大全免费| 一级a爱片免费观看的视频| 欧美黑人精品巨大| 丰满人妻一区二区三区视频av | 国产高清有码在线观看视频 | bbb黄色大片| 久久亚洲真实| 91国产中文字幕| 国产麻豆成人av免费视频| 久久国产精品人妻蜜桃| 国产免费男女视频| 午夜两性在线视频| 日韩精品免费视频一区二区三区| 久久久久久人人人人人| 亚洲电影在线观看av| 三级国产精品欧美在线观看 | 麻豆成人av在线观看| 999精品在线视频| 成人三级黄色视频| 床上黄色一级片| 母亲3免费完整高清在线观看| 极品教师在线免费播放| 黄频高清免费视频| 成年人黄色毛片网站| 一级作爱视频免费观看| xxxwww97欧美| 精品一区二区三区av网在线观看| 国产亚洲精品一区二区www| 黄色 视频免费看| 亚洲精品一区av在线观看| 好男人电影高清在线观看| 欧美日本亚洲视频在线播放| 国产一区二区在线观看日韩 | 99国产综合亚洲精品| 久久久水蜜桃国产精品网| or卡值多少钱| 黄频高清免费视频| 一本久久中文字幕| 三级毛片av免费| 蜜桃久久精品国产亚洲av| 50天的宝宝边吃奶边哭怎么回事| 天堂av国产一区二区熟女人妻 | 动漫黄色视频在线观看| 久久精品国产亚洲av香蕉五月| 亚洲欧美一区二区三区黑人| 1024视频免费在线观看| 狠狠狠狠99中文字幕| 色精品久久人妻99蜜桃| 亚洲欧美日韩高清专用| 国产成人av教育| 色综合欧美亚洲国产小说| 欧美大码av| 国产1区2区3区精品| 特级一级黄色大片| 亚洲欧美精品综合一区二区三区| 国内少妇人妻偷人精品xxx网站 | 变态另类成人亚洲欧美熟女| 亚洲精品在线观看二区| 精品乱码久久久久久99久播| 嫩草影院精品99| 久久久久久大精品| 九九热线精品视视频播放| 在线观看午夜福利视频| 国产日本99.免费观看| 国产99久久九九免费精品| 欧美三级亚洲精品| 两个人免费观看高清视频| 欧美性猛交╳xxx乱大交人| 欧美成人性av电影在线观看| 女警被强在线播放| 午夜精品一区二区三区免费看| 精品国产亚洲在线| 深夜精品福利| 99riav亚洲国产免费| 免费在线观看亚洲国产| 欧美黄色淫秽网站| 精品一区二区三区av网在线观看| 亚洲av片天天在线观看| 国产视频一区二区在线看| 久久精品国产亚洲av香蕉五月| av在线天堂中文字幕| 亚洲精品久久国产高清桃花| www.www免费av| 成人18禁在线播放| 激情在线观看视频在线高清| 国产真人三级小视频在线观看| 精品免费久久久久久久清纯| 国内精品久久久久久久电影| 国产精品 欧美亚洲| 亚洲av中文字字幕乱码综合| 曰老女人黄片| 国产三级在线视频| 久久久久久久午夜电影| 亚洲人成电影免费在线| 波多野结衣巨乳人妻| 久久久久久九九精品二区国产 | 欧美中文综合在线视频| 亚洲成人免费电影在线观看| 美女午夜性视频免费| 日韩三级视频一区二区三区| 后天国语完整版免费观看| 黑人巨大精品欧美一区二区mp4| 村上凉子中文字幕在线| 国产av不卡久久| 一边摸一边抽搐一进一小说| 国产激情久久老熟女| 亚洲一区中文字幕在线| 精品久久久久久,| 叶爱在线成人免费视频播放| 亚洲五月婷婷丁香| 午夜老司机福利片| 少妇的丰满在线观看| 一区二区三区国产精品乱码| 天天躁夜夜躁狠狠躁躁| 国产精品日韩av在线免费观看| 三级毛片av免费| 欧美日本视频| 免费无遮挡裸体视频| 午夜福利在线在线| 国产私拍福利视频在线观看| 国产一区二区三区在线臀色熟女| 青草久久国产| 日韩欧美在线二视频| 一本大道久久a久久精品| 精品电影一区二区在线| 88av欧美| 18美女黄网站色大片免费观看| 老司机午夜福利在线观看视频| 欧美日韩瑟瑟在线播放| 亚洲美女视频黄频| 国产黄色小视频在线观看| 高清毛片免费观看视频网站| 国产69精品久久久久777片 | 欧美3d第一页| 国产av麻豆久久久久久久| 国产视频一区二区在线看| 97人妻精品一区二区三区麻豆| 亚洲精品美女久久久久99蜜臀| 亚洲国产精品成人综合色| aaaaa片日本免费| 人妻丰满熟妇av一区二区三区| 国产精品一区二区精品视频观看| 亚洲真实伦在线观看| 88av欧美| 久久精品91无色码中文字幕| 免费看日本二区| 国产成+人综合+亚洲专区| 天天躁夜夜躁狠狠躁躁| 