程一元,張永全,費(fèi)經(jīng)泰
(1.中國(guó)計(jì)量大學(xué) 理學(xué)院,浙江 杭州 310018;2. 安慶師范大學(xué) 數(shù)學(xué)與計(jì)算科學(xué)學(xué)院,安徽 安慶 246133)
程一元1,張永全1,費(fèi)經(jīng)泰2
(1.中國(guó)計(jì)量大學(xué) 理學(xué)院,浙江 杭州 310018;2. 安慶師范大學(xué) 數(shù)學(xué)與計(jì)算科學(xué)學(xué)院,安徽 安慶 246133)
有理逼近; Chebyshev結(jié)點(diǎn); Newman-α型有理算子
Keywords: rational approximation; Chebyshev nodes; Newman-αtype rational operator
類(lèi)似于Newman型有理算子定義如下:Newman-α型有理算子
證明:根據(jù)計(jì)算可得
則有
又因?yàn)閨>Tn(x)|≤1,?x∈[-1,1].所以當(dāng)x≥x1時(shí),有
由文獻(xiàn)[12]中
定理1:結(jié)點(diǎn)組X取
對(duì)于?x∈[-1,1],當(dāng)n充分大時(shí)
nΛ2n-1(T).
其中Λ2n-1(T)是Lebesgue常數(shù),由文獻(xiàn)[2]中可知:
其中Cα是含α的常量.
由引理1可知,
故可以得到
其中Dα是含α的常量.
所以綜合三種情形有
下證當(dāng)n充分大時(shí),hn(T;x*)是有界量.令
可以得到
又因?yàn)?/p>
從而
2nπ+o(1)
(n→∞),
(n→∞).
所以有
最后我們得到:
然后令
同時(shí)有
利用log(1+x)≤x(x≥0)可得到logRn=
所以當(dāng)n充分大時(shí),
定理2得證.
由以上定理1,定理2可得
[1] NEWMAN D J. Rational approximation to |x| [J].MichiganMathematicalJournal, 1964,11(1) : 11-14.
[2] BRUTMAN L, PASSOW E. Rational interpolation to |x| at the Chebyshev nodes [J].BulletinoftheAustralianMathematicalSociety,1997,56(1) :81-86.
[3] 張慧明,李建俊. |x|在第二類(lèi)Chebyshev結(jié)點(diǎn)的有理逼近[J].鄭州大學(xué)學(xué)報(bào)(理學(xué)版),2010,42(2) :1-3. ZHANG H M,LI J J. Rational approximation to |x| at the Chebyshev nodes of the second kind[J].JournalofZhengzhouUniversity(NaturalScienceEdition), 2010,42(2) :1-3
[4] BRUTMAN L. On rational interpolation to |x| at the adjusted Chebyshev nodes[J].JournalofApproximationTheory, 1998,95(1) :146-152.
[5] ZHAO Y, ZHOU S P. Some remarks on rational interpolation to |x| [J].JournalofMathematicalResearch&Exposition,2003, 23(1) :65-70.
[6] 高淇琦, 謝庭藩. 一類(lèi)神經(jīng)網(wǎng)絡(luò)對(duì)連續(xù)函數(shù)的逼近[J]. 中國(guó)計(jì)量學(xué)院學(xué)報(bào), 2011, 22(1) :84-91. GAO Q Q, XIE T F. Approximation of continuous functions by a class of neural network[J].JournalofChinaUniversityofMetrology, 2011, 22(1) :84-91.
[7] 戴慧麗. 兩類(lèi)Chebyshev零點(diǎn)的Newman型有理算子逼近|x|的漸近性質(zhì)[J]. 中國(guó)計(jì)量學(xué)院學(xué)報(bào), 2006, 17(3) :243-245. DAI H L, The asymptotic property of approximation to |x| by Newman-type rational operators at the two kinds of Chebyshev nodes [J].JournalofChinaUniversityofMetrology, 2006, 17(3) :243-245.
[11] BRUTMAN L , PASSOW E. On rational interpolation to |x| [J].ConstructiveApproximation, 1997,13(3) :381 -391.
[12] ZHU L Y, DONG Z L. On Newman-type rational interpolation to |x| at the Chebyshev nodes of the second kind[J].AnalysisinTheoryandApplications, 2006, 22(3) :262-270.
CHENG Yiyuan1, ZHANG Yongquan1, FEI Jingtai2
(1.College of Sciences, China Jiliang University, Hangzhou 310018, China;
2.School of Mathematics and Computation Sciences, Anqing Normal University, Anhui Anqing 246133, China)
2096-2835(2017)03-0404-05
10.3969/j.issn.2096-2835.2017.03.022
2017-06-19 《中國(guó)計(jì)量大學(xué)學(xué)報(bào)》網(wǎng)址zgjl.cbpt.cnki.net
國(guó)家自然科學(xué)基金資助項(xiàng)目(No.11301494,61573326).
O174. 41
A