视频区欧美日本亚洲| 亚洲免费av在线视频| 又黄又粗又硬又大视频| 男人舔女人下体高潮全视频| 亚洲av熟女| 日本撒尿小便嘘嘘汇集6| 91老司机精品| 一边摸一边做爽爽视频免费| 香蕉av资源在线| 成年人黄色毛片网站| 精品国产乱子伦一区二区三区| 亚洲一区二区三区色噜噜| 国产亚洲欧美在线一区二区| 亚洲人成电影免费在线| 日本三级黄在线观看| 亚洲av五月六月丁香网| 香蕉av资源在线| 99在线视频只有这里精品首页| 一区二区三区国产精品乱码| 亚洲美女黄片视频| 色综合站精品国产| 最近最新免费中文字幕在线| 99热6这里只有精品| 看片在线看免费视频| 日韩精品青青久久久久久| 国产一区二区三区在线臀色熟女| 可以免费在线观看a视频的电影网站| 麻豆成人av在线观看| 亚洲熟妇熟女久久| 久久精品国产99精品国产亚洲性色| 老司机在亚洲福利影院| 老汉色av国产亚洲站长工具| 精品欧美国产一区二区三| 久久久久精品国产欧美久久久| 成人国产综合亚洲| av在线播放免费不卡| 国产亚洲欧美在线一区二区| 桃色一区二区三区在线观看| 久久精品亚洲精品国产色婷小说| 男人舔女人下体高潮全视频| 欧美人与性动交α欧美精品济南到| 亚洲av中文字字幕乱码综合| 成人三级黄色视频| 黄片大片在线免费观看| 亚洲中文日韩欧美视频| 村上凉子中文字幕在线| 精品国产乱码久久久久久男人| 午夜老司机福利片| 亚洲午夜精品一区,二区,三区| 欧美黑人欧美精品刺激| 亚洲成人久久爱视频| 日韩大尺度精品在线看网址| 妹子高潮喷水视频| 欧美日韩中文字幕国产精品一区二区三区| 久久久久久亚洲精品国产蜜桃av| 亚洲专区国产一区二区| 1024香蕉在线观看| 麻豆国产av国片精品| 欧美日本视频| 国产免费av片在线观看野外av| 18禁黄网站禁片午夜丰满| 欧美乱色亚洲激情| 久久人人精品亚洲av| 51午夜福利影视在线观看| 欧美中文日本在线观看视频| 不卡av一区二区三区| 午夜免费观看网址| 久99久视频精品免费| 日韩国内少妇激情av| 香蕉av资源在线| 亚洲国产欧美一区二区综合| 正在播放国产对白刺激| 动漫黄色视频在线观看| 19禁男女啪啪无遮挡网站| 午夜激情福利司机影院| 一本大道久久a久久精品| 日韩精品免费视频一区二区三区| 日本 欧美在线| 国产精品一区二区免费欧美| 99久久久亚洲精品蜜臀av| 午夜福利免费观看在线| 国产69精品久久久久777片 | 99riav亚洲国产免费| 成年女人毛片免费观看观看9| 亚洲va日本ⅴa欧美va伊人久久| 中文字幕人成人乱码亚洲影| 99久久无色码亚洲精品果冻| 亚洲第一电影网av| 亚洲 欧美 日韩 在线 免费| 长腿黑丝高跟| 一进一出抽搐动态| 久久久久免费精品人妻一区二区| 少妇人妻一区二区三区视频| 日韩av在线大香蕉| 国产又黄又爽又无遮挡在线| 日本黄大片高清| 亚洲成人国产一区在线观看| 亚洲人成77777在线视频| 亚洲免费av在线视频| 成人永久免费在线观看视频| 精华霜和精华液先用哪个| 日韩三级视频一区二区三区| 精品久久久久久久末码| 午夜成年电影在线免费观看| 成人欧美大片| 神马国产精品三级电影在线观看 | 一二三四在线观看免费中文在| 精品电影一区二区在线| 欧美zozozo另类| 黄色a级毛片大全视频| 此物有八面人人有两片| 亚洲国产精品成人综合色| 日日摸夜夜添夜夜添小说| 亚洲精品久久成人aⅴ小说| 国产麻豆成人av免费视频| 一级黄色大片毛片| 舔av片在线| 亚洲欧洲精品一区二区精品久久久| 三级国产精品欧美在线观看 | 亚洲激情在线av| 欧美人与性动交α欧美精品济南到| 欧美性长视频在线观看| 十八禁网站免费在线| svipshipincom国产片| 午夜福利18| 一级作爱视频免费观看| 亚洲精品一卡2卡三卡4卡5卡| 露出奶头的视频| 怎么达到女性高潮| 国产又色又爽无遮挡免费看| 亚洲欧美日韩高清专用| 女人爽到高潮嗷嗷叫在线视频| 两个人免费观看高清视频| 操出白浆在线播放| 亚洲一区中文字幕在线| 久久久国产精品麻豆| 国产精品永久免费网站| 免费看a级黄色片| 精品欧美国产一区二区三| 国产黄片美女视频| 国产精品自产拍在线观看55亚洲| 亚洲av成人精品一区久久| 国产精品av视频在线免费观看| 亚洲一区高清亚洲精品| 午夜视频精品福利| 1024视频免费在线观看| 757午夜福利合集在线观看| 99在线人妻在线中文字幕| 欧美中文日本在线观看视频| 国产99白浆流出| 精品久久久久久久末码| 91九色精品人成在线观看| 久久婷婷人人爽人人干人人爱| 欧美色视频一区免费| 日韩精品中文字幕看吧| 久久久久久国产a免费观看| 九色国产91popny在线| 国产真人三级小视频在线观看| 日本一区二区免费在线视频| 一区二区三区激情视频| 欧美zozozo另类| 波多野结衣巨乳人妻| 国产91精品成人一区二区三区| 国产日本99.免费观看| 黑人巨大精品欧美一区二区mp4| 免费观看人在逋| 国产午夜精品论理片| 久久精品综合一区二区三区| 观看免费一级毛片| 午夜福利18| 操出白浆在线播放| 妹子高潮喷水视频| 国产精品久久视频播放| 亚洲最大成人中文| 免费高清视频大片| 成熟少妇高潮喷水视频| 日本免费一区二区三区高清不卡| 欧美在线一区亚洲| 成人精品一区二区免费| 国产精品一及| 国产成人欧美在线观看| 国产高清视频在线播放一区| 母亲3免费完整高清在线观看| 精品高清国产在线一区| 国产私拍福利视频在线观看| 国产单亲对白刺激| ponron亚洲| 国产成人影院久久av| 国产精品亚洲美女久久久| 19禁男女啪啪无遮挡网站| 观看免费一级毛片| 香蕉av资源在线| 日韩欧美在线二视频| ponron亚洲| 最近在线观看免费完整版| 又紧又爽又黄一区二区| 欧美在线一区亚洲| 看免费av毛片| 国产免费av片在线观看野外av| av片东京热男人的天堂| 老汉色∧v一级毛片| 色播亚洲综合网| 中文资源天堂在线| АⅤ资源中文在线天堂| 国产精品永久免费网站| 丁香欧美五月| 午夜老司机福利片| 久久婷婷成人综合色麻豆| 在线观看免费日韩欧美大片| 在线a可以看的网站| 国产精品久久久久久人妻精品电影| 不卡av一区二区三区| 在线观看美女被高潮喷水网站 | 少妇裸体淫交视频免费看高清 | 中文亚洲av片在线观看爽| 99久久无色码亚洲精品果冻| 日韩国内少妇激情av| 久久人妻福利社区极品人妻图片| 搡老熟女国产l中国老女人| 亚洲性夜色夜夜综合| 亚洲成av人片在线播放无| 国产午夜精品久久久久久| 两人在一起打扑克的视频| 欧美日韩黄片免| 桃红色精品国产亚洲av| 亚洲中文字幕日韩| 午夜免费激情av| 国产99白浆流出| 毛片女人毛片| 日本黄色视频三级网站网址| 国产亚洲av嫩草精品影院| 国产午夜福利久久久久久| 午夜精品在线福利| 小说图片视频综合网站| av超薄肉色丝袜交足视频| 久久久久国产精品人妻aⅴ院| 国产精品精品国产色婷婷| 黄色a级毛片大全视频| 一进一出好大好爽视频| 熟女少妇亚洲综合色aaa.| 五月伊人婷婷丁香| 女人被狂操c到高潮| 村上凉子中文字幕在线| 首页视频小说图片口味搜索| 无遮挡黄片免费观看| e午夜精品久久久久久久| 亚洲乱码一区二区免费版| 免费看日本二区| 欧美+亚洲+日韩+国产| 国产精品 国内视频| 国产黄片美女视频| 一级片免费观看大全| 亚洲午夜精品一区,二区,三区| 岛国在线免费视频观看| www日本在线高清视频| 日本免费a在线| 一本大道久久a久久精品| 久久精品国产亚洲av高清一级| 搞女人的毛片| 51午夜福利影视在线观看| 国产精品国产高清国产av| 麻豆av在线久日| 亚洲 欧美 日韩 在线 免费| 99在线视频只有这里精品首页| 国产爱豆传媒在线观看 | 全区人妻精品视频| 国产熟女午夜一区二区三区| 日韩欧美国产一区二区入口| 国内精品久久久久久久电影| 97碰自拍视频| 免费在线观看成人毛片| 婷婷精品国产亚洲av在线| 女人被狂操c到高潮| 一a级毛片在线观看| 亚洲欧洲精品一区二区精品久久久| 久久中文看片网| 久久热在线av| 十八禁网站免费在线| 免费观看精品视频网站| 久久精品综合一区二区三区| 欧美乱码精品一区二区三区| 亚洲欧美一区二区三区黑人| 国产精品一区二区精品视频观看| 久久久久九九精品影院| 悠悠久久av| 国产日本99.免费观看| 美女大奶头视频| 国产av一区在线观看免费| 男女床上黄色一级片免费看| 99国产精品99久久久久| 欧美性猛交黑人性爽| 中文资源天堂在线| 亚洲精品中文字幕一二三四区| 婷婷亚洲欧美|